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ABSTRACT 
In order to minimize the number of iterations to a turbine 

design, reasonable choices of the key parameters must be made 
at the earliest possible opportunity. The choice of blade loading 
is of particular concern in the low pressure (LP) turbine of civil 
aero engines, where the use of high-lift blades is widespread. 

This paper presents an analytical mean-line design study 
for a repeating-stage, axial-flow Low Pressure (LP) turbine. 
The problem of how to measure blade loading is first 
addressed. The analysis demonstrates that the Zweifel 
coefficient [1] is not a reasonable gauge of blade loading 
because it inherently depends on the flow angles. A more 
appropriate coefficient based on blade circulation is proposed. 

Without a large set of turbine test data it is not possible to 
directly evaluate the accuracy of a particular loss correlation. 
The analysis therefore focuses on the efficiency trends with 
respect to flow coefficient, stage loading, lift coefficient and 
Reynolds number. Of the various loss correlations examined, 
those based on Ainley and Mathieson ([2], [3], [4]) do not 
produce realistic trends. The profile loss model of Coull and 
Hodson [5] and the secondary loss models of Craig and Cox 
[6] and Traupel [7] gave the most reasonable results. 

The analysis suggests that designs with the highest flow 
turning are the least sensitive to increases in blade loading. 
The increase in Reynolds number lapse with loading is also 
captured, achieving reasonable agreement with experiments. 

1 INTRODUCTION 
The Smith Efficiency Chart  

Perhaps the most famous correlation for turbine efficiency 
is that proposed by Smith [8]. Using a large set of turbine test-
rig data, he calculated the equivalent efficiency for each 
turbine with zero tip gap. Plotting the results against stage 
loading coefficient and flow coefficient, he obtained the 
efficiency chart shown in Fig. 1 for designs with 50% reaction. 
This plot shows that the efficiency tends to decrease as either 
the stage loading or the flow coefficient are increased. To 
illustrate the changes across the Smith chart design space, four 

diagrams indicating the approximate flow angles and possible 
blade shapes have been added. 

As the flow coefficient is increased (moving from the 
bottom left to the bottom right of Fig. 1), the through-flow 
velocities increase relative to the blade speed as the flow 
becomes more axial. For a given change in tangential velocity, 
this causes an increase in the dynamic pressures which tends to 
increase the losses. Furthermore, losses increase because there 
is a smaller overall acceleration through the blade row. Such 
acceleration is beneficial as it tends to minimize the growth of 
the boundary layers and secondary flows. 

As the stage loading coefficient is increased (moving from 
the bottom left to the top left of Fig. 1), the change in whirl 
velocity across the blade row becomes larger. To achieve this 
additional turning one must either employ blades with higher 
circulation (loading), or decrease the pitch (while maintaining 
circulation). Both tend to increase loss, as does the high exit 
flow angle from these designs (see equation (14) below). 

Motivation and Scope of the Current Work 
The Smith chart provides a simple guide for the selection 

of flow angles, but it does not capture the influence of other 
key parameters. Modern LP turbines typically feature high-lift 
blade designs, which can suffer a rapid drop in efficiency at the 
low Reynolds number conditions experienced at cruise [9]. 

 
Fig. 1 Turbine stage efficiency normalized for zero tip 

gap, 50% reaction designs, Smith [8]. 
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Ultimately, it is highly desirable to accurately capture these 
effects at the earliest stages of design. 

The simplest model for turbomachine design is mean-line 
modeling, where the flow is represented by the mean flow 
quantities at each inter-blade gap. Due to its simplicity, this 
analysis is well suited to understanding trends across the 
design space, but it must rely on empirical correlations for 
profile, secondary and tip leakage losses. Notable examples of 
loss correlations include those of Craig and Cox [6], Traupel 
[7] and Ainley and Mathieson [2], which was later updated by 
Dunham and Came [3] and Kacker and Okapuu [4]. While 
these models take account of blade loading, none are 
influenced by the shape of the blade surface pressure 
distributions, which can have a strong influence on LP turbine 
performance (e.g. [10], [11]). A profile loss model was recently 
developed for high-lift LP turbine blades by the current authors 
to capture such effects [5]. 

This paper outlines a mean-line design study for a 
repeating-stage LP turbine, making use of published loss 
correlations. The analytical methods are described in section 3. 
Section 4 examines how blade loading should be quantified 
and demonstrates that the standard Zweifel lift coefficient [1] 
is unsuitable for this purpose. Sections 5 and 6 examine 
existing profile and secondary loss correlations. There is 
insufficient data available to thoroughly assess the accuracy of 
each method. The analysis therefore concentrates on the trends 
predicted by each model, which may be compared to 
experimental results for varying flow angles, blade loading and 
Reynolds number. These comparisons demonstrate that several 
of the models are flawed, and highlight the need to develop 
improved methods. Nonetheless, the more successful methods 
may be used to examine the likely sensitivity of performance to 
blade loading across the design space. 

