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ABSTRACT
This article describes how to extend the dsicrete adjoint

method to functionals that are evaluated on arbitrary rotational
control surfaces that intersect the flow domain at a position spec-
ified by the user, e.g. the pressure loss coefficient of a single
blade in a multi-stage configuration. The definition and imple-
mentation of the mixed-out states on such surfaces is revisited.

The calculation of the corresponding right-hand sides in the
adjoint system is explained. These techniques can be used to
specify functionals that quantify the deviation of the radial dis-
tribution of the flow angles, relative mass flow, etc. from a given
target distribution. Sensitivity studies using the conventional ap-
proach, i.e. by means of finite differences of many steady solu-
tions, are compared to results based on the adjoint method. The
applications demonstrate that the agreement between adjoint and
conventional sensitivity predictions is excellent, if the exact def-
inition of the surface functionals is taken into account.

NOMENCLATURE

CEV constant eddy viscosity
Fj flux through face j
I objective functional
MS( f − f ∗) mean square deviation

∗Address all correspondence to this author.

R residual vector
S, S̃ source terms
T temperature
Tt stagnation temperature
U velocity
Vi volume of cell i
div divergence
ṁ mass flow
n surface normal vector
p pressure
q vector of conservative variables
x,r,ϑ cylindrical coordinates
Γ analysis surface
α j j-th design variable
β circumferential flow angle
κ thermal conductivity
λ stagger angle
πt stagnation pressure ratio
ψ adjoint solution
ρ density
ϑt stagnation temperature ratio

INTRODUCTION
Computational fluid dynamics (CFD) is often used to under-

stand flow phenomena for one given design, e. g. a turbomachin-
ery configuration at a certain number of operating points. In that
case, the role of CFD is primarily to give, as accurately as possi-
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ble, quantitative and qualitative information about the flows. On
the other hand, many CFD applications take place in a context
where, instead of only one isolated geometry, one considers a
variety of designs, which is the case in aerodynamic design and
optimization. Similarly, when a manufacturing tolerance is to be
specified from an aerodynamic point of view virtually all possi-
ble manufacturing errors must be taken into account.

As computational power becomes more and more afford-
able, a conceptually simple approach to this problem can be the
repeated use of a flow solver for many configurations. However,
denoting by f the dimension of the design space, at least f cal-
culations are needed to approximate a performance functional
linearly, i.e. to calculate the gradient for one set of design vari-
ables. One may overcome this dilemma by the use of optimal
control theory which suggests that instead of solving the primal
equations, i.e. the flow equations, many times, one should prefer-
ably solve a dual system of equations. The dual system needs to
be solved only once for each functional in order to determine the
gradient for arbitrarily many design parameters. Moreover, its
solution is roughly as difficult as the linearization of the primal
equation, generally not more complex than one solution of the
flow equations. It follows that, if far fewer functionals are used to
assess the performance than there are geometric parameters, then
the dual approach outperforms the primal approach dramatically.
In the context of partial differential equations, the dual problem
can be identified with the adjoint partial differential equations.
Since Jameson’s pioneering work on the solution of the adjoint
flow equations [1], researchers have developed various numer-
ical methods to solve the adjoint flow equations, i.e. potential,
Euler or RANS equations, and scientific computing techniques
to generate adjoint solver code from a standard flow solver auto-
matically, cf. [2] and references therein.

There are various applications of sensitivity analysis, the
most prominent being gradient based optimization methods. The
classical gradient descent methods calculate the next design con-
figuration from the gradient of the cost functional and an approx-
imate Hessian. The approximation of the Hessian is updated by
each gradient information. Examples of such strategies for opti-
mization without constraints are the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method, and in case there are constraints, the
method of Sequential Quadratic Programming (SQP). Moreover,
there exist gradient assisted optimization methods which are not
based on gradient descent. Surrogate models as introduced e.g. in
[3] and [4] are trained by the evaluation of both the functional
itself and its sensitivities. A further promising application of ad-
joint methods are error estimates, cf. [5–7], and the CFD based
specification of manufacturing and wear-and-tear tolerances, cf.
[8].

