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ABSTRACT 

The final losses within a turbulent flow are realized when 
eddies completely dissipate to internal energy through viscous 
interactions.  The accurate prediction of the turbulence 
dissipation, and therefore the losses, requires turbulence models 
which represent, as accurately as possible, the true flow 
physics.  Eddy viscosity turbulence models, commonly used for 
design level computations, are based on the Boussinesq 
approximation and inherently assume the eddy viscosity field is 
isotropic. 

The current paper compares the computational predictions 
of the flow downstream of a low-speed linear turbine cascade 
to the experimentally measured results.  Steady-state 
computational simulations were performed using ANSYS CFX 
v12.0 and employed the shear stress transport (SST) turbulence 
model with the γ-Reθ transition model.  The experimental data 
includes measurements of the mean and turbulent flow 
quantities.  Steady pressure measurements were collected using 
a seven-hole pressure probe and the turbulent flow quantities 
were measured using a rotatable x-type hotwire probe.  Data is 
presented for two axial locations: 120% and 140% of the axial 
chord (Cx) downstream of the leading edge. 

The computed loss distribution and total bladerow losses 
are compared to the experimental measurements.  Differences 
are noted and a discussion of the flow structures provides 
insights into the origin of the differences.  Contours of the shear 
eddy viscosity are presented for each axial plane.  The 
secondary flow appears highly anisotropic, demonstrating a 
fundamental difference between the computed and measured 
results.  This raises questions as to the validity of using two-
equation turbulence models, which are based on the Boussinesq 
approximation, for secondary flow predictions. 

 

INTRODUCTION 
The secondary flows of a turbine bladerow are complex 

and highly three-dimensional, such that the associated losses 
represent a significant portion of the total bladerow losses.  The 
secondary losses can contribute approximately 1/3 of the total 
row losses [1] and in low aspect ratio blades this value can 
increase to as much as 1/2 of the total row losses [2].  For this 
reason, a reduction of the secondary losses contributes 
significantly to total loss reduction.  An understanding of the 
fundamental loss production mechanisms is an important first 
step in reducing the secondary losses.   

Past research regarding the details of the secondary flow 
structures include the works of Sjolander [3], Langston et al. 
[4], Sieverding [5], Hodson and Dominy [6], Sharma and 
Butler [7] and Benner [8].  The mechanisms governing 
secondary loss production have been investigated by Moore 
and Adhye [9], Gregory-Smith et al. [10] and Harrison [11].  
Clearly, turbine secondary flows have been well studied; 
however, the sources of endwall losses are still not fully 
understood [12].  More specifically, a complete connection 
between the mean and turbulent flow field, specific to 
secondary flows, has yet to be established [13-19].  The final 
losses within a turbulent flow are realized when turbulent 
eddies completely dissipate to internal energy through viscous 
interactions [13].  Therefore, the appropriate modeling of 
turbulence is necessary to accurately predict the production of 
total pressure losses in this complex flow field.   

In design level computational investigations the turbulent 
quantities are typically computed using an isotropic eddy 
viscosity model, which assumes the Reynolds stresses are 
proportional to the mean velocity gradients.  In swirling flows, 
like the secondary flow through the turbine bladerow, the 
validity of this assumption is questionable.  Although more 
elaborate computational schemes exist, two-equation eddy   
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viscosity based models are typically considered a satisfactory 
trade-off between computational accuracy and cost. 

The application of endwall contouring to turbine 
bladerows is one example where computational simulations are 
used to reduce secondary losses by optimizing the three-
dimensional geometry.  Computational investigations, 
employing mixing-length turbulence models to endwall 
contouring applications by Harvey et al. [20], Hartland et al. 
[21] and Yan et al. [22], have reported unreliable predictions of 
the total pressure losses, which suggests inaccuracy in the 
simulated dissipation of mean kinetic energy to turbulent 
kinetic energy.  Alternative parameters such as the secondary 
kinetic energy (SKE) and cross-passage static pressure gradient 
are commonly used as design metrics to assess the benefits 
from proposed modifications.  However, there are reported 
instances where this is unsuccessful.  Ingram et al. [23], despite 
having used the reduction of the SKE as a design metric for an 
endwall contouring application, found an increase in the 
experimentally measured losses.  MacIsaac et al. [17] discusses 
the merit of using the SKE as a design correlation parameter by 
assessing the contribution of SKE to the downstream mixing 
losses.  In many cases, the SKE does not contribute 
significantly to the total mixing losses [17].  It is therefore 
evident that further improvements in our methods of assessing 
design improvements are desirable. 

The production of turbulence is fundamentally the first 
step to the development of total pressure losses [13].  Studies 
by Moore et al. [14], Gregory-Smith et al. [13], Gregory-Smith 
and Cleak [2], Perdichizzi et al. [15], Gustafson et al. [16] and 
MacIsaac et al. [17] have investigated the turbulent nature of 
the turbine flow field.  Gregory-Smith and Cleak [2] examined 
the rates at which turbulence, and thus ultimately total pressure 
losses, were produced from the mean kinetic energy.  The 
Reynolds normal stresses appeared to a make a significant 
contribution to the loss generating process in the secondary 
flow region.  Similar conclusions are drawn by Moore et al. 
[14] regarding the normal stresses; however, the v w′ ′ shear 
stresses were also shown to make significant contributions to 
the dissipation of secondary kinetic energy.  MacIsaac et al. 
[17] presented experimental measurements of turbulence 
intensity and the rates of turbulence production.  It was found 
that the highest rates of turbulence production, between the 
counter and passage vortex, were caused by moderate levels of 
the v w′ ′  Reynolds shear stress and high levels of the 
corresponding gradients.  The Reynolds normal stresses did not 
appear significant to the loss generating process.  From these 
studies, there does not appear to be a unified understanding of 
the role of the normal and shear Reynolds stress to total 
pressure loss production in cascade flows, suggesting that the 
influence of turbulence is not yet fully understood. 