2 NOMENCLATURE 
Symbols 
b  camber-line length 
C , xC  true chord; axial chord 

dC  dissipation coefficient 

oC  circulation coefficient  
DF  diffusion factor TETEpeak UUU /)( −=  

rf  0S -based reduced frequency TEwake USf /0=  
LEI  leading edge integral (equation (12)) 

CRe  chord-based exit Reynolds number ν/CUTE=  

0
ReS  0S -based exit Reynolds number ν/0SUTE=  
m&  mass flow rate 
P  pressure 

meanr  mean radius 
s  pitch 
S  surface distance from the leading edge 

0S  suction surface length 

TEt  trailing edge thickness 
T  temperature 
U  blade velocity at mid-span 

iV , iW  gas velocity in the absolute and relative frame 

sV  freestream velocity over blade surfaces 

xV , θV  axial and circumferential velocity components 

xw&  stage power 
Y  total pressure loss coefficient 

wZ  Zweifel lift coefficient 

iα , iβ  flow angles in the absolute and relative frame 
*δ  displacement thickness 

φ  flow coefficient UVx /=  
η  isentropic stage efficiency 
ν  kinematic viscosity 
ρ  density 
θ  momentum thickness 

sω  shaft rotational speed 
ψ  stage loading coefficient ( ) UV rotor /θ∆=  
ζ  total energy loss coefficient 

Subscripts 
0  stagnation quantity 
1  stator inlet plane 
2  stator exit/rotor inlet plane 
3  rotor exit plane 
is  isentropic 
p   profile loss 
peak  peak velocity on the suction surface 
s  secondary loss 
sea  sea level 
TE  (suction surface) trailing edge 

3 ANALYTICAL METHODS FOR DESIGN STUDY 
Datum Turbine 

In order to provide a reference for the subsequent analysis, 
a datum turbine design is considered that is approximately 
representative of modern LP turbine designs. The details of the 
design are presented in Table 1. The datum turbine is a 
repeating stage with 50% reaction. The flow coefficient (0.9) 
and stage loading (2) place the datum design approximately in 
the middle of the Smith chart design space (Fig. 1). The 
Reynolds numbers are roughly representative of modern LP 
turbines at cruise conditions. The reduced frequency rf  
describes the frequency of wakes arriving from the upstream    
blade row, which can be accounted for in the profile loss model 
of [5]. The influence of this parameter is largely second-order, 
and will not be discussed further in this paper, though its effect 
has been included in the analysis. The specified blade aspect 
ratios are based on the axial chord, since the designer will be 
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interested in the overall stage length. The chosen aspect ratios 
set the ratio of stator to rotor blades at approximately 1:1.4. 
The stage has a constant mean radius and the area ratio 
through the stage expands to maintain constant axial velocity 
though the stage. The tip gap is assumed to be zero throughout 
this analysis, which allows direct comparison with the 
efficiencies on the Smith chart. For simplicity, the analysis 
here has been performed at relatively low speed and the Mach 
number is not included in Table 1 since it has only a weak 
influence on performance. While analysis at higher speeds 
shows that Mach number variations do have an influence on 
efficiency, this does not affect the conclusions that can be 
drawn from the analysis. 

A Study of Comparable Designs 
The current design study has been conducted with the 

industrial design process in mind. The multistage LP turbine 
has three key overall requirements which are set by the engine 
architecture: the core mass flow rate is determined by the 
engine bypass ratio, while the required power output and shaft 
speed are fixed by the requirements of the fan. The designer 
must choose the number of stages for the LP turbine, which 
sets the power output per stage. When comparing different 

turbine designs, one must therefore consider designs with the 
same stage power output, mass flow rate and shaft RPM as the 
datum case, for the same inlet conditions. As shall be 
demonstrated, this requirement results in turbines of different 
mean radius and flow area as the flow angles are varied. 

Flow Parameters and Gas Angles 
Fig. 2 shows a schematic of the two-dimensional flow 

through a turbine stage for constant axial velocity. It also 
defines the sign conventions for the flow angles. 

In this study the stage reaction is fixed at 0.5 (Table 1), so: 

21 βα −= ; 32 βα −=  (1)  
The stage is repeating, so that: 

13 αα =  (2)  
The gas angles are therefore fixed by the choice of Flow 
Coefficient φ  and Stage Loading Coefficient ψ :  

( )1tan5.02 αφψ −=  (3)  
( )12 tantan ααφψ −=  (4)  

Calculation Procedure 
For a fixed stage power output xw&  and mass flow rate m& , 

the blade speed U  is set by the stage loading coefficient: 

ψm

w
U x

&

&
=  (5)  

Noting that one is considering designs for a fixed rotational 
shaft speed, the mean radius is thus given by: 

ψωω m

wU
r x

ss
mean

&

&1==  (6)  

The flow coefficient sets the axial velocity: 

ψ
φφ

m

w
UV x

x
&

&
==  (7)  

Together with the flow angles, the inter-blade velocities can 
now be calculated: 

ixi VV αcos/=  (8)  

ixi VW βcos/=  (9)  
where the index i  represents each inter-blade gap (Fig. 2). 
Fig. 3(a) shows the variation of the exit velocity from the stator 
row (normalized by the datum value), which is largest for 
designs with high flow coefficient and low stage loading. 

Flow Angles 
Reaction ( Λ ) 50%* 
Flow Coefficient (φ ) 0.9 
Stage Loading Coefficient (ψ ) 2 
Repeating Stages Assumed* 
Non-dimensional flow parameters  
Stator Reynolds number (

0
ReS ) 250,000 

Equivalent CRe  194,000 
Rotor Reynolds number (

0
ReS ) 177,000 

Equivalent CRe  138,000 
Stator reduced frequency ( rf ) 1.31 
Rotor reduced frequency ( rf ) 0.67 
Geometric Parameters 
Hub-to-tip ratio (average for stage) 0.75 
Rotor Aspect Ratio ( xCh / ) 6.50* 
Stator Aspect Ratio ( xCh / ) 4.60* 
Trailing edge thickness ( CtTE / ) 0.01* 
Zero Tip gap 0* 
Mean radius constant through the stage* 

xV  constant through the stage*  
Blade Velocity Distributions 
Circulation Coefficient (Equation (21)) 0.70 
Peak Velocity Location (fraction of 0S ) 45%* 
Leading Edge Integral  50%* 
Diffusion Factor (DF ) 0.23 

Table 1. Design and flow parameters for the datum 
repeating-stage turbine; “*” indicates a parameter that 
remains constant in the subsequent design space study. 

a1

V1

Vx = constant

Stator

a2

V2

W2

b2

U

U

Rotor

a3 = a1

V3 = V1

W3

b3

U

negative

positive

 
Fig. 2 Velocity triangles and angle conventions. 
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Compressible flow relationships are then used to 
determine the Mach numbers, and hence the total and static 
values of pressure, temperature and density at the inlet and exit 
of each blade row. To correctly calculate the total pressures 
throughout the stage, the loss coefficients must be known: the 
calculation is therefore iterated to arrive at the correct result. 