The above applications have in common that the functions
whose derivatives are calculated are a composition of various
process tools, as depicted in Fig. 1. Adjoining the whole pro-
cess chain can be viewed as evaluating the chain rule in reverse

order. One starts from the right and translates, step by step, the
sensitivity of the objective functional w.r.t. the flow solution into
one w.r.t. the design parameter. If blade and mesh generation are
not available in adjoint mode, one has to calculate their deriva-
tives in forward mode, for instance by repeated evaluations with
perturbed parameters. One can still obtain the tremendous ac-
celeration of adjoint methods if one applies it to the flow solver
which, in the forward approach, is by far the most time consum-
ing.

Mesh
generation

Blade
geometry

Flow
solver

geometry
Mesh

Post
processing

solution
Flow Objective

functional
Design
parameter

Blade
generation

Figure 1. PROCESS CHAIN OF SENSITIVITY CALCULATION

That said, it is indispensible to be able to treat the rightmost
function in Fig. 1 in adjoint mode in order to apply adjoint meth-
ods. Consequently, one of the subtleties in the development of
adjoint solvers is the fact that for each objective functional one
has to implement a special right-hand side for the adjoint system.
Moreover, if one is interested in gradients that agree with the gra-
dients of the flow solver output then the exact post-processing
functions have to be considered and their linearization must be
used in the pre-process of the adjoint solver.

In turbomachinery, the objective functionals, such as mass
flow or efficiency, are often evaluated on the boundary of the
flow domain, i.e. at the inlets or outlets of the configuration. In
the adjoint flow equations, these functionals result in inhomo-
geneous boundary conditions. In many applications, however,
it is important to use arbitrary analysis surfaces away from the
boundaries of the computational domain, e.g. when considering
the performance of one single blade row in a multi-stage turbo-
machinery configuration. In that case it might be desirable to
place the numerical measurement plane away from the numeri-
cal boundaries where boundary conditions cause small spurious
reflections that interfere with the solution. On the other hand, the
interaction with other rows should be taken into account even if
one is primarily interested in the performance of a single blade
row.

This article describes how to extend the adjoint solver pre-
sented in [9] for objective functionals on arbitrary analysis sur-
faces. It is explained how to specify the analysis surfaces and
how to compute averaged flow quantities on them. Then the gen-
eralizations needed in the adjoint code are discussed. Finally, the
new methods are validated on the basis of a transonic compressor
stage.

c
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THE FLOW SOLVER AND ITS ADJOINT
The adjoint solver used in this article and its underlying flow

solver are part of the Reynolds-averaged Navier Stokes (RANS)
solver TRACE, developed at DLR for internal flows, especially
in turbomachinery [9]. Alongside the research at DLR, the solver
is used and developed at several universities, and employed at
MTU Aero Engines in the aerodynamic design of components.

Finite Volume Discretization of the RANS Equations
The equations used to model turbomachinery flows are the

compressible RANS equations which may be written in the form

∂q
∂t

+ div[Fc(q)+Fv(q)] −S(q) = 0. (1)

Here q = (ρ,ρU,ρE) denotes the flow field of conservative vari-
ables, i.e. density, momentum and total energy. Fc and Fv denote
convective and viscous fluxes, respectively. As is common prac-
tice in turbomachinery CFD, the flow equations are formulated
in the rotating frame of reference. Therefore, S is the source term
which accounts for coriolis and centrifugal forces. The effects of
turbulence are described using Wilcox’s two-equation turbulence
model [10].

The finite volume discretization of Eqn. (1) reads

∂qi

∂t
+V−1

i ∑
j∈∂i

Fj(q)−Si(q) = 0,

where qi denotes the average state in the i-th cell, ∂i the set of
its faces, and Fj is the numerical flux at the j-th face. Si(q) is an
approximation of the source term, averaged over the cell whose
volume is denoted by Vi. Defining the residual by

Ri = V−1
i ∑

j∈∂i
Fj(q)−Si(q), (2)

the steady equations read

Ri(q,x) = 0, (3)

where the dependency of the residual on both the discrete flow
variables and the mesh coordinates is emphasized.