In attempts to validate the isotropic eddy viscosity 
assumptions of commonly used two-equation turbulence 
models, different conclusions based on the measured eddy 
viscosity fields have also been reported.  Gregory-Smith and 
Cleak [2]  show that the eddy viscosity is reasonably isotropic 

downstream of the cascade in the secondary flow region.  
However, Perdichizzi et al.’s [15] results, at higher outlet 
velocities (Mach 0.3), show that the eddy viscosity of the 
secondary flow region is highly anisotropic downstream of the 
cascade.  Only at axial locations farther downstream, after 
significant mixing has taken place, were isotropic conditions 
obtained. 

The current study can be regarded as an extension of the 
work by MacIsaac et al. [17] and will examine the anisotropy 
of the eddy viscosity field.  The ensuing discussion and analysis 
is based on the same experimental data, but also includes the 
results of a complimentary CFD study.  The purpose of the 
computational study was to assess the short-comings of typical 
design level computational tools.   

Measurements of the mean and turbulent flow field have 
been collected using a seven-hole pressure probe and an x-type 
hotwire probe at two axial locations.  Steady-state RANS 
simulations of the experimental conditions were performed 
using the SST turbulence model with the ANSYS CFX γ-Reθ-v-
12.0 transition model.  The discussion will first examine the 
differences between experimentally measured flow field and 
the CFD results.  Secondly, the downstream measured eddy 
viscosities will be examined in relation to the computed eddy 
viscosity.  Comments are made regarding the validity of the 
Boussinesq eddy viscosity assumption within secondary flows. 

 
EXPERIMENTAL APPARATUS AND PROCEDURES 
Test Section and Cascade 

The experimental investigation was conducted in the low-
speed linear cascade test facility at Carleton University [24-27].  
The facility consists of an open circuit wind tunnel that is 
interfaced with a modular test section.  The modular test section 
is shown in Figure 1 with a linear cascade mounted to a 
turntable.  A turbulence generating grid is located upstream to 
obtain an inlet free stream turbulence intensity of 
approximately 3.3% with an integral length scale that is about 
25% of the axial chord for the current cascade. 

Figure 1.  Test section schematic 
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Two linear actuators automate the movement of the 
measurement probe in the pitchwise and spanwise directions 
with a minimum step size of 0.00635 mm.  A typical 
downstream measurement grid consists of 90 pitchwise points 
collected at 62 spanwise locations, totalling 5580 data points.  
The minimum spanwise location (nearest to the endwall) is set 
to 1% span. 

This facility has previously been used for a number of 
studies that have examined both the profile and secondary flow 
of several turbine cascades [24-27].  Therefore, the experiment 
and procedures are considered well developed. 

The geometric details and design parameters of the test 
cascade are provided in Table 1.  The cascade consists of six 
blades and measurements are collected for the centre passage.  
The overall cascade turning at mid-span is 104.7° with inlet and 
outlet design flow angles of 31.5° and -73.2° respectively.  The 
acceleration through this passage is relatively high as the 
convergence ratio, CR, is about 2.95.  The airfoils have a 
Zweifel coefficient of about 0.97. 

Table 1.  Cascade geometry 

Chord, C [mm]  102.1 
Axial chord, Cx [mm]  73.3 
Pitch, s [mm]  107.2 
Span, h [mm]  203.2 
Inlet design flow angle, β1 [°]  31.5 
Outlet design flow angle, β2 [°]  -73.2 
Pressure side tangent stagger angle, γ [°]  46.2 
Number of blades  6 

 
 The schematic drawing in Figure 2 shows the two 

Cartesian coordinate systems used in this work.  The origin of 
the cascade coordinate system is located at the blade leading 
edge with the x-axis aligned with the axial direction, the y-axis 
with the pitchwise direction and z-axis with the spanwise 
direction relative to the bladerow.  In the mean flow coordinate 
system the x′-axis is aligned with the primary mean flow 
direction (streamwise) and y′ and z′-axis with the secondary 
velocity directions.  The primary flow direction is evaluated 
using the area-averaged axial and pitchwise velocities at the 
outlet measurement plane. 

 ( )1
2 2 2tan V Uβ −=  (1) 

 
Instrumentation and Data Acquisition 

Pressure Measurements. A maximum of eight Data 
Instruments differential pressure transducers (ASG 
DRAL505DN), each with a full-scale operating range of 
±1250Pa, were used for the pneumatic pressure measurements.  
The estimated uncertainty for the recorded pressure is ±0.25% 
of the full scale range.  The transducer voltage signal is 
recorded using a United Electronic Industries, Inc. data 
acquisition card (Power DAQ PD2-MFS-8-800/14).  At each 
data point, 10,000 samples were collected at a rate of 1kHz. 

Hot-wire Anemometry.  The x-type hot-wire probe was 
connected to two channels, one per wire, of an A.A Lab Systems 

(model AN-1003) constant temperature anemometry system.  
The overheat ratio (OHR) was set to approximately 1.5.  
Experimental measurements were made by collecting 131,072 
samples at a rate of 28kHz. 

