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ABSTRACT 

In most turbomachinery design systems streamline 
curvature based throughflow calculations makes the backbone 
of aero design process. The fast, reliable and easy to understand 
solution is especially useful in performing several multistage 
design iterations in a short period of time. Although the 
streamline curvature based technique enjoys many benefits for 
subsonic applications there are some challenges for transonic 
and supersonic flow applications, which is the focus of this 
paper 

In this work it is concluded that three key improvements are 
required to handle transonic flows in a streamline curvature 
throughflow solver. These are: 1) ability to overcome dual sub- 
and supersonic solution and guide the solver towards 
supersonic flow solution where applicable; 2) suitable 
technique to calculate the streamline curvature gradient term 
which can avoid singularity at sonic meridional Mach number 
and high gradient values in transonic flows; 3) suitable 
technique to handle choked flow in the turbomachinery 
flowpath.  

Solution procedures for "dual-solution" and choked flow 
treatment are new and developed as part of this work. 
However, procedure for calculating streamline curvature 
gradient is leveraged from earlier work done by Denton [1] and 
Came [2]. 

Implementation of these improvements is performed in a 
streamline curvature based throughflow solver. Numerical 
improvements presented here have been tested for a range of 
compressor and turbine cases (both subsonic and supersonic). 

It is shown that the numerical improvements presented in 
this paper resulted in an enhanced version of streamline 
curvature throughflow solver. The new code produces 
consistent solution for subsonic applications with no sacrifice 
in accuracy of the solver. However, considerable robustness 
improvements are achieved for transonic turbine cases. 
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NOMENCLATURE 

a = Speed of sound 
A = Area 
Cu = Circumferential absolute velocity 
Cm = Meridional absolute velocity 
dA = Differential area normal to the streamtube 

(dA=nda) 
fq = Blade force term 
H = Total enthalpy 
i = Unit vector 
m  = Overall mass flow rate in the annulus 
Mm = Meridional Mach number (Mm=Vm /a) 
Mr = Relative Mach number 
m = Distance along meridional direction 
n = Normal vector 
p = Static pressure 
Pt = Stagnation pressure 
R = Gas constant 
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r = Radius 
rc = Radius of curvature 
S = Entropy 
S2 = Distance along the station. Sometimes also 

referred to as QO (q), qS −=2  
T = Temperature 
U = Blade speed 
Vm = Relative velocity in meridional direction 
Wu = Circumferential relative velocity 

 
Greek Symbols 

σ = Angle between station and vertical plane 
φ = Angle between streamline and horizontal 

plane 
β = Relative flow angle 
λ = Blockage 
ρ = Density 
ψ = Stream function 
γ = Ratio of specific heats (γ = Cp/Cv) 

 
Subscripts 

i = Station index 
j = Streamline index 
m = Meridional direction 
n = Iteration index 
u = Circumferential direction 
z = Axial direction 

 
 

1. INTRODUCTION 

In most turbomachinery design systems the meridional 
throughflow calculation is the backbone of the design process. 
It is fast, reliable, easy to understand, deals easily with multiple 
blade rows and includes empirical loss, deviation and blockage 
correlations. Performance and experience from earlier 
machines can then be easily taken into account in the 
preliminary design phase. In recent years, full three-
dimensional CFD methods are developed, but their applications 
for detailed analysis remain limited to single blade row 
calculations, even though multistage CFD is becoming more 
popular. The application of 3D CFD methods in design 
iterations of multistage turbomachinery meets serious 
limitations due to computational cost and complexity. For 
multistage calculations, throughflow method remains much 
faster than full 3D CFD calculations. 