Together with the specified mass flow rate, the calculated 
density determines the flow area, which expands through the 
machine to maintain constant axial velocity. The flow area 
determines the span: Fig. 3(b) shows the variation over the 
design space. The span is largest for designs with high stage 
loading and low flow coefficients, which have low axial 
velocity. Together with the specified aspect ratios (Table 1), the 
axial chords of the stators and rotors are thus determined. 

It is necessary at this point to make some estimates of the 
blade geometry, since the loss correlations rely on true chord, 
camber-line length and surface lengths. The relationships 
between these geometric parameters will be very different for 
high and low turning airfoils. It is first assumed that the 
camber-line of a blade can be approximated by a parabolic 
curve, which was shown to be reasonable by Horlock [12]: 

xBxAycamber += 2  (10) 

The basic approach is illustrated in Fig. 4. The camber-line of 
the blade is assumed to align with the flow angles at inlet and 
exit, uniquely setting the constants A  and B  in equation (10). 
The length of the camber-line b  and the true chord C  may 
then be calculated from the known axial chord xC . The length 
of the blade suction surface 0S  will largely depend on the 
camber-line of the blade, and so the following simple 
relationship was proposed: 

bS 15.10 =  (11) 
The factor of 1.15 is based on a survey of LP turbine blades 
from the literature. Fig. 3(c) shows the ratio of this estimated 
surface length to the axial chord over the design space. In 
reality the thickness distribution of the turbine blade will also 
make a contribution to the surface length, but equation (11) is 
sufficiently accurate for the current purposes. 

For profile losses, the appropriate Reynolds number is 
based on the suction surface length and exit velocity ([5]). Fig. 
3(d) demonstrates that this parameter is large for highly 
turning designs; the variation in suction surface length (Fig. 
3(c)) therefore dominates the variations in exit flow velocity 
(Fig. 3(b)) in terms of the Reynolds number. 

Surface Velocity Distributions, Pitch and Loss Prediction 
The total pressure loss through each blade row due to 

profile loss was calculated using a method based on the 
preliminary design correlation previously developed by the 
authors for high-lift blades featuring laminar separation 
bubbles [5]. This method relies on an empirical correlation for 
the boundary layer parameters at the suction surface trailing 
edge, based on the freestream velocity distribution over the 
surface. Effectively, a Thwaites [16] calculation (or equivalent) 
is performed up to the point of laminar separation; a 

  
(a) (b) 

  
(c) (d) 

Fig. 3 Calculated flow and geometry parameters across 
the design space: (a) stator exit velocity; (b) mean span; 

(c) ratio of xCS /0 ; (d) Reynolds number. 
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x

ycamber

C

b

Cx

S0

 
Fig. 4 Geometry estimation using a parabolic camberline. 
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Fig. 5 Sample surface velocity distributions. 
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correlation then relates the growth in momentum thickness 
through the separation bubble and downstream turbulent 
boundary layer. A separate correlation predicts the shape factor 
and hence the trailing edge displacement thickness. 

Coull and Hodson [5] showed that, with certain 
assumptions, the suction surface velocity distribution can be 
modelled by three key design parameters: the diffusion factor, 
the peak velocity location on the surface and the leading edge 
integral, which describes the loading up to the velocity peak: 

∫ 


























==

1

0

5

dIntegralEdge Leading
peakpeaks

s

S

S

V

V
LEI  (12) 

In this study the peak velocity was fixed at 45% of the surface, 
which is relatively far forwards on the surface. Front-loading 
in this manner reduces the deceleration rate over the rear 
portion of the blade and minimises the losses generated by the 
separation bubble. The leading edge integral was fixed at 50%, 
which should be low enough to provide reasonable incidence 
tolerance. The diffusion factor was varied to achieve the 
required blade loading. Sample velocity distributions of the 
style assumed are shown in Fig. 5. 

The blade pitch is related to the gas turning and the blade 
circulation, e.g. for the stator: 

( ) 221

02

costantan

d

ααα −


















=
∫ S

S

V

V

S

s
s

o
 

(13) 

The profile loss may be related to the predicted trailing 
edge boundary layer parameters using an approximation to the 
analytical solution of Denton [13]: 

2

2

*

2 coscos

2












 +
+













≈ ∑∑

α
δ

α
θ

s

t

s
Y

TETETE
p  (14) 

In Coull and Hodson [5], a correction was applied to equations 
(13) and (14) to account for the depression of the freestream 
velocity in the vicinity of the trailing edge. This correction has 
not been used in the current study because there is insufficient 
data to predict this velocity depression for low or high turning 
designs. Instead, it has been assumed that the freestream 
velocity at the trailing edge is equal to the mean exit flow 
velocity from the blade row. This assumption will have only a 
minor impact on the results of this study. 

In addition to the Coull and Hodson method, this paper 
considers several other profile loss models ([2] [3] [4] [6] 
[13]), and secondary loss models ([2] [3] [4] [6] [7] [17]). 

