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ABSTRACT

Two-dimensional (2D) streamline curvature methods are
still an important tool in modern compressor design. In the
past most of the streamline curvature methods made use of
empirical correlations to approximate the blade row losses
and deviation functions on which the accuracy of streamline
curvature methods mainly depend. These empirical correlations
are just accurate for a small set of geometric airfoil design
parameters for which they where obtained and the prediction
of airfoil performance at high Mach numbers or at off-design
condition is inaccurate. Nowadays, a new approach is needed
to consider highly customized, modern airfoil geometries with
an increased number of design parameters. A new method
with the possibility to predict the performance of these highly
customized airfoils also at off-design condition and high Mach
numbers is presented in this paper. This method uses a large
airfoil database together with optimized surrogate models to
accurately predict airfoil performance. The database consists
of approximately 106 randomly created airfoils with randomly
created inflow conditions and the airfoil performance which
results from the 2D Euler-boundary layer code MISES [16]. The
airfoil geometry in this database is described by ten geometrical
parameters, e.g. stagger angle, chord length etc.. The flow
condition is described by four flow parameters such as the
relative inflow Mach number, MVDR, relative inflow angle
and Reynolds number. Airfoil performance is represented by
total pressure loss and flow-turning. This database was used

to train neural networks that provides the relationship between
the geometrical/flow parameters and the airfoil performance.
The topology of the neural networks was optimized to achieve
a model which represents this highly nonlinear functionality
at best. This model was integrated in the DLR’s in-house
streamline curvature tool ACDC which is based on the equations
of MÖNIG et al. [12], GALLIMORE [8]. The code allows
viscous throughflow calculations taking into account radial
mixing by turbulent diffusion, endwall boundary layers and
a model for tip clearance based on the work of DENTON
[7], KRÖGER et al. [9].

Nomenclature
ṁ massflow
φ stream line angle from the axial directiontanφ = Vr

Vx
ρ density
θ circumferential direction
ε angle of the quasi orthogonal from the radial direction
E shear force
kt eddy thermal conductivity
p pressure
ACDC Advanced Compressor Design Code, preliminary

compressor design tool developed in DLR-Institute of
Propulsion Technology

AtoB semi axis relation
b blockage factor
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C Chord length
d thickness
DLR German Aerospace Center
F blade force density
H Duct height
h enthaly
IGV inlet guide vane
M Mach number
m meridional direction

MVDR Meridional Velocity Density Ratio=
ρ1Vm1

ρ2Vm2
q coordinate which is nearly orthogonal to a streamline
r radius
s entropy
T temperature
t Pitch
V Velocity
x axial direction
β1,β2 flow angles in relative frame: inflow and outlfow
βLE,βTE,βST metal angles: leading edge, trailing edge and

stagger angle
ω total pressure loss
Subscripts
LE leading edge
t stagnation
TE trailing edge
1 Inflow section, in relative frame
2 Outflow section, in relative frame
c streamline curvature
e empirical
ST Stagger

Introduction
In order to design modern highly loaded and efficient

compressors 3D Navier Stokes methods are nowadays
indispensable. These methods are very time consuming
and need the detailed 3D-geometry. Therefore, 3D design
is not suitable for the conceptual phase of the compressor
design. Compressor manufacturers have predesign tools which
were maintained and developed over many years to be able to
analyze and handle their products. The design suite ACDC
was developed at DLR-Institute for Propulsion Technology
which contains a 0D, 1D and 2D preliminary design tool. A
major difficulty in 0D, 1D and 2D performance tools is the
prediction of the airfoil performance. In the past most of the
pre-design tools predicted the airfoil performance via empirical
correlations. These empirical correlations are just accurate
for a small range of geometric airfoil design parameters for
which they were obtained. Moreover the prediction of airfoil
performance at high Mach numbers or at off-design condition
is mostly inaccurate. A good overview of existing empirical

correlations can be found in ÇETIN et al. [4]. Nowadays,
a new approach is needed to consider highly customized,
modern airfoil geometries with an increased number of design
parameters. MÖNIG et al. [12] recommended to use a database
oriented approach for this purpose. In the following work a
new method is presented which couples a huge airfoil database
with optimized surrogate models for the prediction of the airfoil
performance.