Throughflow theory is based on axisymmetric treatment of 
the circumferentially averaged flow [3]. Over the period of 
many years two main types of throughflow calculations have 
evolved: the streamline curvature [4] and the matrix (also 
known as stream function) throughflow [5]. For subsonic 
applications these two techniques have very small differences. 
However, stream function (or matrix) methods cannot easily be 
used for analysis programs when the flow within the blade 

rows is partly supersonic. This is because for any stream 
function distribution there exist two possible velocity fields, 
and there is no way of deciding which solution should be 
chosen. Similar limitation exists for the streamline curvature 
method as well [6]. However, the streamline curvature method 
can easily overcome this problem, as described in this paper. 
Additional limitation of stream function method is that the flow 
between the bladerows is restricted to relative Mach number 
equal to or less than 1, while streamline curvature method do 
not have this restriction. Marsh [6] described that for transonic 
flows, two possible solutions (sub and supersonic) satisfy 
numerically the governing equations on each streamtube. This 
is known as “dual-solution” issue and a possible method of 
overcoming this issue is described in this paper. 

Most throughflow codes use the streamline curvature (SLC) 
method developed by Smith [4] and Novak [7] and based on 
the general S1/S2 theory of Wu [3]. Wu [3] was the first to 
formally derive a consistent model for both blade-to-blade flow 
(S1) and  meridional throughflow (S2) using quasi-3D stream 
surface description. The SLC method for meridional 
throughflow takes its name from the prominent role of radius of 
curvature in the solution of meridional streamlines. A brief 
summary of streamline curvature based throughflow method is 
also given in this paper. 

Although SLC methods enjoy many advantages there are 
few disadvantages as well. Three main disadvantages are 
described below. Firstly, it allows no reverse flow in the 
meridional plane. Hence, separated flows are best resolved 
using a fully viscous 3D CFD solution rather than with a 2D 
throughflow method. Secondly, the method suffers from a 
sharp increase in calculation time on grids with finely spaced 
quasi-orthogonals owing to the stability requirements of the 
streamline curvature calculation [8,9]. Thirdly, the method 
suffers significant robustness issue for transonic and supersonic 
flows, which is the focus of this paper. 

The robustness issue in a SLC solver, for transonic flows, 
involves mathematical challenges. Although there is a smooth 
physical transition from a subsonic to a supersonic flow, the 
properties of the fluid in the two regions are quite different. In 
the subsonic region, the equations governing the steady flow 
are elliptic whereas in the supersonic region they become 
hyperbolic [10]. The mathematical difficulties arise in the 
transonic region, where both subsonic and supersonic flows 
exist and any method of solution must preserve the properties 
of both flows. Hence, the choice of solver and careful 
programming is required for solving streamline curvature based 
throughflow equations. 

This paper deals with extending the capability of a generic 
streamline curvature based throughflow solver for transonic 
flows. Some of the transonic flow treatments tested in the past 
incorporates artificial density [11] or using upwind 
differentiation to deal with sudden discontinuity and shock 
effects [12]. However, incorporating artificial density often 
makes the solver unstable as this introduces artificial 
streamtube choking. 
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Some of the common techniques used to overcome 
transonic flow issues in a throughflow codes are described by 
Denton [1], Came [2], and Casey & Robinson [13].  

In addition, Sayari & Bölce [14] also described a suitable 
approach for transonic compressors for nearly normal shock 
and choking prediction. This approach is based on an integral 
method where the averaging method works normal to the 
central streamline. 

In this paper, the turbomachinery choked flow is divided 
into two categories: 1. Annular choke – when all the 
streamtubes are choked, 2. Localized choke – when only few 
streamtubes are choked in the annulus. It is emphasized that the 
problem of annular and localized streamtube choking is very 
similar. Hence, a brief theory of supersonic flow in a 
throughflow system is given in this paper. However, the 
solution of overcoming localized choke can be very different 
from annular choke. For localized choked flow a new and 
rather simple technique is developed in this paper.  

Usually by definition the localized choking is limited to few 
streamtubes on the station. The problem is easier to overcome 
by identifying the sub and supersonic flow at the station and 
also identify the station where localized choking is likely to 
occur (or throat location). The technique described in this paper 
uses the average turning distribution, for the bladerow, to guide 
the calculation of REE equation and also solve other properties 
on the choked station.  