Relating Loss Coefficients to Stage Efficiency 
It should be noted that most of the loss correlations are 

based on total pressure loss coefficients obtained at low Mach 
numbers. Such total pressure losses tend to have a relatively 
strong Mach number dependence, and this effect would 

therefore need to be accounted for in the analysis. Fortunately 
this issue can be largely avoided by using the energy loss 
coefficient, defined for the stator row as: 

Y
V

VV

is

is ≡
−

=
2
,2

2
2

2
,2ς  for incompressible flow (15) 

where isV ,2  is the exit velocity obtained by isentropic 
expansion from the inlet total pressure to the exit static 
pressure. The energy loss coefficient has a much lower 
dependency on Mach numbers than the total pressure loss 
coefficient, and may therefore be reliably used for flows with a 
peak Mach numbers below around 0.85. This is an 
approximation, but it is sufficiently accurate for this study. 

The total-total isentropic efficiency for the repeating stage 
is defined as: 

isis TT

TT

hh

hh

,0201

0201

,0201

0201

−
−

=
−
−

=η  (16) 

4 LIFT COEFFICIENTS 
Zweifel Lift Coefficient  

The Zweifel lift coefficient [1] is a widely-used measure of 
blade loading. It is defined as the ratio of the tangential force 
on a blade to an “ideal” case, where the pressure surface of the 
blade is stagnated ( 0PP = ), while the flow over the suction 
surface travels at the mean exit velocity from the blade row 
( 2PP = ). The Zweifel coefficient is therefore given by: 

( )201

d

PPC

xP
Z

x
w −

= ∫  (17) 

From a control volume analysis, the tangential force can be 
related to the flow angles, giving: 

( )201 PPhC

Vm
Z

x

passage
w −

∆
= θ&

 (18) 

These equations can be simplified for the case of 
incompressible flow. From equation (17), the Zweifel 
coefficient can be calculated by integrating the square of the 
freestream velocity on the blade surfaces: 

( ) ( )xs
x

s
w CxVV

VC

xV
Z /d/

5.0

d5.0 2
22

2

2

∫
∫ ==

ρ

ρ
 (19) 
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V /Vs 2
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x/Cx

( )V /Vs 2

2

0
0
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1
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pressure surface
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0
0

1

1
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Fig. 6 Low speed definition of: (a) Zweifel lift coefficient 

wZ  (Eq. (19)); (b) Circulation coefficient oC  (Eq. (21)). 
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This definition is illustrated graphically in Fig. 6(a). For low 
Mach numbers and constant axial velocity, equation (18) may 
be rewritten as: 













 −=
∆

=
2

2
12

2
2 sec5.0

tantan

5.0 α
αα

ρ
θ

xx

passage
w C

s

VC

Vm
Z

&

 (20) 

Mean-line efficiency predictions have been performed for 
a constant value of Zweifel coefficient ( 1.1=wZ ) and are 
presented in Fig. 7. The profile and secondary loss models 
used are those of Coull and Hodson [5] and Craig and Cox [6] 
respectively. (The justification for using these methods is 
presented in the following section.) There are some similarities 
to Smith’s efficiency chart (Fig. 1), in particular the decrease 
of efficiency with increased stage loading. However, the 
decrease of efficiency with increasing flow coefficient (towards 
the right of Fig. 1) has not been captured. There is also a 
region in the bottom right without data, the reason for which 
will be made clear in the next plot. For constant Zweifel 
coefficient, the trends in the Smith chart could not be 
satisfactorily reproduced using any of the loss correlations 
considered in this paper. 

Fig. 8 shows the variation in diffusion factor (DF ) across 
the Smith-chart design space; this parameter varies to 
maintain a constant Zweifel coefficient as the flow angles 
change. The plot shows that the diffusion factor varies 
significantly across the design space. The maximum value of 
around 0.6 occurs for the designs with the highest turning (low 
φ , high ψ ), which are likely to undergo turbulent separation. 
At the other end of the design space, the diffusion factor is 
only around 0.05, and these designs will therefore tend to 
exhibit attached laminar flow over the full length of the 
suction surface. (The reason for the blanked region in Fig. 7 is 
that the profile loss model is not valid for permanently 
attached flow.) Therefore, the same Zweifel coefficient 
simultaneously describes very highly loaded blades suffering 
turbulent separation, very lightly loaded blades with laminar 
attached flow, and everything in-between. The Zweifel 
coefficient is therefore an inappropriate parameter to compare 
designs with different flow angles. 

Circulation Coefficient 
A new lift coefficient based on the blade circulation is 

proposed. In a manner analogous to the Zweifel coefficient, the 
Circulation Coefficient oC  is defined as the ratio of the blade 
circulation to an ideal circulation, with 2VVs =  on the suction 
surface and stagnated flow ( 0=sV ) on the pressure surface: 

















=== ∫

∫
0202

d
d

ncirculatioideal
ncirculatioactual

S

S

V

V

SV

SV
C ss

o  (21) 

This low-speed definition is illustrated graphically in Fig. 6(b). 
A suitable scaling for compressible flow must also be 
considered. Previous authors (e.g. [18]) have found that high 

and low speed cascades have similar kinetic energy losses if 
they have matching surface pressure distributions. The 
compressible circulation coefficient is therefore defined in 
terms of pressure as: 










−
−

= ∫ 0201

01 d
S

S

PP

PP
Co  (22) 

At low Mach numbers and constant xV  the circulation may be 
related to the flow angles and pitch (equation (13)) to give: 








 −=
2

21

0 sec

tantan

α
αα

S

s
Co  (23) 

There are clear similarities between the circulation and Zweifel 
coefficients. Comparing equations (20) and (23), the two 
coefficients are related by the following parameter: 









=

20 cos

5.0

αS

C

Z

C x

W

o  (24) 

This parameter varies depending on the camber of the blade. 
For a turbine comprised of inclined flat plates (i.e. no camber), 
it takes a value of 0.5; for extremely cambered blades it may be 
as high as 0.8. Equation (24) therefore implies that the 
circulation coefficient will always be lower than the Zweifel 
coefficient. This may at first seem odd since they are both 
defined relative to an ideal case; however Fig. 6(a) and (b) 
demonstrate graphically that the integration of 2sV  in the 
Zweifel coefficient will be larger than the integration of sV  in 
the circulation coefficient. 