Measurement Probes.  The inlet endwall boundary layer 
was traversed using a Pitot probe.  The probe diameter relative 
to the boundary layer thickness is about 3.5%. The estimated 
uncertainty of the measured total pressure is approximately 
±0.3% of the inlet mid-span dynamic pressure.  A seven-hole 
pressure probe is used to make downstream measurements of 
the total pressure, static pressure and the three components of 
velocity.  The probe tip has an outer diameter of 1.83 mm 
which equates to a spatial resolution of d/s=0.017 and 
d/h=0.009 relative to the blade pitch and span respectively.  The 
seven-hole probe was calibrated through the angle range of 
−45°< α, β <+45° in 2° increments for five separate velocities 
(20, 25, 30, 35 and 42 m/s) to account for Reynolds number 
affects on the dynamic pressure coefficient [28]. The calibration 
and data reduction procedures for the seven-hole probe have 
been adapted from Gerner et al. [29].  The estimated 
uncertainty of the measured flow angles is ±0.5° and the 
uncertainties of the measured total and dynamic pressure is 
±0.4% of the inlet reference pressure. 

The rotatable x-type hotwire probe is used to measure the 
three local velocity components and the six Reynolds stresses.  
The x-type probe consists of four prongs mounted to a probe 
stem with a nominal diameter of 2.37mm or d/s=0.02 and 
d/h=0.01.  To make measurements in a three dimensional flow 
field, the calibration of the x-type hot-wire requires a velocity 
and directional sensitivity or angular calibration.  The velocity 
calibration was preformed over the range of 5 < Vjet < 45 m/s.  
The angular calibration is used to generate the directional 
sensitivity functions for each wire, gi(α, β), where i is the wire 
number and −45° < α, β <+45° in 2° increments.  A method 
detailed by Döbbeling [30], originally derived for quadruple-

Figure 2.  Cascade nomenclature showing the cascade and 
mean flow coordinate systems  
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wire probes, was adapted for the x-type probe used in this 
experiment.  If the angular calibration is performed twice, once 
with the probe in the 0° roll position and once with the probe 
rolled through 90°, the two sensors of the x-type probe will 
mimic the four sensors of a quadruple-wire probe.  Since the 
wire signals cannot be recorded simultaneously for the two 
orientations of the probe, this method cannot provide 
instantaneous information regarding the flow field.  Therefore, 
to extract the turbulence data a separate procedure by Buresti 
[31] was applied.  This procedure is based on the general 
response equation of the hot-wire sensor and involves solving 
an over-determined non-linear system of equations.  To 
improve the conditioning of the coefficient matrix, additional 
data were collected at a third roll orientation of 45°.  The 
estimated uncertainties (determined through repeatability 
studies) of the measured velocities and flow angles are ±1 m/s 
and ±1.0° respectively. 

Operating Conditions. The wind tunnel operating point 
was set to an inlet Reynolds number of approximately 50,000 
based on the blade axial chord.  For this cascade the outlet 
Reynolds number was therefore approximately 150,000. 

 
COMPUTATIONAL PROCEDURES 
Domain Geometry 

The flow through the cascade was modelled from 1.5Cx 
upstream to 3.0Cx downstream of the blade leading edge for 
one flow passage and one half-span, taking advantage of the 
cascade pitchwise periodicity and spanwise symmetry.  The 
axial position of the inlet and outlet boundaries can influence 
the solution results, particularly if the boundaries are chosen 
too closely to regions of interest.  Simulations were performed 
for domains of varying axial length; the current domain 
geometry was shown to have negligible effects on the flow 
variables at the measurement planes of interest (1.20Cx and 
1.40Cx relative to the blade leading edge). 

 
Mesh 

A structured HOH type grid of hexahedral elements was 
created using ANSYS ICEM CFD v12.0.  A hexahedral grid 
was selected to reduce the overall node count as well as control 
the wall normal expansion ratio, the grid orthogonality and the 
maximum/minimum element aspect ratio. The mesh was 
designed to conform to the requirements of the ANSYS CFX-v-
12.0 solver [32] including those of the CFX transition model 
[33, 34].  Table 2 summarizes the mesh requirements and the 
corresponding values of the current mesh. 

A grid independence study was first conducted on a two-
dimensional mid-span plane, simulating the profile flow region.  
The total pressure, static pressure and dynamic pressure at axial 
planes of 1.20Cx and 1.40Cx from simulations using various 
grids were used to examine the solution results.  After 
achieving grid-independent results the profile grid was extruded 
over one half-span.  The first node spacing on the blade and 
endwall surfaces was set such that the maximum y+ was  
approximately 1 as required by the transition model [33, 34].  
All wall normal expansion ratios were set to values below 1.1, a 

requirement again imposed by the transition model [34].  The 
completed mesh has approximately 7.7x106 nodes and 7.5x106 
hexahedral elements.  The extracted downstream planes have 
250 pitchwise points and 115 spanwise points. 

Table 2. Summary of the computational mesh parameters 

Parameter 
CFX solver 

requirements [36] 
 

Current Mesh 
Edge Length Ratio: < 100 100* 

Min Face Angle: > 10˚ 38˚ 
Element Volume Ratio: < 5 2.8 

 
Fluid Model and Boundary Conditions 

The steady-state RANS equations were solved with air 
modelled as an incompressible ideal gas at a constant 
temperature of 25°C. The domain walls were considered 
adiabatic and thus the energy equation was not solved.  The 
two-equation SST turbulence model was chosen for this study 
as it is a widely used model and is based on Boussinesq eddy 
viscosity assumption.  The predicted eddy viscosity distribution 
is therefore isotropic, and thus this model provides a good 
example of the effects this assumption has on the prediction of 
flows in turbomachinery cascades. There are many turbulence 
models that are based on this assumption, so the selection of 
SST model is discussed further.  The secondary flow 
development is strongly dependent on prediction of the near 
wall flow physics.  The SST model was designed to provide 
more accurate prediction of near wall flows in adverse pressure 
gradients by accounting for the transport of the turbulent shear 
stresses [33].  To avoid the undesirable sensitivity of the k-ω 
model to the predictions of the free stream specific turbulence 
dissipation rate, ω, the SST model switches between the 
standard k-ω formulation in the near-wall regions to the k-ε 
model in the outer wake regions and free-shear layers using 
blending functions [33].  The transition model, γ-Reθ CFX-v-
12.0, was enabled to capture the laminar and turbulent region of 
the boundary layers on both the blade and endwall surfaces. 

