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ABSTRACT
The objective of this study is to develop and assess a

gradient-based algorithm that efficiently traverses the Pareto
front for multi-objective problems. We use high-fidelity, com-
putationally intensive simulation tools (for eg: Computational
Fluid Dynamics (CFD) and Finite Element (FE) structural anal-
ysis) for function and gradient evaluations. The use of evolution-
ary algorithms with these high-fidelity simulation tools results in
prohibitive computational costs. Hence, in this study we use an
alternate gradient-based approach. We first outline an algorithm
that can be proven to recover Pareto fronts. The performance of
this algorithm is then tested on three academic problems: a con-
vex front with uniform spacing of Pareto points, a convex front
with non-uniform spacing and a concave front. The algorithm is
shown to be able to retrieve the Pareto front in all three cases
hence overcoming a common deficiency in gradient-based meth-
ods that use the idea of scalarization. Then the algorithm is
applied to a practical problem in concurrent design for aero-
dynamic and structural performance of an axial turbine blade.
For this problem, with 5 design variables, and for 10 points to
approximate the front, the computational cost of the gradient-
based method was roughly the same as that of a method that
builds the front from a sampling approach. However, as the sam-
pling approach involves building a surrogate model to identify
the Pareto front, there is the possibility that validation of this
predicted front with CFD and FE analysis results in a differ-
ent location of the “Pareto” points. This can be avoided with
the gradient-based method. Additionally, as the number of de-
sign variables increases and/or the number of required points
on the Pareto front is reduced, the computational cost favors the
gradient-based approach.

∗Corresponding author: shankaran@ge.com

1 Nomenclature
x Vector of Design Variables

f(x) Vector of Objective Functions
g Vector of inequality constraints
x∗ Pareto Optimal decision variables
F Feasible region of the design space
u,v Two possible optimal solutions
P∗ Pareto Optimal Set

PF ∗ Pareto Front
A Gradient matrix
h Objective Function for the auxiliary problem
v Search direction for the auxiliary problem

J f Gradient-matrix
t A scalar that represents the step-size
ε A small real number to represent tolerance

xbase Baseline and starting point for Pareto Algorithm

2 Introduction
It is common during the engineering design process of an

overall system to consider trade-offs between various perfor-
mance metrics. Typically, these trade-offs occur across various
sub-systems like aerodynamics, structures, heat transfer, controls
etc. It is also possible that these trade-offs occur within a partic-
ular sub-system (for example, higher lift on turbine blades typ-
ically occur at the cost of increased profile drag). Knowledge
of the cost of trade-offs is important to a systems-level designer
as it ensures that the overall system metrics are satisfied while
maintaining “equilibrium” among the constituents.

There exists different notions of equilibrium solutions, and
each of them provide a different trade-off between the compet-
ing metrics. The most common among them are Nash equilib-
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rium solutions for non-cooperative sub-systems and Pareto op-
timal solutions for cooperative sub-systems. Most engineering
systems can be viewed as composed of cooperative sub-systems
with complete knowledge of performance metrics, constraints
and design variables of all other sub-systems. Nash equilibrium
solutions find use in design processes that account for competi-
tion. Typically, Nash solutions are non-unique, and more impor-
tantly not stable to small perturbations in the design variables. It
is also, in general, harder to obtain Nash solutions for complex
engineering systems.

As our focus is on common engineering systems we explore
Pareto solutions. There exists many techniques to recover Pareto
optimal solutions. As the concept of Pareto is rooted the non-
dominance of a solution by other solutions, the process of finding
a Pareto solution is essentially one of ordering. If one could gen-
erate an ensemble of solutions, the Pareto ordering can be used
to filter the dominated from the non-dominated solutions. The
Pareto ordering process and its use with population-based mu-
tation operators is typically used in evolutionary approaches to
determine Pareto solutions and the Pareto front. This approach
is straight-forward but requires knowledge or construction of a
model for the sub-systems. It can handle convex and concave
Pareto fronts and furthermore, discontinuous/disjointed Pareto
fronts. The latter is useful if the active constraints force cer-
tain portions of the front to the infeasible. When the sub-systems
are governed by Partial Differential Equations (PDEs) as with
fluid systems, structural mechanics and heat transfer, the con-
struction of an approximate surrogate model is necessary as eval-
uation of the sub-system performance with the numerical solvers
for the PDEs is expensive. Assuming that an accurate lower-
fidelity model can be determined, this approach requires verifi-
cation of Pareto front and solutions using the more high-fidelity
PDE solver. It is possible that the trade-offs suggested from us-
ing the lower order model are not always accurate. Hence, it is
beneficial if the PDE solver can be used during determination of
the Pareto front and Pareto solutions.