  
Fig. 7 Predicted efficiency 
for constant 1.10=wZ .  

Fig. 8 Diffusion factor for 
constant 1.10=wZ . 

 
Fig. 9 Predicted stage efficiency for constant circulation 

coefficient 0.70=oC . 
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Mean-line predictions were performed for designs with 
constant circulation coefficient. With a fixed peak velocity 
location and leading edge loading (Table 1), oC  sets the 
diffusion factor. Thus a constant circulation coefficient implies 
constant surface velocity distributions over the Smith chart 
design space. Fig. 9 shows the predicted efficiencies for 

70.0=oC  (implying 23.0=DF ), again using the profile and 
secondary loss models of Coull and Hodson [5] and Craig and 
Cox [6] respectively. Remarkably good agreement with the 
trends of the original Smith chart in Fig. 1 is achieved. This 
result supports the use of the circulation coefficient rather than 
Zweifel. In many ways this conclusion is unsurprising: blade 
design typically focuses on the shape of the surface velocity or 
Mach number distributions, rather than the Zweifel coefficient. 

5 THE INFLUENCE OF FLOW ANGLES 
The remainder of this paper examines several profile and 

secondary loss correlations from the literature. Although the 
accuracy of each model cannot be evaluated directly without a 
large experimental dataset, any successful model should at the 
very least be able to predict the correct trends with respect to 
flow angles, blade lift and Reynolds number. This section 
examines the variation in profile and secondary losses across 
the Smith chart (Fig. 1). The analysis is performed for the case 
in Fig. 9, with a constant circulation coefficient of 70.0=oC . 

Profile Loss Models 
While the overall trend of the Smith chart is well 

established, the contribution of the profile and secondary losses 
is less obvious. However, Denton [13] employed a simple 
analytical approach to examine the trends in profile loss across 
the Smith chart design space. From entropy considerations, the 
profile loss coefficient may be calculated by integrating 3sV  
over the blade surfaces: 

( ) ( )0

1

0

3
2

2

0 /d/
cos

2 SSVVC
s

S

psss
sdp ∑ ∫

+
≈

α
ζ  (25) 

The dissipation coefficient dC  will vary over the surface, 
depending on the boundary layer development and the 
Reynolds number. However an approximate prediction may be 
made by assuming that it takes a constant value typical of fully 
turbulent flow, 002.0=dC . (For the fixed velocity 
distributions in the current analysis, this assumption effectively 
excludes Reynolds number influences.) The result in Fig. 10(a) 
shows that the lost efficiency increases as the flow turning 
increases, reaching a maximum in the top left of the Smith 
chart. This trend may be largely understood from equation 
(25). The loss coefficient rises strongly towards the top left of 
the Smith chart, where the exit flow angle 2α  increases and 
the ratio of pitch to suction surface length 0/ Ss  decreases (in 
order to perform more flow turning with constant circulation). 

The profile lost efficiency predicted using the method of 
Coull and Hodson [5] is presented in Fig. 10(b). As for the 
Denton method, the losses increase as the flow turning 
increases, reaching a maximum in the top left of the Smith 
chart. The predicted loss is higher than the Denton predictions, 
which is unsurprising given that the dissipation coefficient will 
be higher for laminar, separated and transitional flows [13]. 
Fig. 10(b) also shows a weak tendency for loss to increase at 
high flow coefficients, which is evident as a slight curling of 
the contours in the bottom right of the chart. This effect is 
driven by variations in Reynolds number (Fig. 3(d)) and exit 
dynamic pressure (from Fig. 3(a)).1 

Fig. 10(c) shows the profile lost efficiency predicted by the 
method of Ainley and Mathieson [2], who interpolated between 
loss charts for “nozzle” blades with axial inlet flow (i.e. 

01 =α  for a stator), and impulse blades ( 21 αα −= ) for 
different flow angles and pitch-to-chord ratios. A correction is 
then made for the trailing edge thickness. The overall trend of 
Fig. 10(c) is somewhat similar to Fig. 10(a) and (b) except that 
high losses are predicted for low turning designs (high φ  and 
low ψ ), which is caused by extrapolating the method to the 
high pitch-to-chord ratios of these designs2. The predicted 
profile losses for designs with high turning (low φ  and high 
ψ ) are very high. In fact, even if the secondary losses are zero, 
this model predicts lower efficiency than was observed by 
Smith for such designs (Fig. 1). 

Fig. 10(d) and (e) show two later modifications of the 
Ainley and Mathieson method. Dunham and Came [3] 
accounted for Reynolds number and Mach number variations, 
which makes only small changes to the predictions (Fig. 
10(d)). This model therefore suffers from the same problems as 
the original method. Kacker and Okapuu [4] suggested 
multiplying the Dunham and Came predictions by 2/3 (Fig. 
10(e)), which produces more reasonable levels of efficiency. 
However the increase in losses for high-turning designs (high 
ψ  and low φ ) and low-turning designs (low ψ  and high φ ) 
is far more rapid than either the Coull and Hodson or the 
simple Denton methods suggest, and therefore does not appear 
to be realistic. 

The profile lost efficiency predicted using the correlations 
of Craig and Cox [6] is presented in Fig. 10(f). Although the 
loss increases for high-turning designs, it also increases 
strongly as the flow coefficient rises, which does not match the 
simple Denton analysis in Fig. 10(a). (The kink in the data is 
due to extrapolation errors from Craig and Cox’s charts.) 