The inlet boundary condition was specified from the 
experimentally measured velocity profile, shown in Figure 3 
(a), oriented at the design inlet flow angle of -31.5°.  The 
profile was measured at -1.20Cx at three pitchwise locations, 
y/s=0.25, 0.5 and 0.75, using a boundary layer pitot probe and 
endwall static taps.  There is minimal pitchwise variation of the 
inlet boundary layer profile; the lower velocities towards 
midspan are caused by the inlet turbulence generating grid.  
The observed variations are consistent with previous work 
performed by Knezevici et al. [26, 27].  The boundary layer 
parameters are presented in Table 3. 

Spanwise profiles of turbulence kinetic energy (k) and 
specific turbulence dissipation rate (ω) define the inlet 
turbulence boundary conditions.  In a two-equation k-ω model 
these two parameters define the length scale, eddy viscosity and 
turbulence dissipation rate (ε).  The turbulence profiles were 
determined by separately simulating the growth of the 

 
* The edge length ratio exceeds the recommend value in regions very close to 
the blade and endwall surfaces.  This is expected and permissible by the solver 
provided the simulations are preformed using double precision [32]. 
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boundary layer upstream of the cascade.  Iteratively, the 
boundary layer parameters (thickness, momentum thickness 
and displacement thickness) and the free-stream value of the 
turbulence kinetic energy were matched as closely as possible 
to that of the experiment.  It was found that matching the length 
scale, in addition to the other parameters, was quite difficult.  
Therefore, the distribution of inlet specific turbulence 
dissipation rate, ω, was scaled such that the free-stream length 
scale would match the experimentally determined value.  The 
spanwise turbulence profiles are shown in Figure 3 (b).  The 
ANSYS CFX-v-12.0 solver computes the turbulence intensity 
and the turbulence length scale to determine the specific 
turbulence dissipation rate (ω) and the turbulence kinetic 
energy (k) using equation (2) and (3) respectively [32]. 

   2 3
loc

loc

k
Tu

U
=

%
 (2) 

 
1

2 1
x x

k
C C Cμω

Λ =
 

(3) 

Table 3.  Summary of the inlet boundary layer parameters 

Boundary Layer: Boundary layer thickness  δ/h 0.092 
 Displacement thickness (mm)  δ* 2.13 
 Momentum thickness (mm)  θ 1.62 
 Boundary layer shape factor  HSF 1.32 
 Free stream turbulence intensity  Tuloc 3.3% 
 Free stream length scale  Λ/Cx 0.25 

 

 
Figure 3. (a) Inlet boundary layer profile measured at 
−1.20Cx and 0.25, 0.50 and 0.75 y/s (b) inlet turbulence 

boundary conditions 

Solver and Convergence Control 
Computational simulations were performed for this study 

using the ANSYS CFX-v-12.0 solver.  The solver implements 
an element-based finite volume technique in which the mass 
and momentum equations are satisfied for each mesh volume 
[32].  The CFX solver is considered a pressure-based, coupled 
solver that utilizes an Algebraic Multigrid technique [32].  The 
mass and momentum advection terms are discretized using a 
second-order differencing scheme.  The transitional turbulence 
terms were discretized using a high resolution (bounded 
second-order upwind biased) scheme [32].  

Solution convergence was judged based on the absolute 
normalized residuals of the mass, momentum and turbulence 
equations.  When the absolute values of maximum residuals 
were less than 1.0x10-6, the solution was deemed converged. 
Typically, this resulted in RMS residuals less than 1.0x10-8. 

 
RESULTS AND DISCUSSION 
Blade Loading Distributions  

Figure 4 shows the measured and computed loading 
distributions at mid-span, z/h=0.5, as a fraction of the 
maximum surface length, Smax.  The blade surface static 
pressure coefficient is defined as follows: 

 0 ,1
,1

,1

CL i
PS

CL

P P
C

q
−

=  (4) 

 
Figure 4.  Measured and computed blade surface static 

pressure distribution at z/h=0.5 

The measured and computed loading distributions are 
similar, indicating that the free stream boundary conditions of 
the simulations have been well matched to the experiment.  The 
outlet dynamic pressure at S/Smax=1.0, is also similar to the 
experimental value, indicating that the domain outlet boundary 
location is not affecting the simulation results.  The suction 
surface peak is located at approximately S/Smax=0.48 and there 
appears to be a small separation bubble that extends from 
S/Smax=0.65 to 0.85.  The computational loadings support this 
observation; however, the velocity vectors do not show a region 
of reversed flow.  This apparent bubble is a region of very low 
shear stress. 



 6 Copyright © 2011 by ASME 

Downstream Results 
The Experimental and Computational Flow Field.  