There have been a wide range of studies that use evolu-
tionary algorithms to determine the Pareto front [1–3] (and ref-
erences therein). As an alternative to the evolutionary algo-
rithm approach to determining the Pareto front, one could use
a gradient-based approach [4, 5]. In theory the gradient-based
approach can be used with the surrogate model but it does not
address the issue of possible “inconsistency” between the solu-
tions obtained with the high and low fidelity models. Gradient-
based algorithms for Multi Objective Problems (MOP) are typ-
ically based on a scalarization concept where the objectives are
combined to form a single objective function [6, 7]. Hence, iso-
contours of this single objective functions are straight lines (hy-
perplanes in higher dimensional spaces) in objective function
space. The slope and intercept of the straight-lines (or hyper-
planes) depend on the choice of scalars used to combine the
objectives [8]. Hence, by altering the slopes and intercept of

the hyperplanes different points on the convex front can be ob-
tained. This approach has many well-known defects, namely the
inability to capture concave portions and disjoint Pareto fronts.
In addition, an evenly distributed choice of scalar weights be-
tween [0,1] need not generate equi-spaced points on the Pareto
front. Typically, the scalarization approach needs to be supple-
mented with a technique to dynamically alter the weights [9].
Apart from the end points, concave fronts are typically not recov-
ered. Hence, additional heuristic/algorithms need to be devised
to capture the concave portions. To overcome these difficulties
an alternate approach for gradient-based algorithms was outlined
in [10]. In a series of articles [11] and a U.S. patent [12], a tech-
nique similar to what is described here and in [10] was used to
show the possibility of gradient-based algorithms for simultane-
ous improvement of multiple objectives and tracking of Pareto
front. The method in [11] has been further enhanced with ge-
netic algorithms to result in a hybrid algorithm that is reported to
have superior abilities to capture complicated Pareto fronts.

The layout of the paper is as follows. In Section 3, the ba-
sic definitions of Pareto solutions are described. Here, we also
discuss the mathematical construct of scalarization, the relation
of the weights to the hyperplanes (that are tangential to the front)
and show that the scalarization approach captures the convex por-
tions of the Pareto front. In Section 4, following [10], we outline
an algorithm to capture the Pareto front by traversing from the
minima of a single-objective optimization problem. In Sections 5
and 6 we analyze this algorithm to determine how it captures the
different portions of convex (uniform and non-uniform) and con-
cave Pareto fronts. In Section 7, we use this algorithm for an
multi-disciplinary problem in turbo-machinery where a low fi-
delity Navier-Stokes CFD solver analysis tool (MISES [13]) is
used for aerodynamic performance predictions and ANSYS [14]
is used to determine the modal response for an aero-structural
optimization problem. All gradients are estimated with finite-
difference gradients by using the above analysis tools. Finally,
we present our conclusions in Section 8.

3 Preliminaries
Pareto optimal solutions are commonly used in Engineer-

ing studies to study trade-offs between various competing perfor-
mance metrics. Pareto solutions fall under the category of Multi-
Objective Optimization Problems (MOOP) which is also called
vector optimization problems and can be notionally defined as

min f(x) := ( f1(x), f2(x), ..., fs(x))
s.t. gi(x)≤ 0, i = 1,2, ...,m (1)

where x = (x1,x2, ...,xn)T is a vector of control variables (possi-
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ble bounded), fi : Rn → R, i = 1,2, ...,s are the objective func-
tions and gi : Rn → R ∀i = 1,2, ...,m are the constraints which
we will assume them to be continuously differentiable.

There exists a variety of solution concepts for these multi-
objective problems and Pareto optimality and Nash equilibrium
solutions have been widely studied. The former is used in co-
operative systems and the latter is more common when studying
non-cooperative scenarios. Pareto optimal solutions can be de-
fined using the following notions.

Definition 3.1. We say that a vector of decision variables x∗ ∈F
is Pareto optimal if there does not exist another x ∈F such that
fi(x)≤ fi(x∗)∀i ∈ (1,2, ...,s) and f j(x) < f j(x∗) for at-least one
j. Here, F denotes the feasible region of the problem (i.e., where
the constraints are satisfied).

In words, this definition says that x∗ is Pareto optimal if
there exists no feasible vector of decision variables x ∈F which
would decrease some criterion without causing a simultaneous
increase in at least one other criterion. Unfortunately, this con-
cept almost always gives not a single solution, but rather a set
of solutions called the Pareto optimal set. The vectors x∗ corre-
sponding to the solutions included in the Pareto optimal set are
called non-dominated. The plot of the objective functions whose
non-dominated vectors are in the Pareto optimal set is called the
Pareto front.

Definition 3.2. A vector u is said to dominate a vector v (denoted
by u ¹ v) if and only if u is partially less than v i.e. ui ≤ vi∀i ∈
(1,2, ...,s) ∧∃i ∈ (1,2, ...,s) : ui < vi.

Definition 3.3. A Pareto optimal set P∗ is defined as

P∗ := {x ∈F |¬∃x′ ∈F s.t. f(x′)¹ f(x)} (2)

and this defines the Pareto front as

PF ∗ := {f = ( f1(x), f2(x), ..., fs(x))|x ∈P∗}

Following [10], the above definition of Pareto optimal points
are now cast in terms of the gradient matrix, J f. We consider
the unconstrained problem in Equation 2 for simplicity (Please
refer to [10] for extensions to the constrained case). Assume
that the design space, x ∈ Rn, hence f : Rn → Rs. The gradient
matrix, J f, is a s×n matrix with entries (J f)i j = ∂ fi

∂x j
(x). If we

denote the set of strictly positive real numbers as R++, a point, x
is locally Pareto optimal if

range(J f)
⋂

(−R++)s = /0 (3)

and call these points Pareto critical. Hence, if a point is Pareto
critical, then the condition in Equation 3 will only be satisfied
by a direction which is identically zero. If a point is not Pareto
critical, then there exists a direction v ∈ Rn satisfying

range(J f) ∈ (−R++)s

which is a descent direction for the vector-valued objective func-
tion f. So in general, if a point x does not satisfy Equation 3, then
one can compute a descent direction v with a suitable step-size
length to form a new point.