This comparison shows that the model of Coull and 
Hodson [5] gives the most realistic predictions of profile loss 

                                                        
1For a high speed datum turbine, this effect is slightly magnified due to the 

high Mach numbers in this region of the Smith chart. 
2Note that these designs have low flow turning, so for a constant circulation 

they must have a high pitch-to-chord ratio. 
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across the design space. This method also has higher fidelity 
than the others, since it depends on the shape of the blade 
velocity distributions rather than just the pitch. 

Secondary Loss Models 
Fig. 11(a) shows the predicted lost efficiency due to the 

secondary loss model of Craig and Cox [6]. This plot shows 
that secondary losses are largely responsible for the observed 
drop in efficiency at high flow coefficients. Together with the 
increase in profile loss with the stage loading coefficient (Fig. 
10(b)), the overall trend of the Smith chart is reproduced (Fig. 
9). The variation across the design space in Fig. 11(a) is due to 
a combination of competing effects. The Craig and Cox 
correlations are presented graphically rather than as analytical 

expressions, but the trends of Fig. 11(a) are driven by variation 
in the following parameters, in approximately decreasing order 
of influence: 
(1) Velocity ratio through the blade row. Secondary losses 
tend to be higher when there is a low overall acceleration 
through the stage. Designs with high flow coefficient and low 
stage loading therefore have high secondary losses. 
(2) Exit dynamic pressure. Pressure losses scale with the 
dynamic pressure, which is high for designs with high flow 
coefficient and low stage loading (see Fig. 3(b)). 
(3) Aspect ratio. Secondary losses increase as the aspect ratio 
is decreased. A constant aspect ratio xCh /  has been specified 
in this study, but the Craig and Cox correlation is sensitive to 

 
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 10 Predicted lost efficiency due to profile loss for 
0.70=oC : (a)  Denton [13]; (b) Coull and Hodson [5]; 

(c) Ainley and Mathieson [2]; (d) Dunham and Came [3]; 
(e) Kacker and Okapuu [4]; (f) Craig and Cox [6]. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 11 Predicted lost efficiency due to secondary loss for 
0.70=oC , according to: (a) Craig and Cox [6]; (b) Ainley 

and Mathieson [2]; (c) Dunham and Came [3]; (d) Kacker 
and Okapuu [4]; (e) Traupel [7]; (f) Benner et al. [17]. 
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the ratio of span to camberline bh / , which decreases for 
highly cambered blades, driving a slight increase in secondary 
losses towards the top left of the Smith chart. 
(4) Blade pitch. Increasing the blade pitch causes the 
secondary flow structures to develop to a larger size (since they 
are less restricted by the blade surfaces) and penetrate further 
towards the midspan region. Craig and Cox use the pitch-to-
camberline ratio, which tends to be larger for designs with low 
stage loading coefficient. 
(5) Lift coefficient. Highly loaded blades exhibit a stronger 
pressure difference between the suction and pressure surfaces; 
this pressure difference drives the overturning of the endwall 
flow. According to the Craig and Cox definition, designs with 
a higher stage loading coefficient have higher lift coefficients, 
and so tend to have higher secondary losses. 
(6) Reynolds number. The Craig and Cox model assumes 
modest changes in secondary loss with Reynolds number, 
approximately following a turbulent trend ( 2.0Re~ − ). 

The predicted secondary lost efficiency using the method 
of Ainley and Mathieson [2] is presented in Fig. 11(b). Quite 
unexpectedly, the observed trend is almost exactly the opposite 
of the Craig and Cox method. One is left wondering why the 
two methods give such different results, and which is more 
representative of reality. 

The details of the Ainley and Mathieson secondary loss 
model are given in [14]. They chose the following form for the 
secondary loss coefficient, based on the work of Carter [15]: 





















=
m

L
s Cs

C
Y

α
αλ

3
2

22

cos

cos

/
 (26) 

where λ  is a function of the effective inter-row flow areas and 
the hub-to-tip ratio. The mean flow direction mα  is defined as: 

( )21
1 tantantan ααα += −

m  (27) 

The lift coefficient LC  is analogous to that for an external 
wing section, and is defined relative to the mean flow: 

( ) mL
C

s
C ααα costantan2 21 −







=  (28) 

The square of the lift coefficient in equation (26) drives the 
large increases in secondary loss at low flow coefficient and 
high stage loading (Fig. 11(b)). A similar effect was noted in 
point (5) above for the Craig and Cox method, but here the 
influence of lift coefficient dominates over the other effects.3 

One problem with the Ainley and Mathieson method is 
that the definition of lift coefficient LC  (equation (28)) is not 
appropriate for moderate or highly cambered blades, as they 
themselves pointed out in [14]. Furthermore, equation (26) was 
formulated for relatively low turning blades and it is therefore 

                                                        
3It should be noted that Ainley and Mathieson account for the machine hub-

to-tip ratio rather than the aspect ratio. 

of questionable validity. In contrast Craig and Cox correlation 
examined a much wider range of blade designs. 

Fig. 11(c) shows the predictions according to Dunham and 
Came [3], who updated the Ainley and Mathieson secondary 
loss model to account for aspect ratio. Predictions using the 
subsequent modification by Kacker and Okapuu [6] are 
presented in Fig. 11(d). Despite subtle differences, both of 
these methods suffer from the same flaws as the original (Fig. 
11(b)). 

Predictions using the correlation of Traupel [7] are 
presented in Fig. 11(e). This method successfully captures the 
loss of efficiency at high flow coefficient and low stage 
loading, and the predictions are very similar to those of Craig 
and Cox. (The very slight kinks at high stage loading 
coefficient are a result of extrapolating from Traupel’s graphs.) 

Fig. 11(f) shows the predictions of the recent secondary 
loss correlation of Benner et al. [17], assuming that the 
displacement thickness of the inlet endwall boundary layer is 

h05.0*=δ . This method correctly captures the increase in loss 
at high flow coefficients. Although promising, it is not clear 
how to select an appropriate value of *δ  at the preliminary 
stages of design, which has a large influence on the 
predictions. 