Streamline Curvature Throughflow
The throughflow method presented in this work bases

mainly on the streamline curvature method of DENTON [6]. The
spanwise turbulent mixing model is based on MÖNIG et al. [12]
and GALLIMORE [8]. The code is written in C++ and thread
parallelized. The method assumes that the flow is:

– adiabatic
– steady
– axisymmetric
– compressible
– Axial Mach numberMaxial < 1

The following models are included to the code

– real gas model
– spanwise turbulent mixing of momentum and heat
– endwall boundary layers
– tip clearance model
– multi flowpath e.g. for splitter configurations

The theory can be outlined as follows:

Figure 1. Streamline curvature coordinate system

Consider a fluid particle in the streamline coordinate system,
Figure 1. The q-direction describes a coordinate which is nearly
orthogonal to a streamline.
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The momentum equation in the q-direction is given by (as
derived in DENTON [6])

1
2

∂(V2
m)

∂q
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∂ht
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− 1
2r2
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rc
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The blade force acting along the quasi orthogonal-q can be

neglected. TheVm
∂Vm

∂m
sin(ε+ φ) and

V2
m

rc
cos(ε+ φ) terms are

solved by evaluating the streamline curvature radiusrc, the
anglesε,φ and a given initial estimation ofVm. The remaining
terms are evaluated by using the energy equation (2) and the
streamwise components of the momentum equation in radial
and axial direction which can be expressed in terms of a
stagnation enthalpy gradient (3). The continuity equation (4)
must hold and therefore a given massflow must be reached over
all quasi-orthogonals and streamtubes.
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ˆ tip

hub
2πVmcos(ε+φ)(1−b)dq= ṁ (4)

To solve the equations (2) and (3) the shear ForcesE and the
dissipation functionΦ must be solved. The derivation of these
equations is described in GALLIMORE [8], MÖNIG et al. [12].
The blade forcesFm,Fθ are calculated by knowing the airfoil
flow turning and the entropy increase due to the loss coefficients
of the airfoil. The complete set of equations can be found in
GALLIMORE [8], MÖNIG et al. [12]. As mentioned above
the blade rows are represented by total pressure loss coefficient
(which is iteratively transformed into an entropy increase)

ω =
pt1− pt2

pt1− p1
(5)

and the flow turning

∆β = β2−β1 (6)

Most of the streamline curvature tools are using empirical
correlations to predict the lossesω and the flow turning∆β.
These correlations are in most cases obtained by the use of
measured data. Using the correlations is quite simple, fast
and stable but they are only accurate for the profiles for which
they were obtained and the number of flow and geometrical
parameters are quite small (overall about 2-6 parameters) [5, 13,
4, 10].

Another way is the direct coupling of a blade to blade solver
with a throughflow solver. The method is called quasi-3D or
Q3D WU et al. [15] and it is the most accurate way to calculate
the airfoil performance in the conceptual design phase. However
this method is numerically unstable and the effort to perform
such a calculation in the predesign is quite high.

Novel Approach for Loss and Flow-Turning Prediction
The prediction of loss and flow turning for a given airfoil

at a given flow condition is a major difficulty in the preliminary
design process. Therefore a functional relationship between the
airfoil performance and the geometry/flow condition is needed.
A novel approach with the possibility to use more flow
and geometrical airfoil parameters than empirical correlations
without a loss in stability and speed is the use of surrogate
models. Figure 2 shows the use of surrogate models for the
prediction of the airfoil performance.

Figure 2. Functional relationship

The input consists on the one hand of the airfoil geometry and
on the other hand of the flow condition. The output of the
surrogate model is the flow angle and the airfoil losses. Thus the
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surrogate model are a response surface for the prediction of the
lossesω(geometry, f low) and the prediction of the flow turning
β2(geometry, f low)−β1.
One of the major advantages of surrogate models is the ability
of generalization. describes the possibility to find relations in
available data and draw conclusions for other unknown data.

Figure 3. Creation process of a surrogate model

The creation process of the surrogate models is described in
Figure 3 and consists of three basic steps.

1. A database with random samples must be created. A
random sample is in this case characterized by 10 airfoil
geometry parameters, 4 flow parameters and 2 performance
parameters. The flow solver that’s used for the calculation of
the airfoil performance is the blade to blade solver MISES
[16]. The framework to create the randomly generated
database is the optimization tool AutoOpti, developed at the
Institute of Propulsion Technology [14, 2].