It is shown that the numerical improvements presented here 
results in an enhanced version of a 2D streamline curvature 
based throughflow solver. The new code produces consistent 
solution for subsonic application with no sacrifice in accuracy 
of the solver. However, considerable robustness improvements 
are achieved for transonic and supersonic applications. 

 

2. THEORY OF STREAMLINE CURVATURE (SLC) 
BASED THROUGHFLOW METHOD 

The throughflow calculation method of an axial-flow 
compressor & turbine is based upon a meridional perspective 
of the flow. The full solution of radial equilibrium equation 
(REE) for turbomachinery is given by Smith [4], hence only a 
brief overview is given in this paper. The SLC based 
throughflow method, in particular, considers the flow within 
the turbomachinery bladerow as axisymmetric, compressible 
and inviscid. Due to lack of viscous effect, all throughflow 
solvers need to be coupled with separate viscous models, which 
bring the effect of loss, turning and blockage [15,16]. In many 
cases the effect of secondary flow mixing also needs to be 
accounted for using empirical models [17]. 

The grid for calculating REE is based on fixed stations (also 
called quasi-orthogonals or QOs) and floating streamlines. The 
streamlines are allowed to float based on the circumferentially 
averaged solution of REE. The curvature gradient calculated 
from movement of these floating streamlines forms the key 
contribution in the REE equation. A typical throughflow grid is 
shown in Figure 1. Where the x-axis is the axial distance and y-

axis is the radial distance. The streamlines, denoted by 
normalized stream function (ψ ) floats as a result of REE 
solution, with the exception of hub and casing streamlines 
which are kept fixed. 

 

 
Figure 1: Schematic representation of a throughflow 

computational grid 

 
Schematic representation of quasi-orthogonals and 

streamlines is given in Figure 2, where the red lines show 
arbitrary stations and blue lines show arbitrary streamlines. 
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Figure 2: Streamlines and quasi-orthogonals (S2) 

representation for the throughflow method 

 
The final REE that makes the heart of any throughflow 

solver reflects the equation of the pressure forces to the inertial 
forces. A generic REE is given in Eq.(1), which represents the 
gradient of meridional velocity ( mV ) in span-wise direction and 
needs to be solved using iterative procedure. 
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By integrating the REE presented in Eq.(1), we can obtain 

the final solution for meridional velocity at each station and 
streamline junction. This requires us to re-write Eq.(1) as a 
linear ordinary differential equation (ODE). The solution 
procedure depends on the mode of the throughflow calculation. 
These modes are: (1) Analysis mode - where calculations meet 
the imposed relative flow angle (β);  (2) Design mode – where 
the prescribed swirl or rCu distribution is met.  

1st order ODE forms of Eq.(1) for analysis and design 
modes are given below [18]. 

 
Analysis Mode 

( ) ( ) ( )22
2

2
2

2
SCVSBVSA

dS
dV

mm
m +⋅+⋅=  (2) 

 
Design Mode 

( ) ( )2
2

2
2

2
SQVSP

dS
dV

m
m +⋅=  (3) 

 
where, the coefficients A(S2), B(S2), C(S2), P(S2) & Q(S2) are 
"non-constant" constants. 

For simplicity, here we describe the solution procedure for 
design mode only. An analytical solution of Eq.(3) can be 
found using the standard “integrating factor” approach. The 
final solution of Eq. (3) in form of meridional velocity is given 
by 

 

 
The solution starts with guessed value of meridional 

velocity (which can be either at meanline or blade tip) and then 
integrated along the entire span. The two coefficients (P(S2) 
and Q(S2)) are determined based on solution from previous 
iteration. 

This solution of meridional velocity is obtained in 
conjunction with continuity equation, Eq.(5), for each station to 
satisfy mass conservation. 