Pressure and turbulence measurements were made over one full 
pitch and one half-span at the 1.20Cx and 1.40Cx axial planes 
using a seven-hole pressure probe and a rotatable x-type 
hotwire probe respectively.  The corresponding CFD results 
were extracted at the axial planes of interest.  Figure 5 shows 
floods of the total pressure coefficient, defined as, 

 
0 0 ,1

0
,1

CL
P

CL

P P
C

q
−

=  (5) 

and represents the local total pressure loss relative to the 
upstream (-1.20Cx) midspan reference value.  Here, the high 
loss regions are represented by red, lower loss regions by blue 
and no loss regions by white. 

Figure 6 presents floods of the streamwise vorticity 
coefficient at the same axial locations.  The streamwise 
vorticity coefficient, defined as, 

 2 2cos sins x yC C Cω ω ωβ β= +  (6) 

where, 
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  (7) 

represents the local rotation of the fluid relative to the 
streamwise direction.  Thus, the yellow and red regions indicate 
a negative rotation about the streamwise axis while the green 
and blue regions represent a positive rotation.  The secondary 
velocity vectors are also shown in Figure 6. 

MacIsaac et al. [17] discussed the evolution of this flow 
downstream of the cascade with reference to the streamwise 
vorticity and the secondary kinetic energy coefficient.  The 
current paper will focus on the comparison between the 
measured and computed results. 

Figures 5 (a) and (b) show the total pressure coefficients 
from the 1.20Cx axial plane.  In the measured results in Figure 5 
(a), there is one distinct loss core, labelled A, located at about 
y/s=0.18 and z/h=0.17.  This region of high loss does not 
coincide with any of the major vortical structures, as seen from 
Figure 6 (a).  The passage vortex, shown in red, is located at 
y/s=0.22 and z/h=0.07, the counter vortex, shown is green, is at 
y/s=0.16 and z/h=0.14, and the corner vortex was located too 
close to the endwall to be adequately resolved.  The peak loss is 
concentrated in the region of high shear between the passage 
vortex and the counter vortex.  MacIsaac et al. [17] indicated 
that the strong spanwise and cross passage flow, as shown by 
the secondary velocity vectors in Figure 6 (a), tends to sweep 
the low momentum fluid from the endwall boundary layer up 
the suction surface of the blade.  Thus, the peak loss core 
appears to be a combination of low momentum fluid from the 
inlet endwall and suction surface boundary layers and the 
additional losses generated through the dissipation of some of 
the secondary kinetic energy. 

The corresponding computed total pressure coefficients 
are shown in Figure 5 (b).  The highest computed losses are 
located very close to the endwall, at about y/s=0.28 and 

z/h=0.1.  However, this region is too close to the endwall to be 
measured.  Therefore, the following discussion will concentrate 
on the large region of high losses away from the endwall.  The 
predicted losses in this region are much greater in magnitude 
and are more highly concentrated than for the measured results.  
The peak loss, labelled A, is about 22% higher than the 
measured and is located slightly more towards midspan, at 
y/s=0.18 and z/h=0.18.  Unlike for the measured results, the 
peak loss is nearly coincident with the location of the counter 
vortex, at y/s=0.17 and z/h=0.18, suggesting that significant 
loss production is predicted to occur within the vortex.  The 
computations also show two additional distinct loss cores, 
labelled B and C.  Loss core B is located above the counter 
vortex and coincides with a region of lower negative 
streamwise vorticity, as shown in Figure 6 (b).  This structure 
appears as a weak coherent vortex core in the computations but 
is not observed experimentally.  In the experimental flow such a 
structure may already have been dissipated by viscous action or 
have become entrained by the counter-vortex.  Loss core C is 
considerably weaker than the other two and is local to the 
passage vortex, as shown from Figure 6 (b).  The measurements 
also show a total pressure deficit in the passage vortex region, 
although the magnitude is again lower than in the 
computations. 

In general, it appears that the vortical structures have 
diffused significantly more in the measurements than the 
computations at the downstream plane.  This diffusion has also 
reduced the peak losses observed in the measurements.  At the 
same time, a region of high loss production exists in the highly 
sheared flow between the passage and counter vortices.  This is 
the region of the highest measured losses.  High loss production 
in this inter-vortex region is likely also present in the 
computations, and may be the origin of the tail of high losses 
associated with loss core A in Figure 5(b).  However, the highly 
concentrated vortices and the corresponding high losses in the 
predictions seem to mask this inter-vortex loss production. 

The results for 1.40Cx plane show considerable diffusion 
of the vortices and reductions in the peak losses compared with 
the 1.20Cx plane, for both the measured and computed results.  
For example, the measured streamwise vorticity associated with 
the passage vortex, is reduced by approximately 40%, while the 
predictions show a reduction of about 17%.  Similarly, the peak 
streamwise vorticity for the counter vortex is reduced by 38% 
for the measurements and 28% for the computed results.  This 
confirms that the diffusion of the vortical structures occurs 
much more quickly in the experiment than in the computations. 

 
Integrated Downstream Results.  The integrated flow 

field quantities were computed for each axial location.  Area- 
and mass-averages are computed at cell centres as follows: 

Area-averaged: 
0.5 1

0 0

1 dydz
A

Ω = Ω∫ ∫  (8) 

Mass-averaged: 
0.5 1

0 0
U dydz

m
ρ′′Ω = Ω∫ ∫&

 (9) 
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The experimental results require an approximation for the 
total pressure at the endwall, z/h=0.  It is assumed that the static 
pressure gradient normal to the wall is zero and the total 
pressure at the endwall is then taken as the static pressure 
measured with the probe at z/h=0.01.  The results for fully-
mixed out conditions were also calculated using the procedure 
of Harrison [11].  This computation assumes that the mixing 
occurs at constant area and neglects the additional loss 
production due to the shear stress at the endwall. 