2. The second step is the creation and optimization of the
surrogate models. The surrogate models are optimized in
order to find a surrogate model which describes the airfoil
performance at best [2].

3. The third step is the integration of the trained surrogate
models in the predesign process. The major application
for using the surrogate models is the prediction of airfoil
performance by a given geometry and flow conditions. The
methodology of 1. and 2. is described in this work. In the
future it will also be used to find an optimized airfoil for a
given flow turning task.

Building the Airfoil Database
The airfoil database consists of about 106 randomly created

airfoils also called members or sample points. Each member in
the database is described by the 14 input parameters and the 2
output parameters (Table 1).

Input Output

Flow Parameters Geometrical parameters

M1 βLE β2

β1 βTE ω

Reynolds nr. βST

MVDR
C
t

dmax
C

dmaxX
C

xDeBoor,yDeBoor

rLE

AtoB

Table 1. In- and output parameters of one database member

Figure 4. Leading edge parametrization
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Figure 5. Chord length and stagger angle

The geometrical parametrization for this approach is described
by Figure 4 and Figure 5.

– βLE andβTE describing the metal angles at the leading edge
and trailing edge Figure 4.

– βST is the airfoil stagger angle Figure 5.
– C is the chord length
– t is the circumferential distance between two airfoils also

called pitch
– dmax

C is the relative maximum thickness of the airfoil and
dmaxX

C is the relative axial position of the maximum thickness
– xdeBoor, ydeBoordescribes a spline control point, this point

affects the curvature of the airfoil Suction Side
– rLE is the radius of the leading edge of the airfoil
– AtoB= a

rLE
is the semi axis ratio, the bluntness of the airfoil

can be changed by this value

A more precise description can be found in [14].
Additionally there are several requirements on the database. To
find a functional relationship in a 14 dimensional parameter
space it is necessary to have a high number of sample points in
this space. In this case a large randomly created airfoil database
is needed. In order to avoid sparsely sampled regions equally
distributed sample points are advantageous for the training of
the surrogate models. Hence a random generation of the sample
points is a suitable approach. The process to create these sample
points is based on 4 steps:

1. Random generation of the flow and the airfoil geometry
parameters.

2. Transformation of the geometry parameters to a real airfoil
geometry.

3. Calculate a flow solution with the blade to blade flow solver
MISES [16].

4. The geometry parameters, the flow parameters and the
flow solution are stored in the database for a converged

calculation.

The random variation of the airfoil geometry and the flow
parameters might result in an uncommon combination of airfoil
shape and flow condition. These uncommon combinations are
stored into the database in order to have the possibility to predict
also bad airfoils. In the future this approach allows an airfoil
optimization based on these surrogate models.
The requirements of the database are summarized:

1. A high number of randomly created airfoils (in the presented
work: 106)

2. Equally spaced sample points
3. Airfoils with a bad performance or unusual geometries are

not excluded
4. A large variation of geometrical and flow parameters

Figure 6 shows the distribution of the airfoil losses over the
Mach number and the inflow angle for 50.000 randomly selected
sample points.
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Figure 6. Example of the random parameter distribution

It can be seen that the distribution of the sample points is
not entirely uniform. The main reason for this is the creation
algorithm of the sample points. The creation algorithm isn’t
entirely random. In order to speed up the creation process already
converged sample points are mutated to create new ones. This
algorithm has the benefit of generating more convergent sample
points.

Surrogate Models
At DLR-Institute of Propulsion Technology Kriging Models

and Neural Networks are used as surrogate models [2]. In this
case the usage of a surrogate model which can handle a huge
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amount of data is advantageous. The training time of Neural
Networks linearly depends on the number of sample pointsO (n)
and Kriging models cubically depends on the number of sample
pointsO (n3). Therefore the use of Neural Networks is favorable.
The implemented neural networks are Bayesian feed-forward
networks [2] and have one output knot.