 

 
As mentioned earlier, the solution procedure is iterative in 

nature and as the REE equation is highly non-linear, care must 

be needed to successfully obtain the final solution. In our 
procedure the predicted meridional velocity, streamline 
curvature and movement are damped, to improve solver 
robustness. Denton [1] emphasized the need to only damp 
streamline curvature value as all other quantities are related to 
it. However, we find it useful to also damp meridional velocity 
and streamline movement to ensure convergence and 
robustness in solution procedure. A dynamic damping 
coefficient control algorithm, similar to what described by 
Pachidis et al. [19], is also implemented in the solver. 

 
 

3. IMPROVEMENTS FOR TRANSONIC FLOWS 

Based on the study performed in this work, it is found that 
in order to overcome the transonic flow issue in a SLC based 
throughflow solver following three improvements are essential. 

 
1. Dual-Solution Approach: Ability to overcome dual sub- 

and super-sonic solution by guiding solver towards 
supersonic flow solution where applicable. 

2. SLC Gradient: Ability to calculate streamline curvature 
gradient term in order to avoid singularity at sonic 
meridional Mach number and high gradient values for 
transonic flow. 

3. Choked Flow Treatment: A suitable technique to handle 
localized choked flow and turning distribution at throat 
station. 
 
Subsequent sections describe solution procedure for each 

of the three improvements needed. Solution procedures for 
"dual-solution" and choked flow treatment are new and 
developed as part of this work. However, procedure for 
calculating SLC gradient is leveraged from earlier work done 
by Denton [1] and Came [2]. 

 
 

3.1. Dual-Solution Approach 

As described in Section 2, a throughflow solver finds 
meridional flow solution by combining the continuity and 
momentum equation for a streamtube. Usually for subsonic 
flows it is numerically easier to obtain the solution, as most of 
the throughflow solvers are coded to seek the subsonic 
solution. However for high Mach number flows, two possible 
solutions (subsonic and supersonic) satisfy numerically the 
governing equations on each streamtube. Sometimes when 
supersonic solution is desired it becomes harder for the solver 
to automatically select the nature of flow a priori. Some 
techniques for seeking the supersonic solution are described in 
literature [14,20].  

In this section a new and relatively simple method is 
described to help a throughflow solver seek the supersonic 
solution, when desired. To best of author's knowledge this 
technique has not been published. 
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Figure 3 shows the variation of bladerow exit angle with the 
meanline average turning ( urC ) or total pressure ( tP ). It is 
clear that for the same angle level both subsonic and supersonic 
conditions can be satisfied, with the maximum angle level at 
the choked flow condition. This is referred as "dual solution" 
domain in the literature [21]. 

 

Flow 
Angle 
(β)

Average rCu (or Pt)

subsonic supersonic

ChokeMaximum angle

 
Figure 3: Variation of bladerow exit flow angle (β) with 

average turning (rCu) or total pressure (Pt) 

 
The problem of dual-solution will mainly occur when the 

throughflow solver is used in the analysis mode, because the 
exit flow angle ( β ) is prescribed. The design mode can easily 
overcome this issue as prescribed turning ( urC ) can be made 
to reflect the desired sub- or supersonic solution. For analysis 
mode, what we proposed here that for the station where 
supersonic flow is experienced user should also prescribe the 
value of average meanline turning ( urC ) or total pressure 

( tP ). This is in addition to the desired exit flow angle ( β ) 
distribution, which is a 2D profile. These meanline average 
turning ( urC ) or total pressure ( tP ) values are easy to obtain, 
as these are generally known from 1D meanline preliminary 
design calculations or design guidelines [22]. 

However, satisfying both the flow angle distribution and 
average meanline turning is not possible as this over specifies 
the problem. And this is also not the intent of this technique. In 
the analysis mode, the throughflow solver only satisfies the 2D 
exit flow angle. But the average turning value is used to 
iteratively guide the solver towards supersonic solution. This is 
done by adding an additional inner loop which checks whether 
the calculated average turning value is equal to the prescribed 
value (within the allowable tolerance limit). If this condition is 
not met then the difference in turning is used to calculate the 
delta flow angle ( β∆ ). This delta flow angle ( β∆ ) value is 
then used to update the prescribed 2D flow angle distribution. 
Same β∆  value is used from hub to tip in order to preserve the 
given flow angle distribution. This is done to preserve the 
shape of angle profile, as this is usually the design intent in the 
vortexing studies. Usually this loop is very efficient and within 

few iterations both the flow angle distribution and given 
meanline turning value is satisfied. 