The integrated results from the two axial planes are 
summarized in Table 4.  Figure 7 shows the relative magnitudes 
of the flow quantities, normalized by the measured mass-
averaged total pressure coefficient from the respective planes.  
At 1.20Cx and 1.40Cx the measured mass-averaged total 
pressure loss is 5.7% and 7.5% greater than the computed 
values respectively.  This result appears surprising given that 
the computed peak losses are much higher than the measured 
values (for example, 22% higher for the 1.20Cx plane).  It 

seems to be the result of two effects.  Firstly, the measured 
losses are somewhat more widely distributed because of the 
higher diffusion than for the computed flow.  Secondly, the 
axial velocities, and thus the local mass flow rates, are 
noticeably lower in the high loss regions for the computed 
results.  The net effect is that the mass-averaged losses are 
actually slightly higher for the measured results. 

The results from the 1.20Cx plane show good agreement 
between the mixed-out values of total pressure loss for the 
measurements and computations.  The dissipation of the 
secondary kinetic energy makes a significant contribution to 
these mixed-out losses.  The higher secondary kinetic energy 
for the computed flow thus partly made up for the lower 
measured losses to give similar final mixed-out losses.  At the 
1.40Cx plane the predicted mixed-out losses agree less well 
with those from the measurements.  It is also evident that 
mixing out of the secondary kinetic energy, though significant, 
still accounts for only about 60% of the additional loss  

Figure 5.  Measured and computed total pressure coefficient (CP0) floods at 1.20Cx and 1.40Cx 
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Figure 6.  Measured and computed streamwise vorticity coefficient (Cωs) floods and secondary velocity 
vectors at 1.20Cx and 1.40Cx 

 
 
 
 

Table 4. Summary of the integrated flow quantities 

Parameter 
 Measured  CFD 

 1.20Cx  1.40Cx  1.20Cx  1.40Cx 

 

 -0.422  -0.464  -0.398  -0.429 

 

 -0.500  -0.544  -0.481  -0.498 

 

 0.040  0.034  0.059  0.042 

 

 0.022  0.022  -0.398  -0.429 
*The uncertainty of integrated losses are ±0.0035 with a 95% level of
confidence [8]. 
 

 

 
 
 

Figure 7.  Normalized total pressure loss, mixed out total 
pressure and secondary kinetic energy coefficients 
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generated through mixing. Some additional loss would also be 
expected from the mixing out of the non-uniformities in the 
primary flow field.  There can also be a loss contribution from 
the non-uniform static pressure in the measurement plane.  The 
observation that mixing out of the secondary kinetic energy 
only accounts for a portion of the additional losses has 
implications for the use of the secondary kinetic energy as a 
metric for evaluating the success of design modifications, such 
as end wall contouring.  It has been common to judge such 
modifications as a success if they leave a lower level of 
secondary kinetic energy in the flow than the baseline case, on 
the basis that the result will be a lower final loss.  The present 
results show that secondary kinetic energy is an imperfect 
metric: there are additional significant sources of further loss 
production, over and above dissipation of the secondary kinetic 
energy. 

Table 4 and Figure 7 also includes values of the area-
averaged turbulent kinetic energy coefficient, obtained from the 
hot-wire measurements and defined as, 

 ( )
,1

2 2 2

2
1
2

CL

TKE

u v w
C

U

+ +
=

%
 (10) 

This represents energy extracted from the mean flow and 
not yet dissipated to internal energy.   The measured CTKE 
shows negligible change between the two measurement planes, 
indicating that the turbulence is being produced from the mean 
flow at a similar rate to that at which it is being dissipated by 
viscous action [17]. This is not the case in the computations.  
The predicted turbulent kinetic energy is reduced by about 15% 
from the 1.20Cx to the 1.40Cx plane.  This is evidently one of 
the reasons that the computations predict the development of 
the losses with downstream distance somewhat inaccurately. 

The turbulence eddy viscosity.  As seen, compared with 
the computations the measured results show higher levels of 
turbulent kinetic energy, greater rates of kinetic energy 
dissipation, higher integrated losses, and more diffuse loss 
distributions.  Losses are realized first through the production 
of turbulence from the mean flow and then ultimately by 
dissipation of the resulting turbulence [13].  In typical 
computational simulations, an eddy viscosity-based turbulence 
model relates the Reynolds stress tensor in the RANS equations 
to the mean strain stain tensor, Si,j, using a scalar value of the 
eddy viscosity, νT, according to 

 , ,
22 3i j T i j i ju u v S kδ− = − (11) 

Thus, the eddy viscosity is isotropic.  Schmitt [35] discusses the 
validity of this assumption in general turbulent flows.  He 
concludes that the wide range of turbulence length scales 
observed in turbulent flows invalidates the computation of 
stress based on a single mean scale [35].  An eddy viscosity 
tensor might provide some directional sensitivity, but would 
still be an oversimplification of the complexity of the 
turbulence.  In general, it is recognized that the assumption of 
isotropic eddy viscosity is a weakness of the turbulence models 

commonly used in engineering design.  The hot-wire 
measurements allow the actual degree of anisotropy of the 
effective eddy viscosity to be investigated in the present flow. 