3.1 Search Direction
Define A as the gradient matrix, J f and the function h :

Rn → Rs by

h(v) := max (Av)i, i = 1,2, ...,s

h is convex (as it is maximum of the linear functions) and positive
homogeneous. Consider the unconstrained minimization prob-
lem that finds a v to solve the following problem:

min h(v) (4)
s.t. ||v|| ≤ 1

Since the objective function in the above problem is proper,
closed and strongly convex, it has a unique solution.

Lemma 3.4. Let v(x) be the solution of the optimal value prob-
lem in Equation 4.

1. If x is Pareto critical, then v(x) = 0
2. If x is not Pareto critical, then

(J f(v))i ≤ h(v) < 0, i = 1,2, ...,s

3. The mapping x 7→ v(x) is continuous

Proof. See [10].

There are different possible auxiliary problems that can be solved
to determine the search direction. The one here leads to a simple
linear problem. Irrespective of the form of the auxiliary problem,
it is not required to solve them exactly.
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3.2 Step-size Computation
Starting with a search direction, v, where J f(v) < 0, we

choose an equal partition of the variable, t in (0,1] and evaluate
f(x + tv) for all values of t. Among the evaluated values, we
choose the value of t (and hence x that results in the smallest
value of f. Note that when we compare vectors we say that f1 ≤
f2 in a component-wise sense. At the Pareto critical point, v is
identically zero which will terminate the descent to the Pareto
front. Please refer to [10] for existence results of an t = ε > 0 that
satisfies the requirement that the step along the descent direction
leads to an improvement of the MOP problem. Alternate forms
of the line-search algorithm, like bisection can also be used but
the equal partition method enables use of coarse-grain parallel
computing to accelerate the overall algorithm.

4 Algorithms
The notions of Pareto-optimal sets and the Pareto front are

easy to understand when surrogate models for the objective func-
tions are employed. In particular, one constructs an “accurate”
model from a few evaluations and uses repeated evaluations of
this simplified model to sort and identify non-dominated solu-
tions leading to the Pareto-optimal set and front. The evalua-
tions of the model are coupled with evolutionary methods to en-
able construction of concave and disjointed portions of the Pareto
fronts. This last feature makes them more attractive than the use
of gradient-based techniques that traditionally have difficulty re-
covering such fronts.

Gradient-based algorithms use a combination of two math-
ematical constructs to determine the front. The first involves
the scalarization of the MOOP to a single objective optimiza-
tion problem (SOOP) using positive weights, namely, rewriting
the MOOP as a standard optimization problem of the form:

min F(x) : F(x) = ∑
i

wi fi(x) (5)

s.t. ∑
i

wi = 1

The second involves the mathematical condition satisfied on
the Pareto front that enables traversing of the front starting from
one Pareto optimal point.

A straight-forward way of recovering the Pareto front is to
start pose a set of optimization problems for differing values of
the weights from a given starting location. Apart from the in-
herent computational cost, this process does not guarantee suf-
ficient coverage of Pareto front as Pareto optimal points can be
clustered around weights that differ slightly and could lead to
the same points (as positiveness of the weights does not guar-
antee uniqueness of the Pareto optimal points). In any case, the

possible combinations of weights increases exponentially with
increasing number of objectives. As an alternate approach, we
use the properties of the Pareto front to guide a gradient-based
descent process that starts at one corner of the Pareto front and
traces its way around the front. Issues related to concavity and
disjoint fronts will be addressed later.

For ease of exposition, we focus on bi-objective problems.
Introducing a real constant, 0 ≤ λ ≤ 1, we can express the nec-
essary condition for the Pareto optimality of a point as

λ∇ f1(x∗)+(1−λ )∇ f2(x∗) = 0 (6)

which can be expressed for some r≥ 0 as ∇ f1(x∗) =−r∇ f2(x∗).
Hence, for Pareto optimal points the gradients with respect to
the objective functions point are parallel and point in opposite
directions. As λ = 0 is also a Pareto optimal point, we can trace
the Pareto front by starting at this point (the task of identifying
this point is a single objective optimization problem) and follow
the front in the direction of ∇ f2(x∗). While ∇ f2(x∗) provides the
direction of movement, the distance to travel is obtained from a
line-search like algorithm where the largest distance at which the
condition

∇ f1(x∗) =−r∇ f2(x∗) (7)

is satisfied is taken as the next point on the front. Note
that this approach does not ensure recovery of equi-spaced points
along the front but this can be achieved by adding λ as an addi-
tional minimizing variable (in addition to x) and the added con-
straint that f(x)−fprev = γ where γ is the desired spacing between
Pareto optimal points [15].

The use of the scalarization approach and Equation 6 allows
traversal of the front. In general, the step taken from the Pareto
front (Equation 7 may not ensure that the new point lies on the
front. Furthermore, for problems with more than 2 objectives,
the necessary condition for Pareto optimality requires the condi-
tion of parallel gradient vectors for various combinations of more
than 1 scalar. To overcome these problems, for general problems,
it is useful to take a step in the direction of ∇ f2(x∗) and solve the
auxiliary problem in Equation 4 with an appropriate step-size.