The shift in given flow angle profile is calculated using a 
relationship of flow angle and average turning. Here is the brief 
description of the mathematical procedure. 

Let’s assume that user has supplied the mass averaged 
turning value at the station where supersonic flow is desired, 
which is 

desiredurC . Now after solving REE on the station we 

can calculate the mass averaged turning ( urC ) for the station 
using equation 

 

ψdrCrC uu ∫=
1

0
 (6) 

 
Substituting uu WUC +=  and differentiating Eq.(6) with 

respect to exit flow angle (β) we obtain 
 

ψ
ββ

d
d
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d
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
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1
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Now at each iteration the difference between the desired 

and calculated meanline turning is determined using following 
equation 

 

uudesiredu rCrCrC ∆=−  (8) 
 
Now prescribing the difference in turning ( urC∆ ), in terms 

of difference in flow angle ( β∆ ), as 
 

β
β

∆




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
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d
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and using Eqs. (7) & (8) we can calculate the desired value by 
which the flow angle should be updated at each iteration. 
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At each iteration the above calculated difference in flow 

angle ( β∆ ) is added to prescribed flow angle ( jβ ) 
distribution.  Same value is added at each streamline to  
preserve the shape of the prescribed angle profile. 

 

nnjnj βββ ∆+=
+1

 (11) 
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The above described procedure easily rectifies the dual 

solution issue in throughflow solvers. However, the choice of 
mass averaged quantity does require special care. Some care 
should be followed to determine the desired mass averaged 
turning (

desiredurC ) or total pressure (
desiredtP ) data. Also it 

should not be assumed that the mass averaged quantity can be 
changed indefinitely to get any form of supersonic or 
hypersonic solution. The underlying condition for this 
technique is that meridional Mach number (Mm) should remain 
under unity, as this would represent maximum mass flow 
through the streamtube. However, relative Mach number (Mr) 
can be supersonic. No solution would be possible if user would 
try to specify mass flow above the choked mass flow limit, as 
this is unphysical and above described method will not be able 
to handle this type of input, unless the mass flow is corrected 
using the technique shown in Section 3.3. 

 
 

3.2. Streamline Curvature (SLC) Gradient 

Examination of Eq.(1) shows that all quantities in the 
bracket on the RHS side can be assumed constant at a particular 

iteration. In particular the quantity 
m
V

V
m

m ∂
∂1  is called the 

streamline curvature gradient term, which is the key component 
of REE. We can obtain the analytical solution of streamline 
curvature gradient term shown by Smith [4], as 
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It should be noted that since the ( )21 mM−  term is present in 

the denominator of Eq.(12) it leads to singularity when 
meridional Mach number tends to be unity ( 1→mM ). This is 
represented in Figure 4. Marsh [6] mathematically showed that 
the REE changes its form from elliptic to hyperbolic, when 
meridional Mach number becomes sonic. This poses significant 
challenge in solving the REE. 

 
 

 
Figure 4: Streamline curvature gradient singularity shown 

at Mm = 1 (plot reproduced from Smith [4]) 

 
Denton [1] showed that the problem of singularity at 

1→mM  could be removed by calculating the streamline 
curvature gradient term from previous iteration. This is 
achieved by decoupling the continuity equation with the 
momentum equation. This technique is implemented in the 
throughflow solver using the approach shown below. 