Numerical Boundary Conditions
Boundary conditions are imposed by extrapolating the state

values at inner cells to so-called dummy cells and calling special
flux functions at the bounding faces [11]. At solid walls, slip and

no-slip boundary conditions are available. For coarse meshes,
wall functions can be used.

At entry, exit and interface boundaries between blade rows,
nonreflecting boundary conditions, cf. [12], are applied to the
circumferential fluctuations. The circumferentially mixed out
states are given by a radial distribution of stagnation tempera-
ture, stagnation pressure and flow angles at the entry. At exits
the radial distribution of pressure is prescribed or, otherwise, the
pressure distribution is computed from the user-specified pres-
sure at midspan and the equation of radial equilibrium.

Adjoint Solver
Suppose that the geometry is parametrized by an f -

dimensional vector of design parameters α. Under the assump-
tion that this parametrization and the mesh generation is at least
differentiable, the mesh coordinates are differentiable functions
of α. If one is interested in the sensitivity of an objective func-
tion I(x,q) under variations of α, then the forward approach is
to solve Eqn. (3) for many different α and to evaluate I(x,q). In
fact, Eqn. (3) is an implicit definition of q(α).

Differentiation w.r.t. α j yields the forward linear problem

∂R
∂q

∂q
∂α j

+
∂R
∂x

∂x
∂α j

= 0. (4)

Given the solution ∂q
∂α j

to Eqn. (4), the sensitivity can be com-
puted using

∂

∂α j
I(x(α),q(α)) =

∂I
∂x

∂x
∂α j

+
∂I
∂q

∂q
∂α j

. (5)

In order to explain the adjoint method, the second summand
is rewritten using Eqn. (4),

∂I
∂q

∂q
∂α j

=
((

∂I
∂q

)T)T ∂q
∂α j

=−
((

∂I
∂q

)T)T(∂R
∂q

)−1 ∂R
∂x

∂x
∂α j

=−
(((

∂R
∂q

)T)−1( ∂I
∂q

)T
)

︸ ︷︷ ︸
=:ψ

T
∂R
∂x

∂x
∂α j

.

(6)

This definition of the adjoint solution ψ can be translated into the
linear equation

(
∂R
∂q

)T
ψ =

(
∂I
∂q

)T
. (7)
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Summarizing, one can calculate the sensitivity of I w.r.t. α j using

∂

∂α j
I(x(α),q(α)) =

∂I
∂x

∂x
∂α j
−ψ

T ∂R
∂x

∂x
∂α j

. (8)

Given ψ, the computational effort to evaluate the sensitivity for
many design parameters reduces dramatically since the calcula-
tion of the sensitivities w.r.t. the mesh geometry is rather cheap.
Since the conditions of the linear operators

(
∂R
∂q

)T and ∂R
∂q are

identical, solving the adjoint equations is approximately as diffi-
cult as solving the steady equations for a small change of α.

The adjoint solver in TRACE solves the discrete adjoint
equations, i.e. the left-hand side in Eqn. (7) is the linearization of
the residual R of the steady solver. The exact residual Jacobians
are, however, approximated by finite differences. The resulting
large sparse block matrix A is stored in compressed row storage
format, each entry being a 5× 5 submatrix. Transposition leads
to the adjoint operator. Similarly, the implementation of the ad-
joint boundary conditions is also based on the linearization of the
corresponding routines of the steady solver. In particular, nonre-
flecting boundary conditions and the blade row coupling using
conservative mixing planes have been linearized and adjoined.
For more details, the reader is referred to [9].

The adjoint solver used in this article is based on the
so-called constant-eddy-viscosity (CEV) assumption, i.e. when
computing sensitivities w.r.t. shape variations, the eddy viscosity
takes the same values as for the initial geometry. For the valid-
ity of the CEV approximation and its application in automatic
optimization, cf. [13, 14].

Solution Methods
The nonlinear system in Eqn. (3) is solved by an implicit

pseudo-time marching method. The adjoint equations are solved
using a restarted preconditioned GMRES method. The paral-
lelization strategy for both solvers is domain decomposition. The
computational work is distributed onto a high performance clus-
ter. In steady mode, ghost cells at block cuts storing copies of
cells in neighboring blocks are updated after every internal up-
date. In contrast, the adjoint ghost cell update is called after ma-
trix multiplication in the adjoint solver, cf. [9].