The auxiliary problem does not require explicit solution.
Once the gradient matrix, J f is assembled, a sampling proce-
dure can be used to determine the direction of improvement. Un-
der the condition that ||v|| = 1, the search direction is restricted
to a hypersphere of dimension n. On this hypersphere, we are
interested in vectors that provide simultaneous improvements in
all objectives. For a bi-objective problem, we are interested in
the portion of the two dimensional space of ∇ f1v(x) and ∇ f2v(x)
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that lies in the (−,−) quadrant. Hence, a simple sampling strat-
egy that polls the hypersphere and picks the search direction that
satisfies Equation 4 is used to update the design variables.

The basic algorithm is summarized in Algorithm 1. Note that
in the above algorithm, there are two gradient evaluations (as-
suming one step in the auxiliary problem) to move from Pareto
critical point to the next. This will be expensive for a problem
with a large n if the gradient evaluation algorithm uses the finite-
differences. Obviously this can be circumvented with adjoint-
based methods but may not always be available. To mitigate this
cost, one can eliminate one of the gradient calculations by per-
turbing a Pareto critical point in an arbitrary direction and using
the auxiliary problem to return back to the Pareto front. It is
possible that the choice of the perturbation direction can have a
significant effect on the coverage of the front and even the ability
of the auxiliary problem to converge. A schematic of the overall
process is shown in Figure 1.

Data: Set initial point, x to xbase
while ‖∇ f1(x)‖ 6= 0 do

Compute ∇ f1(x); xnew = x−σ∇ f1(x), σ is a
constant;
x = xnew;

end
xend1 = x;
while ‖∇ f2(x)‖ 6= 0 do

Compute ∇ f2(x); xnew = x−σ∇ f2(x), σ is a
constant;
x = xnew;

end
xend2 = x;
x = xend1;
while ‖x−xend2‖ 6= 0 do

Compute ∇ f2(x); Perturb x using x′ = x−σ∇f2(x),
σ is a constant;
while v(x) 6= 0 do

Compute J f for x′ ;
Solve the auxiliary problem Equation 4 for v;
Use v to compute t, that minimizes f;

end
Update xnew = x′ + t v(x) ;
x = xnew;

end
Algorithm 1: A Steepest-Descent version for MOOP.

f1

f2

Direction of vPareto Front

Pareto critical points

Initial Point

Solve Auxilliary problem starting here

Trajectory of SOOP

Figure 1. A schematic outlining the trace of the algorithm during the
Pareto front tracking process

4.1 A simple one-dimensional problem to illustrate
the algorithm

We now expose some of the details of the algorithm by con-
sidering a simple problem with two objectives with quadratic
form in one design variable. fi = (x− ci)2, ci = 0,2 i = 1,2.
Hence, f1 is “centered” at the origin and f2 is “centered” at 2.
The Pareto front in objective space ( f1, f2) is a convex curve ob-
tained by varying the design variable x in [0,2].

When x ∈ (0,2), Equation 7 is satisfied, hence we would
expect that v is identically zero. Consider the gradient matrix,
J f in the direction of v (v varies in [0,1]). This has two entries
2xv,2(x− 2)v. These describe equations for two straight lines
with positive and negative slopes respectively. As we are inter-
ested in v that simultaneously decrease both objective functions,
Equation 4 is only satisfied for v = 0. Hence, all points for which
x∈ (0,2) provide a solution to the auxiliary problem that is iden-
tically 0.

For x ∈ (−∞,0) or x ∈ (2,∞), v is not zero. In this situation,
the slopes of the straight line equations have the same sign (neg-
ative and positive respectively) and hence ||v|| = 1 satisfies the
auxiliary problem. However the step-size computation allows a
large step that will move any point to either 0 or 2.

5 Convex Pareto Fronts
5.1 Uniform Pareto front

We now try to show that the algorithm can recover convex
Pareto fronts when the points on it are equally-spaced [16]. We
consider a simple example with two objective functions that have
quadratic form in two design variables, x1,x2 : fi = (x1− ci)2 +
(x2−ci)2, ci = 0,2 i = 1,2. Hence, f1 is “centered” at the origin
and f2 is “centered” at (2,2). The Pareto front in objective space
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Figure 2. Pareto front in Design and Objective Space

( f1, f2) is a convex curve joining (0,0) to (2,2) in design space.
Both end points are part of the Pareto front can be obtained using
single objective optimization. Along this curve ∇ f1 = −r∇ f2.
However, at the optimal solution for f1 (or f2), the gradient is
0 and hence the Pareto optimality condition in Equation 6 is not
very useful.

The Pareto front can either be described in design space or
in objective function space. For analytical problems like the one
considered here, the condition in Equation 6 can be used to ana-
lytically recover the Pareto front. Using Equation 6, we can write
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Figure 3. Components of v and Jvf for Pt1 = (0,0), Pt2 = (0.5,0)
and Pt3 = (1.0,0.0)

two equations for x1 and x2 as

(x1− c1) =−r(x1− c2) (8)
(x2− c1) =−r(x2− c2)

Hence, x1 = x2 along the front which the equation for a straight-
line and we know this line passes through (0,0) (the minima of
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Figure 4. Solution to Equation 4 for various initial points not on the
Pareto front. The Pareto front is shown as a straight line joining (0,0)
to (2,2). The arrows represent the search direction predicted for the point
marked with a circle.

the single-objective optimization for f1. The resulting Pareto
front in design (Figure 2(a)) and objective (Figure 2(b)) space
in shown Figure 2.