In order to obtain the streamline curvature gradient 
contribution we used the finite difference method by 
accounting contributions from the neighboring upstream station 
(Eq.(13)). All the quantities at RHS are taken from previous 
iteration. 
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Since the solution of SLC based throughflow codes highly 

depend on the calculation of the streamline curvature gradient 
term, high gradients pose a serious robustness issue in the 
solver. In order to avoid this issue an inner loop is suggested to 
determine if meridional Mach number approaches unity (or any 
other maximum limit assigned to the solver) anywhere on a 
station. In literature it is recommended that the optimum 
maximum value of meridional Mach number for using 
numerical treatment should be around Mm,max ≥ 0.9 [20]. If the 
maximum Mach number condition has been met even at a 
single streamline on a station, above-mentioned procedure is 
used to calculate the streamline curvature gradient term for the 
entire station. 

This approach adds considerable robustness to throughflow 
solver for high Mach number flows until the streamtubes 
choke. A separate treatment is developed to overcome the 
challenge of streamtube choking, which is discussed in 
Sections 3.3 & 3.4. 
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3.3. Choked Flow Physics 

Let’s consider very important behavior for the compressible 
flow, which is the variation of mass flow with pressure ratio. 
We know that, in converging-diverging nozzle, as the exit 
pressure is decreased the flow velocity in the throat increases; 
hence the mass flow increases. Once the sonic flow is achieved, 
at the throat, then mass flow rate is given by *** Aum ρ= . 
Where, star (*) indicates properties at sonic conditions. Now 
even if exit pressure is further decreased the conditions at the 
throat remain unchanged. The maximum mass flow can be 
calculated by Eq.(14) using the properties at the throat.  

 
uAAum ρρ == ***  (14) 

 
The Mach number at the throat cannot exceed 1. Hence, the 

mass flow will remain unchanged even if the exit pressure is 
lowered. This is shown in Figure 5. 
 

Mass 
flow rate 
through 
nozzle

Pexit/Pinlet

Choked

1.0 0.5
 

Figure 5: Variation of mass flow with exit pressure. Plot 
also shows choked flow condition 

 
Once the flow becomes sonic at the throat, disturbances 

cannot work their way upstream of the throat. Hence, the flow 
in the convergent section of nozzle no longer communicates 
with the exit pressure and has no way of knowing that the exit 
pressure is further decreasing. This situation where the flow 
goes sonic at the throat and mass flow remains constant even 
when exit pressure is reduced is called choked flow.  

In this study we have classified choked flow in a 
turbomachinery system as annular and localized choke. 
Annular flow is classified when all the streamtubes are choked 
and flow reach the maximum value in the entire flowpath. 
However, in a streamline curvature approach a flowpath 
contains many individual streamtubes. It is very common that 
flow in these individual streamtubes can reach a local 
maximum value. It is possible that one or more streamtubes 
experience choked flow, but still the entire flowpath is not 
choked. This type of flow regime is classified as localized 
choked flow in this study. It is important to note that if all the 
streamtubes in the turbomachinery annulus choke then the 
condition automatically leads to annular choked flow as 
described above. Many turbomachinery applications do not 

often operate in the annular choked flow mode. On the other 
hand localized choked flow is encountered very commonly. 

Understanding this particular behavior of choked flow is 
very important for developing a suitable solution scheme for 
throughflow calculations. 

Here is a brief description of annular choked flow solution 
procedure. Detail description is given by Denton [1] & Came 
[2]. The approach is defined as “target pressure” approach. The 
core basis of this scheme is to invert the solution scheme such 
that we start with approximately the correct pressure ratio 
across all bladerows first and hence mass flow rates are 
determined implicitly with reasonable approximation. This is 
done by incorporating an inner iteration loop. Once the first 
approximation is done continuity equation is used to determine 
the mass flow mismatch. This mass flow mismatch is then used 
to update the upstream target pressure using equation 
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Eventually, after few loops all bladerows reach closer to 

desired mass flow and pressure ratio, which leads to converged 
solution. 

As mentioned earlier that most of the turbomachinery 
applications do not operate when the entire flowpath is choked. 
However, the above-described procedure is useful to determine 
the maximum possible mass flow (i.e. chocked mass flow) 
through the turbomachinery flowpath. This is also useful when 
the input mass flow is higher than the choked mass flow. In that 
scenario above mentioned technique is used to iteratively 
correct the mass flow. 