Interpretation of the Adjoint Solution
The adjoint solution ψ is itself difficult to interpret in terms

of a variation of the geometry. However, for a given functional I,
one can give the adjoint field ψ a precise meaning by considering
the sensitivity of I under variations of source terms. Recall from
Eqn. (2) that the steady flow is determined by

V−1
i ∑

j∈∂i
Fj(q) = Si(q).

Now suppose that this system is not perturbed by a variation of
the geometry but by the addition of a source field, i. e.

V−1
i ∑

j∈∂i
Fj(qε) = Si(qε)+ εS̃i,

where S̃i is a discretized source density and ε a small control pa-
rameter. Observe that S̃i corresponds to an average source den-
sity. The first variation of q is determined by differentiation w.r.t.
ε, hence

∂R
∂q

∂qε

∂ε
= S̃.

The first variation of the objective functional I(q) is therefore
given by

∂I(qε)
∂ε

=
∂I
∂q

∂qε

∂ε

=
∂I
∂q

(
∂R
∂q

)−1
S̃

= ψ
T S̃

= ∑
i
(V−1

i ψi)T S̃iVi.

(9)

Here, the cell volume has been introduced in order to write the
sensitivity as a weighted sum of the sources integrated over one
cell, S̃iVi. The components of S̃iVi correspond to mass flow, mo-
mentum flux and energy flux, respectively, of the source added.
One deduces from Eqn. (9) that the components of the modified
adjoint solution V−1

i ψi can be interpreted as the sensitivity of the
objective functional I w.r.t. a source in the corresponding com-
ponent at the i-th cell. In particular the SI units of V−1

i ψi are
given by

[V−1
i ψ

(1)
i ] = [I] · s

kg
, (10)

[V−1
i ψ

(2,3,4)
i ] = [I] · 1

N
, (11)

[V−1
i ψ

(5)
i ] = [I] · 1

W
, (12)

where [I] is the unit of the objective functional. E.g., when I is
mass flow, then the adjoint density V−1

i ψ
(1)
i is a dimensionless

field.
It follows that the modified adjoint field V−1

i ψi has a phys-
ical meaning which is independent of the mesh under consider-
ation. Consequently, the plots of adjoint solution fields in this
article refer to the modified adjoint field.
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OBJECTIVE FUNCTIONALS AND ADJOINT FORMULA-
TION

Although some functions for turbomachinery performance
are based on volume integrals, e.g. entropy production, cf. [15],
most common objective functionals are based on surface inte-
grals

I(x,q) =
Z

Γ

h(x,q)dS(x), (13)

for some function h and analysis surface Γ.

Functionals Defined at the Blade Geometry
Typical functionals to assess the performance of an airfoil

are lift and drag. Similarly, open rotors constitute a turbomachin-
ery application where integrals over the blade surface are used,
e.g. to calculate thrust from pressure and shear stresses over the
blade. Consequently, applications of adjoint solvers to external
flows typically use an analysis surface Γ which is identical with
the boundary to be optimized. This implies a direct dependency
of I on the blade geometry as an additional ingredient in the sen-
sitivity calculation, in contrast to the adjoint methods presented
in [9].

OGVFan

Bypass

Core

MP AP

Figure 2. COMPUTATIONAL DOMAIN CONSISTING OF FAN, OGV
AND CORE IGV WITH ANALYSIS PLANE (AP) AND MIXING PLANE
(MP).

Functionals Defined at Surfaces away from Varying
Boundaries

In turbomachinery CFD, it is common practice to evaluate
stagnation pressure and temperature ratio between two axial po-
sitions. The flow solver considered in this article allows for the

MP

AS

R1 R2

Figure 3. COMPUTATIONAL DOMAIN FOR OPEN ROTOR CONFIGU-
RATION WITH ANALYSIS SURFACE (AS) AND MIXING PLANE (MP).

specification of two kinds of such analysis surfaces. Of the first
kind are surfaces that are boundaries of the computational do-
mains, i.e. either inlets, outlets or the interfaces between blade
rows. The second class of surfaces consists of isosurfaces of gen-
eral channel coordinates that parametrize the annulur channel,
e.g. relative channel length and height. The channel coordinates,
in turn, are specified by the user.