The above analysis shows that if we start at the minima for
one of the two objectives, moving along the direction suggested
by Equation 7 enables tracking of the Pareto front. We now con-
sider what happens when we move away from the Pareto front.
Let x′ be such a point. The gradient matrix that is used in the
auxiliary problem for this point is

J f =
(

x1− c1 x2− c1
x1− c2 x2− c2

)

and we would like to minimize h(v) under the constraint that
||v|| ≤ 1.

h(v) = max( ((x1− c1)∗ v1 +(x2− c1)∗ v2), (9)
((x1− c2)∗ v1 +(x2− c2)∗ v2))

Figure 3 show plots used in the construction and solution
of the auxiliary problem for different points in the design space.
Figure 3(a) shows the components of v used to determine the
search direction for the auxiliary problem. Once, the gradient
matrix is evaluated, the auxiliary problem is solved by sampling
h(v) for various values of v shown in Figure 3(a). Figure 3(b)
shows the components of the vector obtained by multiplying the
gradient matrix with a particular sample of v. The components
of Jvf for three different points in the design space are shown
in sub-figure 3(b). We are interested in the portion where both
components are negative as this leads to simultaneous reduction
of both components of f. We sample the gradient-matrix for var-
ious values of the search direction at three points in the design
space labeled Pt1,Pt2,Pt3. Pt1 is on the Pareto front and the
other points are along the x1 axis while the Pareto front is a
straight-line joining (0,0) to (2,2). These plots show that for
points on the Pareto front (Pt1), the only solution to the auxiliary
problem is v = 0, while at Pt2 and Pt3 there exists a search di-
rection that points towards the Pareto front. Figure 4 shows the
predicted search direction for other points in the design space.
Figure 4(a) shows the search direction for points along the x-axis
and to the right of the Pareto front, 4(b) shows the search direc-
tion for points along the y-axis and to the right of Pareto front and
4(c) shows the search direction when the points are distributed on
either side of the front. It is clear the algorithm is capable of pre-
dicting movement towards the Pareto front for points that are not
on it and also switches direction across the front.

5.2 Non-uniform Pareto front
We now consider a problem with a convex Pareto front but

with non-uniform spacing [16]. Unlike the previous example,
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the Pareto points are not uniformly distributed. Let f1 = x1 and
f2 = g(1−

√
f1/g), where g = 1+9x2 pose a bi-objective prob-

lem in two design variables. As the unconstrained problem has
minima at −∞, we impose bounds on the range of x ∈ [0,1].
The Pareto front in design space is a line joining (0,0) to (1,0)
and the Pareto front in objective space for equi-spaced sampling
along the front in design space is shown in Figure 5.
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Figure 5. The Pareto front in objective space with non-uniform spacing

The gradient matrix can be written as

J f =

(
1 0

−
√

g/ f1
2 9(1−

√
f1/g)+ 9

2

√
f1/g

)

Figures 6(a) and 6(b) show plots of the components of
gradient matrix and the search direction respectively at three
points offset from the Pareto front. Figure 7(a) shows the non-
parallel search directions near the origin reflecting possible non-
uniformity in the spacing of the points on the front. Figure 7(b)
shows parallel search directions near (1,0), leading to more uni-
form distribution of Pareto critical points.

6 Concave Pareto Fronts
We now consider a problem with a concave Pareto front [16].

Let f1 = x1 and f2 = g(1−( f1/g)2), where g = 1+9x2 pose a bi-
objective problem in two design variables. As the unconstrained
problem has minima at −∞, we impose bounds on the range of
x ∈ [0,2]. The Pareto front in design space is a line joining (0,0)

−1 −0.5 0 0.5 1
−8

−6

−4

−2

0

2

4

6

8
Components of Gradient Matrix in search direction

J
v
 f

1

J v f 2
 

 
Pt1
Pt2
Pt3

(a)

0 0.5 1 1.5 2
−0.3
−0.2
−0.1

0

Search direction predicted by solution to auxilliary problem

x
1

x 2

(b)

Figure 6. Components of the gradient matrix for convex non-uniform
Pareto front for for Pt1 = (0.25,0.05), Pt2 = (0.4,0.05) and Pt3 =
(0.6,0.05). The Pareto front is shown as a straight line joining (0,0) to
(1,0). The arrows represent the search direction predicted for the point
marked with a circle.
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Figure 7. Change in search direction at either ends of the Pareto front.
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Figure 8. The concave Pareto front in objective space
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Figure 9. Components of v and Jvf for Pt1 = (0.1,0.025), Pt2 =
(0.5,0.025) and Pt3 = (0.9,0.025). All three points lie above the
Pareto front and hence should have a non-zero search direction.

to (1,0) and the Pareto front in objective space for equi-spaced
sampling along the front in design space is shown in Figure 8.
Figure 9 shows the search direction and the components of the
gradient vector for the auxiliary problem at three points offset
from the Pareto front. Figure 10 shows the search direction in
design space for a uniform sampling of points. The gradient vec-
tors are roughly parallel suggesting a uniform Pareto front.
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Figure 10. Search direction from the auxiliary problem for a uniform
sampling of the relevant design space