Considering the trends across the design space, the 
secondary loss models of Craig and Cox and Traupel are the 
most reasonable of those considered. This analysis says 
nothing of the absolute accuracy of these correlations, which 
may only be determined by direct comparison of predictions 
and test data. It should also be noted that both methods are 
inherently approximate as they take no account of the shape of 
the surface velocity distributions, which are known to have a 
significant impact on the secondary losses. For example, Gier 
et al. [11] compared two high-lift LP turbine cascades with 
similar flow turning and loading. The velocity peak on the 
T162 design was relatively far forward on the surface, and this 
exhibited a 30% higher secondary loss coefficient than the aft 
loaded T161. The mean-line secondary loss models considered 
here lack the fidelity to capture this variation, and will 
therefore be prone to (significant) errors. There is therefore 
significant scope to develop improved methods in the future. 

6 THE INFLUENCE OF BLADE LOADING AND 
REYNOLDS NUMBER 
This section examines variations in blade loading and 

Reynolds number effects. The trends predicted by each loss 
correlation are critically examined and the predictions are used 
to examine the likely sensitivity of performance to blade 
loading and Reynolds number. 

Blade Loading 
In recent years a great deal of research has examined the 

performance of high-lift blade designs for LP turbines. Such 
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designs require fewer blades and therefore offer a weight and 
cost saving for the engine, but tend to have lower efficiency. 
This section examines the trade-off between lift and efficiency. 

Calculations are shown in Fig. 12 for designs with the 
same flow angles as the datum turbine ( 9.0=φ , 2=ψ ) but 
varying lift. Fig. 12(a) shows the lost efficiency due to profile 
loss alone. (Noting that these designs have velocity 
distributions of the style shown in Fig. 5, the diffusion factor 
for each design is also indicated on the horizontal axes.) The 
method of Denton [13] predicts the lowest loss, which is 
unsurprising since it assumes fully turbulent boundary layers. 
The Coull and Hodson [5] model indicates a modest increase 
in profile loss with increasing lift, consistent with such 
forward-loaded designs. However, there is a slight drop off in 
loss for designs with low lift ( 20.0<DF ), which is unlikely to 
be physical. Such designs are close to the limit of the high-lift 
experimental data used to formulate this method ([5]). The 
method of Craig and Cox [6] predicts a rapid rise in loss above 

77.0≈oC , probably due to extrapolating beyond their 
experimental design space. The Ainley and Mathieson [2] and 

Dunham and Came [3] methods both predict very high profile 
losses. For this particular set of flow angles, the Kacker and 
Okapuu [4] correlation predicts similar values to the Coull and 
Hodson method. 

The secondary lost efficiency is presented in Fig. 12(b) for 
the models considered in the previous section. Of these, Ainley 
and Mathieson [2] predict very high losses. The models of 
Dunham and Came [3], Kacker and Okapuu [4] and Benner et 
al. [17] (assuming an inlet endwall boundary layer with 

h05.0*=δ ) predict that secondary loss stays almost constant 
with increasing lift. These predictions are contrary to 
experimental experience (e.g. [11]). The Craig and Cox [6] 
and Traupel [7] models predict a rise in secondary flow losses 
with lift, but the increase is significantly less than that 
observed by Gier et al. [11] and Praisner et al. [19] for high-
lift LP turbine blades. Despite this inadequacy, these methods 
give the most realistic trends of the models considered. 

To show the influence of the lift coefficient on the Smith 
chart design space, Fig. 13 shows efficiency contours for 3 
circulation coefficients 80.0,75.0,70.0=oC  (implying =DF  
0.23, 0.29, 0.36) using the profile loss model of Coull and 
Hodson [5] and secondary model of Craig and Cox [6]. (A 
similar chart may be obtained using the Traupel secondary loss 
model.) As the lift is increased the contours retreat towards the 
bottom left of the chart, indicating that the efficiency decreases 
for a given set of flow angles. The retreat is not uniform, being 
far more gradual for the highly turning blades at the top left of 
the plot than elsewhere on the chart. These designs have low 
pitch-to-chord ratios and high exit angles, causing high profile 
losses. Equation (14) shows that profile loss tends to reduce 
with increasing pitch (due to a reduction in wetted area), 
which partly mitigates the increase in loss with lift. 

Reynolds number lapse rate 
As an aircraft flies at higher altitudes, the changes in 

engine inlet conditions causes the blade Reynolds numbers to 
drop. It is therefore important that to predict the drop in LP 
turbine efficiency, the so-called “Reynolds number lapse”. 

In the International Standard Atmosphere model, the 
variation of temperature with altitude is approximated by 
assuming that it decreases linearly with height: 

)minaltitude(0065.0 ×−= seaTT  (29) 
The pressure is then given by: 

256.5


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
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


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=

seasea T

T

P

P
 (30) 

where seaP  and seaT  are the sea-level pressure and 
temperature, and the exponent (5.256) is related to the earth’s 
gravitational field and the properties of air. 