Fig. 2 shows the configuration of a fan with outlet guide vane
(OGV) and part of the core. In order to evaluate the total pressure
losses of the OGV, one would like to place an analysis surface
between the tip of the splitter and the leading edge of the OGV.
An interior analysis surface might also be useful when consid-
ering an open rotor configuration. Thrust and specific work of
the rotors can be obtained by surface integrals of the momentum
and energy flux over a rotational analysis surface as depicted in
Fig. 3.

The flow solver environment TRACE allows for the gen-
eration of analysis surfaces as a preprocess. The preprocess-
ing tool that assembles the analysis surfaces uses the VTK li-
brary [16] to generate auxiliary surface meshes that represent the
user-specified isosurfaces. Each grid computed by VTK consists
of triangles which represent the intersection of one cell of the
volume mesh with the isosurface. Therefore, the (online) post
processing tools can interpolate the flow solution to the triangles
very efficiently and, subsequently, perform various kinds of av-
erages, circumferential Fourier decompositions, etc.

Functionals Defined by Radial Distributions
It is important to control not only global, averaged flow pa-

rameters but also radial distributions, especially for design and
optimization of blade rows in a multi-stage engine. For instance,
when optimizing the isentropic efficiency of a stage, a typical
constraint is that the radial distribution of the circumferential out-
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flow angle α be fixed. To treat such a constraint in adjoint mode,
one may consider the outflow angle at several radial heights.
However, the adjoint approach is inefficient if many function-
als are considered simultaneously. Therefore it is suggested to
employ the mean square deviation of flow parameters such as
outflow angles from target distributions β∗, i.e.

I(q) =
Z rtip

rhub
(β(r)−β

∗(r))2w(r)dr, (14)

for some radial weighting function w(r). β(r) is the flow angle
computed from the circumferentially averaged state

qF(r) = (Fn)−1
( 1

2π

Z 2π

0
Fn(q)dϑ

)
.

Here, it is preferable to calculate the flow angle from the cir-
cumferentially mixed-out state qF(r), since, using conservative
mixing-planes [17], qF(r) determines the radial distribution of
inflow angles in the next blade row.

Linearization of the Functionals
According to Eqn. (7), one has to differentiate the various

objective functionals, in order to calculate the right-hand side of
the adjoint solver. To explain this in detail, consider an objective
functional I which is a function of the flux averages over several
analysis surfaces Γ1,Γ2, . . ., i.e.

I(q) = I(qF
1 ,qF

2 , . . .). (15)

Here, the flux average [18] (or mixed-out state) is defined by

qF
i =

(
Fn)−1

( 1
|Γi|

Z
Γi

Fn(q)dS
)
. (16)

Fn denotes the convective flux in the direction of the normal vec-
tor n. n denotes the surface averaged normal. Note that different
averages such as the so-called work average, the availability or
entropy average, etc. can be written in the same form, but with a
different flux function Fn, cf. [19]. The following derivation of
adoint right-hand sides carries over verbatim to other averaging
techniques.

Using Eqns. (15) and (16), the linearization of I w.r.t. the
flow quantities is given by

δI =
∂I

∂q1
δqF

1 +
∂I

∂q2
δqF

2 + . . . , (17)

x [m]

N
or

m
al

iz
ed

 a
dj

oi
nt

 e
ne

rg
y 

[-
]

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 4. ADJOINT SOLUTION (ENERGY) FOR TOTAL TEMPERA-
TURE RATIO BETWEEN TWO INTERIOR ANALYSIS SURFACES.

where the linearized flux average is given by

δqF
i =

(
DFn|qF

i

)−1
( 1
|Γi|

Z
Γi

DFn|qδqdS
)
. (18)

Here, DFn|q denotes the flux Jacobian at q. In order to linearize
exactly the implementation of the forward post-process the spe-
cific discretization of the surface integral in Eqn. (16) has to be
taken into account. Together with the coefficients of the inter-
polation from the cells onto the above-mentioned triangles, this
yields ∂I

∂qi
for the i-th cell.