7 Results for a Turbo-machinery Problem
We now apply the algorithm that is the subject of this paper

to a turbo-machinery problem. We study the trade-off between
aerodynamics and mechanical integrity for a turbine blade. Due
to proprietary reasons we cannot show detailed plots of the ge-
ometry or mention the operating conditions of this blade. We will
try to elucidate the salient features of the blade as pertinent to
the algorithm described in this study. In particular, we are inter-
ested in maximizing the mid-span aerodynamic efficiency while
ensuring that the mechanical frequency of interest is above a par-
ticular value. The baseline blade had an acceptable aerodynamic
efficiency but one of the torsional frequencies was close to reso-
nance. As there exists a trade-off between the aerodynamic and
structural performance, the design exercise was to determine an
alternate point on the trade-off front which had acceptable aero-
dynamic and structural performance.We use a two-dimensional
viscous solver, MISES, for the aerodynamic analysis and AN-
SYS for the modal (structural) analysis. The structural model
used for the design study uses a variety of sophisticated bound-
ary conditions to describe the operation of the blade and the ge-
ometry includes the blade, cooling holes and detailed descrip-
tion of the dovetail connection to the shaft. When appropriate,
the numbers for aerodynamic efficiency are non-dimensionalized
with the baseline value but the numbers for the mechanical fre-
quency will always be shown as a percentage change from the
baseline value.

We study this problem with two approaches to understand
their merits and demerits. The first one is a DOE-based approach
which involves a) sampling of the design space with a particular

9 Copyright © 2011 by ASME
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Figure 11. Monte Carlo Points predicted with surrogate model

DOE, b) construction of a regression equation from the sampling
points, c) evaluation of this regression equation through a Monte-
Carlo simulation to obtain a cloud of points in objective space,
d) identification of non-dominated solutions from this cloud of
points and labeled to be on the Pareto front and e) to complete
the design study, verification of these points using MISES and
ANSYS to validate the predicted performance from the regres-
sion equation. In the second approach, a gradient-based one, we
start with the baseline, and first solve a SOOP to determine the
starting point for the Pareto tracking algorithm. From this start-
ing point, the Pareto-tracking method described in Algorithm 1
is applied to recover the other Pareto points. The collection of
these points then describes the Pareto front.

Five design variables, namely stagger, cross-sectional area,
trailing edge feature, position of maximum thickness and radius
of the leading edge are used as design variables for this study.
For ease of exposition, we discuss the two dominant design vari-
ables, namely the stagger angle of the blade and the position of
maximum thickness. The DOE-based approach and the gradient-
based approach were executed in non-dimensional design space.
A±1 non-dimensional change in stagger angle corresponds to±
4 degree change around the baseline and a ±1 non-dimensional
change in maximum thickness corresponds to a change by ±
10% of the blade chord at mid-span. Positive changes in stagger
correspond to increasing stagger and positive changes in position
of maximum thickness correspond to movement of the location
of the maximum towards the trailing edge.
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MC data
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Pareto front through Quadratic fit

Figure 12. Zoomed-in view of the non-dominated points and Quadratic
fit for approximate Pareto front.

7.1 DOE-based Approach
With the 5 design variables, an Orthogonal Latin-Hypercube

(OLH) sampling technique was used to evaluate 50 points in
the design space to construct the surrogate model. The choice
of 50 is based on a rough rule-of-thumb where 10 points are
used for each design variable to provide satisfactory coverage
of the design space along with good quality regression surfaces.
An alternate, less expensive DOE could have been chosen but
MISES-based simulations are known to result in noisy estimates
and hence require more simulations than that required to esti-
mate the unknown coefficients in a surrogate model. From these
50 simulations, a quadratic regression surface was constructed.
This regression equation was then polled using a Monte-Carlo
(MC) simulation process to obtain 10,000 evaluations. Please
note that we do not use an evolutionary algorithm that can tailor
successive populations to track the Pareto front.

Figures 11 and 12 show the Pareto front between aerody-
namic efficiency and structural performance obtained from steps
a)-d) of the DOE-based approach. For clarity, only a tenth of
the MC points are shown. These points are then sorted for non-
dominance using a simple O(n2) sorting algorithm. Figure 12
shows the selected non-dominated points from a population pro-
duced from the meta-model. As there were not enough points
along the Pareto front, an approximate Pareto front was estimated
from the non-dominated points. To obtain this approximate front
in objective space, a quadratic polynomial was fit through the
non-dominated points. 10 points on this approximate fit were
selected. Their corresponding points in design space was ap-
proximated using a linear interpolation routine. Both the spar-
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sity of the non-dominated points and its irregularity is evident
from this plot. This suggests that 1) instead of using the MC
approach to determine the front, one should use an evolution-
ary algorithm that tailors its population to track the Pareto front
and 2) to get good results with the MC approach, the quality of
the meta-model fit needs to be improved. Upon further inspec-
tion, it was observed that the R2 value of the fit for the change in
frequency was around 0.9959 and the poor fit was for the aero-
dynamic efficiency. It is not uncommon for MISES simulations
to exhibit lack of convergence leading to low R2 values for the
fits. In spite of these shortcomings, we used this data as com-
puted. The Pareto front is (under the validity of the quadratic
fit) concave and potentially not equally spaced. On inspection of
the points from the OLH sampling and along the Pareto front the
following observations about the design space were made:

1. Among the 5 design variables, stagger and position of max-
imum thickness were the dominant design variables. Be-
tween stagger and position of maximum thickness, stagger
had a greater impact on aerodynamic and structural perfor-
mance. While stagger did not have a large interaction effect
with the other design variables, the position of maximum
thickness was weakly correlated to cross-sectional area and
radius of leading edge.