Bayesian trained Neural Network Bayesian trained
neural networks base on the “weight-decay” training algorithm.
The “weight-decay” approach is to minimize following function:

F = FD +λFW =
1
2

D

∑
i=1

( f (xi)− y(xi,w))
2+λ(

1
2

W

∑
j=1

w2
j ) (7)

FD is the sum overD members of the squared error between
the neural network outputy(xi ,w) and the real fitness values
f (xi) at locationxi (variables of memberi). FW is a measure of
the network complexity, represented by the sum of the squared
weights. Therefore “weight-decay” tries to find a compromise
between fitting the data and reducing the network complexity.
The problem is that the solution depends on the regularization
constantλ, which has to be estimated.
To use the Bayes’theorem two assumptions are made. Firstly the
weights are samples of a normal distribution:

p(w) =

√

ξ√
2π

e−
1
2ξw2

ξ is the inverse of the variance of the distributionξ = 1
σ2 .

Secondly the error between network output and real values is also
normally distributed:

p( f (x)− y(x,w)) =

√
ν√
2π

e−
1
2ν( f (x)−y(x,w))2

ν is the inverse variance of that distribution.
These assumption yields to a new formulation of the
“weight-decay” approach (a detailed explanation can be found
in [11]):

F = νFD+ ξFw =
ν
2

N

∑
n=1

(y(xn,w)− tn)2+
ξ
2

W

∑
q=1

(wq)
2

ξ
ν is equivalent to the regularization constantλ and hence the
optimalλ can be calculated analytically by using Bayes’theorem
(7).

The implemented neural networks are Bayesian feed-forward
networks with automatic relevance determination. Thus the
weights are divided into subsets with differentξ.
ξ andν are named hyperparameters.

Splitting of Neural Networks The most simple way
to create a Neural Network for the purpose of performance
prediction would be the training of one global Neural Network
with the whole database. The training time of one Neural
Network depends quadratically on the number of weights and
in most cases the more sample points are used the more weights
are needed. Hence it is advantageous to split the Neural Network
in Mach number ranges of 0.1 Mach instead of using one global
Neural Network. Table 2 shows that 6 Neural Networks have to
be trained in order to predict the outflow angleβ2 and the losses
ω for the Mach number range of 0.4-0.7.

Mach number Neural Networks

0.4 - 0.5 ω andβ2

0.5 - 0.6 ω andβ2

0.6 - 0.7 ω andβ2

0.7 - 0.8 ω andβ2

Table 2. Neural Network splitting in Mach number Ranges

Another objective is the prediction of the the outflow angle
β2 and the lossesω at choking condition. Figure 7 shows
typical loss and outflow angle functions for a subsonic Mach
numberM1 = 0.65 and a transonic Mach numberM1 = 0.95. At
choking condition with a constant inflow Mach number the flow
angleβ1 is frozen. It is obvious that this kind of characteristic
is no function of the inflow angleω,β2 6= f (β1, ...) anymore
and cannot be predicted in this way. The outcome of this is
that at transonic flow conditions additional Neural Networks for
choking condition have to be trained. Table 3 shows that for one
Mach number range at transonic condition 4 Neural Networks
have to be trained.

Mach number Neural Networks Neural Networks at choke

0.9 - 1.0 ω andβ2 ω andβ2

1.0 - 1.1 ω andβ2 ω andβ2

Table 3. Neural Network splitting in transonic Mach number Ranges
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β1

ω
β 2

M1 = 0.95
M1 = 0.65

Figure 7. Typical loss and outflow angle Function for a subsonic M1 =
0.65and transonic M1 = 0.95airfoil

Optimization of Neural Networks
The prediction quality of a Neural Network is strong

associated with its structure (number of knots, layers, weights)
and the initial values of the weights and hyper-parameters.
The optimization tool AutoOpti [14] was used to improve the
prediction quality of the neural networks [2]. AutoOpti is
a parallelized optimizer based on asynchronous evolutionary
strategies. The free variables for the Neural Network
optimization are the number of knots in the hidden layers,
the initial values of the hyper-parameters and the connectivity
between the input layer and the first hidden layer (from
sparsely connected to full connected). Based on experience the
connectivity can increase the quality of the prediction. To restrict
the time of one Neural Network training, the total number of
weights limited to 3000. If the initial Neural Networks consists

of more than 3000 weights, they are deleted randomly. The
optimization object is to minimize the mean error to a test
database (8).