The computed scalar eddy viscosity for the SST 
turbulence model used in the present computations is given by 

 1

1 2

1
max( , )

T
L L

a k
a SF v

ν
ν ω

=  (12) 

where a1 is a constant, F2 is a blending function that restricts 
the production limiter to the near-wall boundary layer and S is 
the magnitude of the strain rate, 

 ,
1
2

i j
i j

j i

U US
x x

⎛ ⎞′ ′∂ ∂⎜ ⎟= +
′ ′⎜ ⎟∂ ∂

⎝ ⎠  

(14) 

The measured effective eddy viscosity (the “eddy 
viscosity tensor”) is obtained from the data using 

 ,

,

1
2

i ji j

L i j L

u u
S

ν
ν ν

′ ′−
=

 

(13) 

The analysis is confined here to the Reynolds shear 
stresses.  Both the computed and measured eddy viscosities are 
non-dimensionalized by the kinematic viscosity, νL.  
Expressions for the mean axial velocity gradients are calculated 
using a method similar to that used by Gregory-Smith et al. 
[10] and Yaras and Sjolander [36] for determining the vorticity 
components from experimental data. 

The predicted eddy viscosities at the 1.20Cx plane are 
shown in Figure 8 as a colour-flood contour plot, overlaid with 
line contours of the total pressure coefficient.  Comparisons 
with the floods of streamwise vorticity in Figure 6 (b) indicate 
that the peak values of eddy viscosity occur in the vortical 
structures.  The maximum value is located within the passage 
vortex, at y/s=0.32 and z/h=0.12, and is approximately 150 
times the laminar viscosity.  In the turbulence model (see 
Equation (12)), the high value of eddy viscosity would tend to 
be associated with elevated turbulence kinetic energy and high 
Reynolds shear stress.  However, MacIsaac et al. [17] showed 
that in the experiment the highest rates of turbulence production 
occur in the high shear region between the passage and counter 
vortices, rather than within the vortices themselves.  

The measured values of the effective eddy viscosity 
components are shown in Figures 9 (a) to (c).  Note that the 
scale of the measured eddy viscosity is twice that used for the 
computed values in Figure 8.  The data reduction procedure for 
the measured results involves the division of the Reynolds 
stress by the mean strain rate, Si,j.  The latter is difficult to 
determine accurately in regions of low shear strain rate.  
Consequently, in regions where both the mean strain rate and 
the corresponding Reynolds stress were small the eddy 
viscosity was set to zero.  As a further check, pitchwise 
distributions of the terms in Equation (13) were examined for a 
number of spanwise locations.  An example of such 
distributions is shown in Figure 10 for z/h=0.10.  This figure 
will be discussed further below. 
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The colour-flood contour plot in Figure 9 (a) shows the 
eddy viscosity that corresponds to the u v′ ′  Reynolds shear 
stress at the 1.20Cx plane.  The line contours are again the total 
pressure coefficient.  Moderate levels of the eddy viscosity are 
found within the wake region, with slightly higher values on the 
suction-surface side of the wake.  The magnitudes are 
approximately 100 times the laminar viscosity, which are 
roughly twice the computed values obtained in the wake (see 
Figure 8).  The under-prediction of the eddy viscosity, ν1,2, 
within the wake region results in lower shear stresses and 
consequently less mixing with the free stream fluid.  As 
observed in Figure 5, the computed results in the wake region 
did show higher peak losses and less diffusion compared with 
the measurements. 

Within the secondary flow, at a pitchwise location of 
approximately y/s=0.2, there exists a thin region of high 
positive eddy viscosity, ν1,2, with an adjacent region of 
apparently negative eddy viscosity.   A negative eddy viscosity 
is physically counter-intuitive, at least in a two-dimensional 
shear flow, since it implies momentum transport against the 
mean velocity gradient.  This is borne out in the wake region 
where only positive values of the eddy viscosity are obtained. 

Figure 10 shows that the negative eddy viscosities are 
local to regions in which the mean strain rate and Reynolds 
shear stress are changing sign, at 0.16< y/s < 0.20, such that the 
mean strain rate and the Reynolds shear stress are briefly both 
negative.  It appears that the eddy viscosity assumption is not 
adequate in this localized region.  Perdichizzi et al. [15] also 
showed negative values of the measured eddy viscosity, for the 
u w′ ′  component, and suggested that the eddy viscosity 
assumption may not be valid in the secondary flow region. 

Figure 9 (b) shows the eddy viscosity corresponding to the 
u w′ ′  Reynolds shear stress.  The maximum eddy viscosity is 
approximately 400 times the laminar viscosity and is located in 

Figure 9.  Floods of the measured non-dimensional shear 
eddy viscosity at 1.20Cx 

 

Figure 8.  Predicted non-dimensional eddy viscosity at 
1.20Cx 
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the high shear region between the passage and the counter 
vortex.  This distribution includes even larger magnitudes of 
negative eddy viscosity.  Similar distributions to those in Figure 
10, but at z/h=0.14, show that very large negative values of 
u w′ ′  were measured in this region together with very small 
positive mean strain rates, which yield large negative eddy 
viscosities.  The signs of the mean strain rates are somewhat 
suspect when the strain rates are small, due to experimental 
uncertainty.  However, it is worth pointing out that where 
negative eddy viscosities were obtained, in all cases presented 
here, they were obtained consistently from the measurements at 
a significant number of adjacent measurement points in both 
the spanwise and pitchwise directions. The positive eddy 
viscosities are not suspect since they are the result of large 
positive Reynolds stresses and significant negative mean strain 
rates.  Again, the results raise questions about the validity of the 
isotropic eddy viscosity approximation in the secondary flow 
region. 