2. While the baseline geometry had good aerodynamic per-
formance, it was possible to increase the aerodynamic ef-
ficiency by reducing the stagger of the blade. This suggests
that the incidence to the baseline blade was less than op-
timal from an aerodynamic perspective. From a structural
perspective, larger improvements were obtained by reduc-
ing the stagger even further than that suggested by the aero-
dynamic performance measure. This phenomenon is a lit-
tle harder to explain due to the complicated geometry used
for the structural analysis. It seems that this reduction in
stagger along with smaller changes to the other design vari-
ables leads to improved stiffness against the frequency of
concern. Additionally, reducing the stagger below that sug-
gested by the aerodynamic measure to produce improve-
ments in structural performance clearly points to the pos-
sibility of a Pareto-like trade-off.

3. The position of maximum thickness has a bigger effect
for aerodynamic performance than for the structural per-
formance. The combination of reducing the stagger and
marginal positive movement (towards the trailing edge) of
the position of the maximum thickness results in aft-loaded
airfoils whose predicted efficiency is higher. However, it
must be pointed out that these aft-loaded airfoils observed in
the DOE included non-zero changes to the other three design
variables namely, cross-sectional area, trailing edge feature
and radius of the leading edge.

7.2 Gradient-based Approach
The gradient-based algorithm was started from the baseline

geometry which had an efficiency of 0.9503. All 5 design vari-
ables listed previously were used in a SOOP optimization driven
by forward difference gradients and a steepest-descent algorithm
with a constant step-size with the objective of maximizing effi-
ciency. It took two iterations of the optimizer to reach the op-
timum and the cost was 12 simulations of MISES and ANSYS
(6 simulations for each iteration). The successive evolutions of
the SOOP is shown in Figure 13 where iteration 0 is the base-
line. Further improvements in efficiency after 2 iterations was
minimal (less than 0.1 pts) and hence the optimization process
was stopped after 2 iterations. After these two iterations, the
efficiency was improved by ≈ 1.3 pts, increasing from 0.9503
to 0.9640. The optimized geometry had a smaller stagger angle
than the baseline (≈ 2.55 degrees smaller) and negative changes
in the position of maximum thickness (≈ 1% of blade chord).
The reduction in stagger is similar to the trend observed in the
DOE-based approach. The baseline geometry had a less than op-
timal incidence to the incoming flow and the reduction in stagger
aligns the leading edge of the blade to the incoming flow. This
was further confirmed in the loading profiles which had a smaller
leading edge suction peak. Along with this change in the stagger
angle, the position of maximum thickness moves slightly towards
the leading edge and the combination (along with small changes
to the other 3 design variables) results in a more aft-loaded blade.
These changes also seem to help the structural performance as
the frequency of interest has increased by≈ 1.5% from the base-
line. Also, it is interesting to note that the non-dominated point
with the highest efficiency predicted with the surrogate model is
close to 0.995. This would suggest that the solution to the SOOP
problem did not predict an optimal design. However, as seen in
Figure 14, when this point was evaluated with MISES, the pre-
diction is closer to that predicted by the gradient-based algorithm
suggesting that the surrogate for aerodynamic efficiency is poor
as already indicated by the R2 value of the fit. The 10 points ob-
tained through a quadratic fit of the non-dominated points were
used in verification runs and the Pareto front thus determined is
also shown in Figure 14.

From the optimum predicted by the solution to the SOOP,
the Pareto tracking algorithm in Section 4 was started. This start-
ing Pareto point was perturbed by an (arbitrary) amount of 0.05
(in non-dimensional units) for each design variable. From this
perturbed point, the auxiliary problem was solved, using finite-
difference gradients, to recover the next Pareto point. This pro-
cess of perturbing the new Pareto point and solution of the auxil-
iary problem to snap to the Pareto front was repeated for 9 points.
Typically, only one gradient evaluation was required for the aux-
iliary problem before a new point on the Pareto front was ob-
tained. So in essence, the cost of this method is equal to the
cost of the first single objective optimization problem plus the
cost of the gradient evaluation for each of the required Pareto
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front points. Here, all gradients were determined using forward-
difference approximations. The overall cost of the entire algo-
rithm was equivalent to 66 (12 for the SOOP plus 54 for the 9
remaining points on the Pareto front) simulations of MISES and
ANSYS compared to roughly 60 with the DOE-based approach.
If we had only required 5 points on the Pareto front, the cost for
the DOE-based approach would have been 55 evaluations as op-
posed to 36 for the gradient-based approach. Furthermore, the
major cost of the gradient-based approach is the cost of the gra-
dient evaluations. It is possible to make this cost independent of
the number of design variables using the adjoint method thereby
providing more savings through the gradient-based approach.

Figure 14 shows the 10 points recovered by the gradient-
based Pareto tracking algorithm. The Pareto front suggests that
it is possible to trade ≈ 0.35 pts in aerodynamic efficiency for
about a 0.5% increase in the mechanical frequency of interest.
As we move along this Pareto front starting from the optimum
of the SOOP, the stagger angle continuously reduced. Relative
to the baseline, the stagger angle was reduced by ≈ 2.55 degrees
for the optimal point of the SOOP and by ≈ 4.2 degrees at the
other end of the Pareto front. The former corresponds to a non-
dimensional change of approximately −0.64 and the latter ap-
proximately−1. The continuous decrease of stagger angle along
the Pareto front results in increasing off-incidence loses that de-
grade the aerodynamic efficiency. It however seems to have a
positive impact on the structural performance. Along the front,
the other design variables move in a manner that makes the air-
foils more aft-loaded thereby offsetting some of the aerodynamic
performance penalty incurred by the change in stagger angle. For
example, the non-dimensional change in position of maximum
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Figure 14. Comparison of the Pareto fronts. Note that “front” obtained
from the meta-model is different from that obtained when the high-fidelity
model is used to verify the front. The verified front lies closer to that
obtained with the gradient-based algorithm.

thickness varied from−0.089 to 0.25 along the Pareto front. Fig-
ure 14 shows that the Pareto front obtained by the gradient-based
algorithm. For comparison, the original non-dominated points
from MC simulations with the surrogate model and the verifica-
tion of the approximate Pareto front are also shown. The Pareto
front as predicted by the gradient-based algorithm is very close
to those obtained from the verification runs. The movement of
the Pareto front during verification runs was one of the primary
reasons we started investigating alternate algorithms to directly
track the Pareto front with high-fidelity simulation tools.