 
 

3.4. Localized Choked Flow Treatment 

The localized choked flow physics works similar to annular 
choke flow physics described above. A turbomachinery annulus 
contains many streamtubes, and since there is no mass transfer 
between these streamtubes, each streamtube can be considered 
as the converging-diverging nozzle. The throat location in a 
streamtube is not fixed, rather variable which is a function of 
flow solution. 

The situation of dealing with localized choking is little 
easier and hence a new and rather simple technique is described 
here. The premise of this concept is to preserve the average 
turning required by the bladerow. Similar to dual-solution 
approach, described in Section 3.1, this requires providing an 
additional constraint in terms of average turning ( urC ). 
Generally a designer knows the average flow turning required 
by the bladerow. A sample turning distribution is shown in 
Figure 6. 
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Trailing 
Edge
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Edge

 
Figure 6: Sample meanline bladerow turning distribution 

for two rotors 

 
In this procedure, when localized choking occur on a 

streamtube, we assume that the sonic point lies on the closest 
upstream station. The condition that leads to local choking is 
when relative Mach number increases to sonic limit. Generally 
calculated meridional Mach number or turning ( urC ) 
distribution using REE at sonic point leads to unphysical 
values. This is shown as blue line in Figure 7. Once again, this 
problem will mainly occur when the throughflow solver is used 
in the analysis mode. In order to rectify this issue we provide 
additional constraint at the station. We can use the average 
meanline turning distribution as the additional constraint, but 
this information is also not sufficient as we can fit many radial 
distributions through a single average value. We need 
additional constraint to define a unique radial distribution. For 
this we make the assumption that the bladerow tip makes the 
same proportional turning as the meanline distribution. This 
assumption is not unreasonable for hub strong flows we often 
experience in many commercial gas turbines. Hence, following 
equation is used to calculate the tip turning, 
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
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 (16) 

 
In Eq.(16) all the quantities with overbar ( urC ) represent 

the average quantity for the station and quantities without 
overbar represent the tip streamline specific quantity. The 
quantity in the square bracket is the desired average fractional 
turning. Once the tip turning is determined the radial 
distribution can be calculated, for rest of the streamlines, using 
the assigned average turning for the station ( urC ). The slope 
value by which the turning distribution varies from tip to hub 
may depend on the type of flow and desired vortexing behavior 

designer want from the bladerows. In this study, for simplicity, 
a constant slope is assumed. 
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Figure 7: Plot showing the radial distribution of turning 

(rCu) for throat station under localized streamtube choking. 
Red: after correction; Blue: before correction. 

 
Using this constraint of average turning ( urC ), the flow 

angle distribution for the throat station is calculated in the 
analysis mode. This procedure is only applied to the throat 
station to overcome the localized choked flow issue in the 
throughflow solver. The final turning ( urC ) distribution after 
imposing the constraint is given as red line in Figure 7. 

 
 

4. RESULTS AND DISCUSSION 

The improvements described in Section 3 are implemented 
in a throughflow solver. The improved solver is used to 
perform throughflow calculations for a range of compressor 
and turbine cases (both subsonic and transonic). Only few of 
these results are presented here. For subsonic flow condition, as 
shown earlier, the streamline curvature gradient term can be 
defined using the analytical solution (given by Eq.(12)). 
Eq.(12) is also implemented in the throughflow solver and used 
to compare the solution against the finite difference based 
approach (Eq.(13)) shown in Section 3.2. For transonic cases 
the solution of throughflow solver is compared with the full 3D 
CFD calculations. 
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Analytical [Eq.(12)]
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Figure 8: Meridional velocity distribution at TE of 8th stage 
rotor of the subsonic compressor test case. Results showing 

solver consistency for a subsonic test case. 

 
Throughflow solver consistency is checked for a subsonic 

compressor test case, in the analysis mode. The subsonic case 
used here is an 8-stage aircraft engine compressor. The SLC 
gradient term treatment, described in Section 3.2, was 
implemented for all stations regardless of flow Mach number. 