Figure 9 (c) shows the measured eddy viscosities 
corresponding to the v w′ ′  component of the Reynolds shear 
stress.  Even more significant regions of negative eddy 
viscosities are observed and they now include the two-
dimensional wake region.  Furthermore, the negative values are 
obtained in regions where the local mean strain rates and 
Reynolds stresses are of significant magnitude.  This makes 
them harder to dismiss.  The region of positive eddy viscosity 
within the secondary flow is located where the passage and 
counter vortices begin to interact, at y/s=0.04 and z/h=0.10.  
This is a region of high shear, as noted from the secondary 
velocity vectors.  MacIsaac et al. [17] showed that this is the 
region with the highest rates of turbulence production and thus 
significant rates of total pressure loss production.  The 
computed results also show elevated values of the eddy 
viscosity in the corresponding location, although of lower 
magnitude than measured. 

Together, Figures 9 (a) to (c) show very significant 
anisotropy in the three components of the eddy viscosities 
corresponding to the Reynolds shear stresses.  The peak 
measured eddy viscosities are also approximately three times 
larger than those obtained with the turbulence model.  Finally, 
significant regions of negative eddy viscosity were obtained, 
which, while counter-intuitive, appear to be difficult to dismiss. 

 
CONCLUSIONS 

Experimental measurements of the mean and turbulent 
flow fields have been obtained downstream of a low-speed 
linear turbine cascade.  The flow field is compared to 
corresponding CFD results to assess the prediction capabilities 
of computations that employ eddy viscosity turbulence models.  
In particular, the validity of the assumption of isotropic eddy 
viscosity was assessed. 

The computational results show high peak losses that are 
local to vortical structures within the secondary flow.  The 
measured results show significantly lower peak losses.  
Furthermore, these peak losses did not coincide with either the 

passage or counter vortices but occurred instead in the high 
shear regions where these two vortices interact.  The 
computational results showed at least one weak vortical 
structure that was not observed experimentally.  Overall, the 
measured results showed the higher rates of diffusion for both 
the wakes and three-dimensional flow features compared with 
the predictions. 

Secondary kinetic energy is often used to judge the 
success of a design modification, with lower predicted or 
measured secondary kinetic energy being taken to indicate 
lower additional losses yet to be generated through mixing.  
While the secondary kinetic energy does make a significant 
contribution to the mixing losses, for the present flow it only 
accounted for about 60% of the subsequent mixing losses.  
Thus, secondary kinetic energy appears to be an imperfect 
metric to use in assessing design modifications. 

Detailed comparisons between the measured and predicted 
eddy viscosities were made at the 1.20Cx plane.  The eddy 
viscosity downstream of the cascade was found to be highly 
anisotropic, particularly within the secondary flow region.  The 
peak magnitudes of the eddy viscosities associated with the 
shear stresses were also found to be approximately three times 
larger than those generated by the turbulence model.  Finally, 
significant regions of negative eddy viscosity were obtained.  
Although, negative eddy viscosities are counter-intuitive 
physically, they were obtained at large numbers of adjacent 
measurement locations and are therefore difficult to dismiss. 
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Figure 10. Non-dimensional eddy viscosity, mean strain rate 
and Reynolds stress at 1.20Cx and z/h=0.10 
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NOMENCLATURE 

A Area, 
0.5 1

0 0
dydz∫ ∫  

C True chord 
CR Convergence ratio, 1 2cos cosβ β  
Cx Axial chord 
CP0 Total pressure coefficient, see Eq. (5) 
CP0, mixed Mixed-out total pressure coefficient 

CSKE Secondary kinetic energy coeff., 2 2 2
,1CLV W U⎛ ⎞′ ′+⎜ ⎟

⎝ ⎠
%  

CTKE Turbulent kinetic energy coefficient, see Eq. (10) 
Cωs Streamwise vorticity coefficient, see Eq. (6) 
Cμ k-ε turbulence model constant, 0.09 
d Probe tip diameter 
HSF Shape factor 
h Span 
k Turbulence kinetic energy 

m&   Mass flow rate, 
0.5 1

0 0
Udydzρ∫ ∫  

P0 Total pressure 
PS Static pressure 
q Dynamic pressure 
Re Reynolds number, ,1CL x LU C ν%  
s Pitch 
S Surface length 
Si,j Mean strain rate, see Eq. (14) 
Tu Turbulence intensity, see Eq. (2) 
Ui Velocity vector 
U%  Resultant velocity vector, 

2 2 2
U V W+ +   

U, V, W Cartesian velocity components 
u, v, w Cartesian turbulent fluctuations 
x, y, z Axial, pitchwise and spanwise directions 
y+ Non-dimensional distance from the wall, Lyuτ νΔ

Zw Zweifel coefficient, 2 1
2 2 1

2

2 cos tan tana

x a

Cs
C C

β β β
⎛ ⎞

−⎜ ⎟
⎝ ⎠

 

Λ Turbulence length scale, see Eq. (3) 
α Yaw or spanwise flow angle 
β Pitch or pitchwise flow angle (from axial) 
δ Boundary layer thickness 
δ* Displacement thickness 
ε Turbulence dissipation rate 
γ Pressure side tangent stagger angle 
ν Kinematic viscosity 
ρ Density 
θ Momentum thickness 
ω Specific turbulence dissipation rate 

 
Superscripts 
′ Mean flow coordinate system 
″ Mass-averaged flow quantity 
Ω  Time-averaged flow quantity 

Ω  Area-averaged flow quantity 

Subscripts 
1, 2 Upstream and downstream 
CL Centre line of blade span, z/h=0.5 
i Wire number 
L Laminar 
loc local 
T Turbulent 
WT Wind tunnel coordinate system 
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