Finally, to additionally verify the gradient-based algorithm,
the solution to the auxiliary problem was computed as differ-
ent points in design space of stagger and position of maximum
thickness. This requires gradient evaluations at a set of se-
lected points. Here we have sampled the two dimensional design
space at 256 points at 16 equal intervals over the range for non-
dimensional change in stagger and position of maximum thick-
ness. Figure 15 shows the solution to the auxiliary problem at
these sampling points. The (approximate) Pareto front is shown
with a solid line. Along this line the auxiliary vectors point in
parallel but opposite directions is also shown. This shows that
the Pareto front is embedded in a small portion of the design
space. More importantly the extent of the line is in very close
agreement with the changes in stagger and maximum thickness
along the Pareto front recovered in Figure 14. The region to right
of x1 ≈ −0.6 shows the “gradient” vector pointing away from
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Figure 15. Search direction from the auxiliary problem for a uniform
sampling of the relevant design space. The solid line shows the ap-
proximate position of the Pareto front in design space. The x-axis is the
non-dimensionalized change in stagger angle and the y-axis is the non-
dimensionalized change in position of the maximum thickness.

the Pareto front. Hence, around this region, the gradient-based
approach will be sensitive to the choice of “steps” taken while
marching along the Pareto front. This is useful information as it
points to potential issues towards making this algorithm robust
in practical Engineering applications.

8 Conclusions
We have utilized a gradient-based algorithm for uncon-

strained multi-objective problems to recover Pareto points and
the Pareto front. The method has been shown to work well for
convex (with non-uniform spacing) and concave fronts. Though
the results have not been reported here, it has also been used for
an academic problem with a disjoint Pareto front but it requires
enhancements to the current algorithm that enables the algorithm
to execute “discontinuous jumps” at the edges of Pareto fronts.
Finally, we have used it for a multi-disciplinary problem in axial
turbines. These studies have tested the feasibility of the approach
and show that they can overcome some of the difficulties inher-
ent in scalarization (or weighted sum) approaches. The applica-
bility of the method seems to be problem (and capability) depen-
dent. Table 1 captures the relative cost of different approaches to
MOOP. For problems with a small number of design variables,
a large number of objectives and where the determination of a
good meta-model is easy, an evolutionary algorithm seems to

Method Cost Function Evaluations

DOE - OLH Meta-model ≈ 10 X × (∑Y
i=1 ai)

Sampling ≈ 0

Pareto Evaluation = P× (∑Y
i=1 ai)

DOE - FCC Meta-model = 2X+1× (∑Y
i=1 ai)

Sampling ≈ 0

Pareto Evaluation = P× (∑Y
i=1 ai)

Grad - FD SOOP = q× (X +1)× (∑Y
i=1 ai)

Pareto Tracking = P× (X +1)× (∑Y
i=1 ai)

Grad - Adjoint SOOP = q×1.5× (∑Y
i=1 ai)

Pareto Tracking = P×1.5× (∑Y
i=1 ai)

Table 1. Computational cost of different approaches. OLH is Orthogo-
nal Latin-Hypercube Sampling, FCC is Face-Centered Composite Sam-
pling and FD is Forward Difference. The number of design variables is
represented by X , the number of objectives is represented by Y and
the desired number of points that we wish on the Pareto front is given
by P. The cost for the function evaluation of each objective is given by
ai, i = 1, ...Y and q is the number of iterative steps required for the
solution of the single objective problem. To evaluate the cost using the
Adjoint approach, it is assumed that the cost of the adjoint calculation is
around 1.5 the cost of the function evaluation and there exists the adjoint
capability for all objectives. Typically, the aerodynamic gradients are the
most expensive to evaluate and it suffices that an adjoint module exists
for this sensitivity evaluation.

more efficient. Even if a good meta-model can be obtained, the
method outlined here can be used along with the analytical gradi-
ents from the meta-model to determine the portion of the design
space where the solution to the auxiliary problem results in a vec-
tor of magnitude 0. These points will be the Pareto points. The
auxiliary problem has also been used in mutation operators of
evolutionary algorithms by [17] to determine the optimal way to
distribute and evolve population along the Pareto front. For prob-
lems where the required number of Pareto points is small and
the determination of a good meta-model is difficult, the gradient-
based approach presented here seems to be a better candidate.
Finally, if adjoint modules are available for the most computa-
tionally expensive portions of the simulations and the problem
has a large number of design variables and relatively few objec-
tive functions, the gradient-based approach is clearly the better
choice of methods. In the future, we hope to include practical
considerations to the present algorithm, namely constraints and
acceleration techniques to reduce the overall turn-around time of
Algorithm 1.
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