Mean Error=

√

1
N

N

∑
i=1

( f (xi)− y(xi,w))
2 (8)

( f (xi)− y(xi,w))
2 is the squared error between the test dataf (xi)

and the Neural Network predictiony(xi ,w) at the locationxi

(variables of member i). N is the number of test data points.
This test database is also created randomly and consists of 1000
member. Figure 8 shows the progress of an Neural Network
topology optimization. The x-axis shows the optimization
progress one number is one bayesian trained Neural Network.
On the y-axis the mean error between the Neural Network loss
prediction and the test database is shown. The mean error
decreases drastically during the optimization obviously.

Neural Network Nr.

M
ea

n 
E

rr
or

0 20 40 60

0.02

0.04

0.06

0.08

0.1

Figure 8. Neural Network loss prediction mean error over the

optimization progress

Prediction Results - 4.5 Stage Axial Compressor
RIG250

The new approach is verified by comparing the Neural
Network predictions with 3D-CFD and 2D-MISES results of
rotor 1 of a 4.5 stage transonic compressor providing a total
pressure ratio of 4.83 at 46.3 kg/s reduced massflow and 12960
min−1 at the design point. The inlet guide vane, stator 1 and
stator 2 of this rig are adjustable.
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Figure 9. Axial compressor test rig “RIG250” of the DLR - cross section

First of all two speedlines at 80% and 70% RPM were calculated
with the 2D Throughflow solver ACDC using the Neural
Networks. The results are compared with the 3D-CFD solver
TRACE [3, 1]. TRACE is a DLR inhouse 3D-CFD solver which
is developed since 20 years and also used and validated by MTU
Aeroengines. Secondly the mid section airfoil of rotor 1 (Figure
13) was calculated to compare the results of the Neural Network
with the 3D-CFD solver TRACE and the 2D blade to blade
solver MISES [16]. Figure 10 shows the analyzation planes
used in the CFD calculation. The 2D-Throughflow calculation
was made only for Rotor 1 (calculation domain between 1-2),
the 3D-CFD calculation also included the IGV. So the inlet
condition for the 2D-Throughflow calculation was taken from the
3D solution. 100% RPM was only calculated with the 3D-CFD
Code, because the Neural Networks for choking condition are
still under development.

10 2

ROTOR 1IGV

Figure 10. Analyzation planes of the compressor RIG250

Figure 11 shows the performance map of rotor 1 of the
compressor RIG250. There is a good agreement between the
3D-CFD and the 2D-Throughflow calculation. Close to small
massflows the difference is increasing. This can be explained by

the appearance of separation which the simplified boundary layer
method of MISES (the Neural Networks are based on MISES
Calculations) cannot predict accurately. As mentioned above the
Neural Networks currently cannot predict choking condition, so
this part of the speedlines is missing.

η is

0.8

0.85

0.9

0.95

1

RPM 80% ACDC
RPM 70% ACDC
RPM 100% TRACE
RPM 80% TRACE
RPM 70% TRACE

7
6

5 4 3
2

1

Massflow Norm [%]

π t N
or

m

70 80 90 100

75

80

85

90

95

100

1

2
3

4
567

Figure 11. Normalized performance map of Rotor 1, calculated with the

3D-CFD solver TRACE and the 2D-Throughflow solver ACDC

Figure 12 shows the radial distributions of operating points 3
and 6 (cp. Figure 11) at 80% RPM. The inlet Mach number
varies between 0.65 at the hub and 1.03 at the tip section, so in
the upper 40% relative height of the discussed operation points
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3 and 6 has transsonic inflow condition but no choking occurs.
The inlet conditions for the 2D-Throughflow solver was taken
from the 3D-CFD calculation and given in the absolute frame
of reference. The Mach number and the angles in Figure 12
are in relative frame of reference. So the discrepancy in the
lower 30%-40% relative height has to come from a slightly
different massflow distribution and this may have its origin in
the boundary model used in the 2D-Throughflow code. Anyway
it is obvious that the predictions of the Neural Networks are
describing the Off-Design flow in the correct way. The outflow
angle and Mach number is in good agreement with the 3D-CFD
solution, also the Off-Design characteristic is in good agreement.
The loss distribution shows a correct tendency. In the upper
70% relative height the discrepancy may come from the iterative
calculation of the MVDR which is on the one hand an input
for the Neural Networks and on the other hand an output of
the 2D calculation. The next part of this work shows, that this
explanation seems to be probable.