To examine the influence of Reynolds number, it is 
assumed that the non-dimensional operating point of the 
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Fig. 12 Predicted lost efficiency with increasing lift for 
the datum flow angles ( 0.9=φ , 2=ψ ). 
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Fig. 13 Efficiency contours for three levels of lift ( oC = 
0.70, 0.75 0.80), using the profile loss model of Coull and 
Hodson [5] and secondary model of Craig and Cox [6]. 
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turbine is constant, so that the same temperature and pressure 
ratios exist through the engine. The conditions at the inlet of 
the repeating turbine stage (01P , 01T ) at altitude are then 
governed by equation (30). Furthermore, for a given stage 
geometry the following non-dimensional groups will remain 
constant: 

01RT

rmeans

γ
ω

, 
( ) 01

2
01

Pr

RTm

mean

γ&

,
( ) 0101

2 RTPr

w
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x
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These groups control the variation of dimensional shaft speed, 
mass flow rate and stage power as the stage inlet total pressure 

01P  and temperature 01T  vary. 
Calculations have been performed for the datum turbine 

operating at varying Reynolds number. Fig. 14(a) shows the 
predicted lost efficiency due to profile loss alone. The influence 
of Reynolds number on each model may be summarized as 
follows: Denton [13] and Ainley and Mathieson [2] have no 
Reynolds number dependency; Dunham and Came [3] and 
Kacker and Okapuu [4] assume a turbulent trend ( 2.0Re~ − ) 
for Reynolds numbers below 200,000; Craig and Cox [6] 
predict a turbulent trend across the whole Reynolds number 
range. In fact the measurements of Coull et al. [10] 
demonstrated that high-lift LP turbines of this style tend to 
exhibit a laminar trend ( 5.0Re~ − ) at low Reynolds numbers 
and a turbulent trend ( 2.0Re~ − ) at high Reynolds numbers, an 
effect which is captured in Fig. 14(a) by the Coull and Hodson 
[5] correlation. This method is probably the most realistic. 

The loss in efficiency due to secondary loss alone is 
presented in Fig. 14(b). Again, significant differences between 
the models are evident. The models based on Ainley and 
Mathieson ([2], [3], [4]) and the Benner et al. [17] correlation 
indicate no variation with Reynolds number. Craig and Cox [6] 
predict a turbulent trend across the whole Reynolds number 
range, while Traupel [7] assumes a laminar trend ( 5.0Re~ − ) 
below 5102Re ×=C . In reality, measurements of secondary 

losses generally show some increase in secondary losses at low 
Reynolds number (e.g. [20]) but there is no universally-
observed trend. The Craig and Cox [6] and Traupel [7] 
methods are therefore more reasonable than the others, but it is 
not clear how realistic they are. 

The Reynolds number dependency of the models has been 
examined by performing mean-line analysis for the 3-stage 
high-lift (HL) and ultra-high-lift (UHL) turbines examined by 
Haselbach et al. [9]. The two turbines had similar performance 
at sea level conditions, but the UHL design had a far more 
rapid drop-off in performance at lower Reynolds numbers. 
Table 2 compares the measured lapse rates to predictions using 
the secondary loss models of Craig and Cox [6] and Traupel 
[7]. In both cases the UHL design is predicted to have a larger 
drop in efficiency. However, the correlation of Traupel achieves 
far closer agreement with the experiments than Craig and Cox, 
suggesting that it has a more realistic Reynolds number 
dependency. 

To illustrate the influence of blade loading, Fig. 15 shows 
the Reynolds dependency for designs with the datum flow 
angles ( 9.0=φ , 2=ψ ) using the profile and secondary loss 
models of Coull and Hodson [5] and Traupel [7] respectively, 
The efficiency due to profile loss alone, due to secondary loss 
alone and the overall efficiency are presented for four levels of 
lift. In line with experimental experience [10], the profile 
efficiency drops strongly at low Reynolds numbers particularly 
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Fig. 14 Predicted lost efficiency with varying Reynolds 
number for the datum turbine. 

Efficiency change, sea level to cruise Secondary 
Loss Model HL UHL 

Craig & Cox [6] -2.35% -2.52% 
Traupel [7] -1.39% -1.53% 

Experiments [9] -0.9% -1.3% 
Table 2. Predicted and measured Reynolds number lapse 

for the turbines examined by Haselbach et al. [9]. 
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Fig. 15 Reynolds number lapse for varying lift, showing 

efficiency when considering profile loss alone ([5]), 
secondary loss alone ([7]) and the overall efficiency; datum 

flow angles ( 0.9=φ , 2=ψ ). 
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for the highest lift design. The secondary efficiency shows a 
similar trend but with a slightly weaker dependency on 
Reynolds number. 

While the existing methods can give reasonable results, it 
is highly likely that the arbitrary dependence of the Traupel 
and Craig and Cox models can be improved upon in future 
correlations. 

7 CONCLUSIONS 
For the range of flow coefficient and stage loading 

examined in this study, a single value of the Zweifel lift 
coefficient describes a range of blade designs, from very 
lightly-loaded designs with attached laminar flow boundary 
layers to excessively-loaded designs featuring turbulent 
separation on the suction surface. The Zweifel coefficient is 
therefore not an appropriate parameter to measure blade 
loading. An alternative lift coefficient based on circulation has 
been formulated in an analogous fashion to the Zweifel 
coefficient. This Circulation Coefficient is directly related to 
the freestream velocities over the blade surface. 

Several existing profile and secondary loss models have 
been examined for their suitability to mean-line design. In the 
absence of a large set of test data, this discussion has examined 
the predicted efficiency trends with respect to flow angles, 
blade lift and Reynolds number. The analysis demonstrates that 
the correlations derived from Ainley and Mathieson ([2], [3], 
[4]) do not capture the correct trends for profile and secondary 
losses, and should therefore not be used for design purposes. 
The profile loss model of Coull and Hodson [5] and the 
secondary models of Craig and Cox [6] and Traupel [7] were 
the most promising of those examined. The Reynolds number 
dependency of the Traupel model appears to be superior to that 
of Craig and Cox. 

The analysis indicates that designs with high flow turning 
have the lowest sensitivity to increases in lift. Encouragingly, 
the analysis also captures the rapid decrease in efficiency for 
high-lift designs at low Reynolds numbers. Several deficiencies 
in the existing loss correlations have been identified, 
particularly for secondary loss, indicating significant scope for 
developing improved methods. 
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