Mean square deviations may be linearized in a similar man-
ner. For instance, linearizing Eqn. (14) yields

δI(q) = 2
Z rtip

rhub
(β(r)−β

∗(r))δβ(r)w(r)dr. (19)

Using

δβ(r) =
∂β

∂q

∣∣∣
qF

δqF(r)

and Eqn. (18) for the linearization of flux averages, one obtains
∂I
∂q for the functional defined in Eqn. (14).

To verify the implementation, we consider the constant ax-
ial flow in a duct. The adjoint Euler solution for the stagnation
temperature ratio between two interior analysis planes at 40%
and 60% channel length is calculated. Since in the steady setup,
the stagnation temperature at the inlet is given by the boundary
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condition, it is straightforward to calculate the adjoint energy.
Stagnation temperature is proportional to the stagnation enthalpy,
which in turn is the energy flux per mass flow. Recall from (9)
that the adjoint energy at x is the sensitivity of the stagnation
temperature ratio w.r.t. an energy source at x, say S̃(e). Labelling
the x-positions and flow quantities at the analysis surfaces by 1
and 2, one has

δϑt =

{
S̃(e)

cpTt,1ṁ , if x1 < x < x2

0, otherwise.

It follows that the normalized adjoint energy

ψ̂
(e)
i = cpTt,1ṁV−1

i ψi

is the characteristic function of the interval [x1,x2]. The adjoint
energy computed with the discrete adjoint solver is depicted in
Fig. 4. It coincides with the analytic solution up to small nu-
merical artefacts close to the jumps at the analysis surfaces. The
latter, however, are of minor interest for applications, since mesh
perturbations are expected to be smooth, especially near the anal-
ysis surface.

TURBOMACHINERY APPLICATION
The Test Case

The Darmstadt Transonic Compressor test rig has been op-
erated since 1993. Several experimental data for three different
rotor designs are available. As shown in [20], mass flow and effi-
ciency prediction by the nonlinear solver are in very high agree-
ment with experimental data. To test the new functionals in the
adjoint solver, the baseline rotor geometry (Rotor No.1, cf. [21])
has been chosen.

The numerical setup with hub and blade surfaces as well as
an analysis surface is shown in Fig. 5. The block structured mesh
contains 200,000 cells and the wall functions are employed at all
solid walls. Blade fillets have not been resolved. The analy-
sis surface corresponds to the intersection of the computational
domain with an axial plane between the mixing-plane and the
stator. Non-reflecting boundary conditions and the conservative
mixing-plane approach have been used at the inlet, outlet and in-
terface between rotor and stator. The operating point considered
here is at a mass flow of 16.2 kg/s and a stagnation pressure ratio
of 1.49.

The Design Space
To test the numerical methods presented in this paper, an

eight-dimensional design space has been considered. The radial

Figure 5. ROTOR STATOR CONFIGURATION WITH MESH DETAILS
AND ANALYSIS SURFACE.

(r -rc) / ∆r

δλ

-2 -1 0 1 2

-1

-0.5

0

0.5

1

Figure 6. RADIAL BUMP FUNCTION USED TO RESTAGGER BLADE
SECTIONS.

distribution of the stagger angles is modified by a small multiple
of a bump function in r, plotted in Fig. 6. More precisely,

δλ(r) =

{
cos2

(
π

2
r−rc
∆r

)
, if |r− rc|< ∆r,

0, otherwise.
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For the j-th design parameter, the radial height of the restagger-
ing is defined by

rc = 0.12m+( j−1)∆r, j = 1, ...,8,

and ∆r = 0.01m.

Figure 7. ENERGY COMPONENT OF ADJOINT SOLUTION FOR
STAGNATION PRESSURE RATIO BETWEEN INLET AND ANALYSIS
PLANE (AP).

Sensitivity Analysis
As a reference for the adjoint solver, the sensitivities of

various flow parameters have been calculated in forward mode.
Since the adjoint solver is based on the CEV approximation, the
sensitivities have been calculated both with and without the tur-
bulence model. More precisely, the steady solver has been run
in CEV mode, i.e. the turbulence quantities are read from the
converged steady solution of the initial geometry, but are not up-
dated by the turbulence model. The CEV sensitivities therefore
provide, on the one hand, an exact reference for the adjoint solver
and, on the other, can be used to assess the validity of the CEV
approximation itself.