This solution is compared against the exact solution defined 
using Eq.(12). Figure 8 shows the fully converged results for 
the two solution procedure. The meridional velocity 
distribution at the trailing edge of last stage rotor is presented. 

The results clearly show the consistency and accuracy of 
the results being presented. It can also be inferred that the 
method of SLC gradient treatment, presented in Section 3.2, 
does not make any impact on the final solution for the subsonic 
cases. A small mismatch in the meridional velocity calculations 
near hub is attributed to high gradient values. Although, all the 
results were obtained within the prescribed tolerance limit. 

Finally the improvements presented here are tested for a 
transonic case, which require all the three improvements 
described in Section 3. The transonic case used here is 3-stage 
low pressure turbine (LPT) of an industrial gas turbine. The 
focus of this transonic turbine design is to develop high 
throughflow next-generation gas turbines for IGCC 
applications. The high mass-flow brings the challenge of 
pushing high throughflow Mach numbers in last stages of gas 
turbines very close to 1≈mM . This brings significant 
robustness challenges to throughflow solver. Many times the 
meridional Mach number challenges are coupled with aspect 
ratio limitations in high annulus area gas or steam turbine last 
stages [9]. A viable solution for aspect ratio limitation is to 
provide reasonable spacing between stations, as described by 
Wilkinson [9]. 
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Figure 9: Predicted meridional Mach number shown for a 3-stage transonic turbine test case. Solution obtained using the 

numerical improvements presented in this paper. 
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Figure 10: 3D CFD and 2D throughflow comparison for a 

transonic 3-stage turbine test case 

 
The complete solution of the 3-stage gas turbine test case is 

shown in Figure 9. The three necessary improvements descried 
in Section 3 are required to converge this transonic case. The 
localized streamtube choking treatment helps determine the 
REE solution for the choked station, which occur in the third 
stage rotor of the LPT. The hub strong profile with peak 
meridional Mach number of around ~0.975 is predicted near 
trailing edge of third stage rotor. Design owners also performed 
quantitative comparison of throughflow calculations with full 
3D CFD solution. The comparison of normalized turning 
distribution prediction between 3D CFD & 2D throughflow 
prediction is shown in Figure 10, for the leading edge of last 
stage rotor. A reasonable comparison is obtained between the 
two solutions with very good match at mid-span and hub 
sections. The tip distribution mismatch is attributed to strong 
tip vortex mixing effect, which were not captured by 2D 
throughflow solution. 

 
 

5. CONCLUSIONS 

This paper describes various improvements implemented in 
a streamline curvature based throughflow solver for extending 
the capability of the solver for transonic and supersonic flows. 
It is described that three key improvements are required to 
handle transonic flows in a streamline curvature based 
throughflow solver:  
1) Ability to guide solver to predict supersonic flow solution 

when “dual-solution” exists 

2) Suitable technique to calculate streamline curvature 
gradient term and to avoid singularity at Mm=1 and high 
gradient values in transonic flow 

3) A suitable technique to handle choked flow and calculate 
turning distribution at the throat station 
Details of the treatment for each of the above areas are 

described in this paper. Solution procedure for "dual-solution" 
and choked flow treatment is new and developed as part of this 
work. However, procedure for calculating SLC gradient is 
leveraged from earlier work done by Denton [1] and Came [2]. 

Choked flow in turbine blades is categorized as annular 
choke (when entire turbomachinery annulus is choked) and 
localized choke (when few streamtubes are choked). 
Approaches for handling both annular and localized choked 
flow are described in this work. 

Numerical improvements presented here have been 
validated and tested for a range of compressor and turbine 
cases (both subsonic and supersonic). It is shown that the 
numerical improvements presented here resulted in an 
enhanced version of the 2D streamline curvature based 
throughflow solver. The new code produces consistent solution 
for subsonic application with no sacrifice in accuracy of the 
solver. However, considerable robustness improvements are 
achieved for transonic and high Mach number applications. 
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