The sensitivities of the following five objective functionals
have been calculated in adjoint and steady mode:

Objective functional Location of evaluation
Mass flow Outlet
Stagnation pressure ratio Inlet, outlet
Stagnation pressure ratio Inlet, analysis surface
Outflow angle β Analysis surface
Mean sqare deviation of β from β∗ Rotor-stator interface.

Parameter index [-]

δm
 [k

g/
s]

1 2 3 4 5 6 7 8

0.002

0.004

0.006

0.008
Steady Solver

Steady Solver (CEV)

Adjoint Solver

.

Figure 8. SENSITIVITIES OF MASS FLOW.

For simplicity, the target distribution of the circumferential out-
flow angle, β∗, has been set to 0. In order to guarantee close
to linear dependence of the functionals, the blade sections have
been restaggered by only 0.1 degrees. It is crucial to verify that
the differences in the five functionals are sufficiently large in or-
der to avoid relative errors due to the finite accuracy of floating
point arithmetic.

Fig. 7 shows the adjoint solution for the third functional,
which is proportional to the mixed-out stagnation pressure at the
analysis surface, as the inlet stagnation pressure is fixed by the
boundary condition. As in the solution to the beforementioned
numerical test (cf. Fig. 4), one observes a jump across the analy-
sis plane.

Results
Fig. 8 and 9 show the sensitivities for the mass flow and the

two stagnation pressure ratios, respectively. The agreement of
the adjoint results with those computed in CEV mode are nearly
perfect. When the influence of the turbulence model is taken into
account, the sensitivities differ somewhat but are still promising.
The CEV and non-CEV results coincide not only in sign and
magnitude, but also in their trend w.r.t. the radial position of the
restaggering.

From Fig. 9, one deduces that the sensitivities of stage and
rotor stagnation pressure ratio are similar but differ by the ef-
fect of a change in stator losses. The fact that the corresponding
adjoint sensitivities are in very good agreement with the steady
results demonstrates that the adjoint solver is also capable of
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resolving the comparatively small influence of the restaggering
of the rotor sections onto the stator losses. As can be seen in
the plots in Fig. 10, both the sensitivity of the circumferential
flow angle at the analysis plane and the mean square deviation
of it from a given distribution can be calculated using the ad-
joint solver. The results show that the influence of the turbulence
model is small at midspan and increases towards hub and blade
tip.

Computational Efficiency
It took the adjoint solver between 1.1 and 1.25 CPU hours

to reduce the L2-residual by 4 orders of magnitude on an Intel
E5440 Xeon cluster. The steady calculations for the forward
computations have been initialized with the steady solution of
the unperturbed geometry and terminated after the reduction of
the residual by about 5 orders of magnitude. This took approxi-
mately 1.25 CPU hours in CEV mode and about 1.45 CPU hours
in conventional mode. Summarizing, the convergence speed of
the adjoint solver is not affected by the location of the objective
functional and is very similar to that of the steady solver.

CONCLUSIONS
To apply adjoint methods in turbomachinery CFD, one has

to accomodate complex post processing functionals. To achieve
this, the adjoint solver has been extended to include functionals
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Figure 9. SENSITIVITIES OF STAGNATION PRESSURE RATIO.
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LET AND ANALYSIS PLANE.
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defined on arbitrary analysis surfaces. The necessary modifica-
tions to the right-hand side of the adjoint solver have been out-
lined and implemented in an existing adjoint three-dimensional
RANS solver.

The methods have been validated by means of variations of
the blade geometry in a transonic compressor stage. The results
show that the underlying discrete adjoint solver, together with the

9 Copyright © 2011 by ASME



generalizations proposed in this article, calculates sensitivities
that are in nearly perfect agreement with sensitivities obtained
from the steady solver. Whereas the CEV assumption provides
excellent results at midspan, it shows small but noticeable devi-
ations from the fully turbulent sensitivities close to hub and tip
where the flow is highly three-dimensional.
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