A calculation of the midspan airfoil section of rotor 1 was
made. In this case the MVDR is an input which was taken
from the 3D CFD calculation, the loss prediction shows better
agreement. However the Off-Design characteristic is in good
agreement with the 3D-CFD calculations which can also be seen
in the outflow Mach number distribution. It should also be
emphasized that the airfoils of rotor 1 were not included in the
training or test database of the neural networks. The airfoils used
for the training of the neural networks are all randomly created,
as prescribed in the first part of this work.

m’

θ

0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

0.3

Figure 13. Mid-Section airfoil of Rotor 1 in the m′/θ coordinate system

Table 4 shows the flow parameters of rotor 1 at the different
operating points which were compared. These values were
obtained from the 3D-CFD calculation and will be used as input
for the 2D blade to blade solver and the Neural Networks. The

ACDC 2D

TRACE 3D-CFD
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140
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Figure 12. Radial Distribution (r/H) of operating points 3 and 6

numbers in Figure 11 are corresponding with the numbers in
Table 4. A MISES definition of the Reynolds number is used,
therefore the uncommon high values. The Reynolds number
calculated with the common chord length based definition is
about 1.6 ·106.

Nr. β1 M1 Reynolds number MVDR

1 144.76 0.887 15.5 ·107 1.143

2 144.89 0.886 15.5 ·107 1.144

3 145.25 0.884 15.5 ·107 1.143

4 145.94 0.88 15.5 ·107 1.154

5 146.97 0.874 15.5 ·107 1.137

6 148.45 0.865 15.5 ·107 1.123

7 150.65 0.854 15.5 ·107 1.101

Table 4. Input parameters of comparison points

Table 5 shows the mean error (8) between the test database used
in the Neural Network optimization and the Neural Network
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prediction. Two different Neural Networks for loss prediction
(ω) are compared in order to verify the mean error as valid fitness
function for the Neural Network optimization. Both Neural
Networks are trained with the same database but with different
parameters, such as Nr. 67 is more approximative then Nr. 71.
Neural Network Nr. 67 is slightly better than Neural Network
Nr. 71, hence this Neural Network should produce better results
in the comparison.

Neural Network Mean Error

β2 Nr. 41 2.539°

ω Nr. 67 0.0251

ω Nr. 71 0.0253

Table 5. Mean Error between a test database of 1000 randomly created

airfoils and the Neural Network predictions

Figure 14 shows the comparison between the 3D-CFD solver
TRACE, the 2D-blade to blade solver MISES and the Neural
Network predictions. The outflow angleβ2 over the inflow angle
β1 is shown on the y-axis in the top frame. On the bottom frame
the lossesω over the inflow angleβ1 are shown. In Figure 11 and
Table 4 the operating points can be found.

The bottom frame shows a good agreement between the
Neural Networks and the 2D-blade to blade solver. The
comparison of 2D-blade to blade, Neural Network and the
3D-CFD calculation shows just small differences. Neural
Network Nr. 67 shows the better agreement in comparison
to Neural Network Nr. 71 and thus the mean error as a
quality criteria of the Neural Networks holds. Other calculations
showed generally the same agreement. Hence the mean error
between a test database and the Neural Network prediction can
be recommended as quality criteria.

The top frame shows also a good agreement between the
neural networks and the 2D-blade to blade solution. It should
be emphasized that the difference of the neural network and the
blade to blade solver is in the same dimension as the difference
between the blade to blade solver and the 3D-CFD calculations.
Thus in this comparison the Neural Network shows a better
agreement with the 3D-CFD calculation than with the 2D-blade
to blade solver. However the predictions of the Neural Networks
bases on sample points which were created with the 2D-blade to
blade solver, therefore the Neural Networks should not produce
better results than the 2D-blade to blade solver itself. Overall the
use in a preliminary design tool like ACDC is suitable.
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Figure 14. Comparison of 3D-CFD, 2D blade to blade MISES and the

Neural Networks of midspan profile Rotor 1 at 80% RPM

Conclusion and Outlook
A novel methodology in predicting the airfoil performance

based on a airfoil database and surrogate models is presented.
To create the airfoil database a parametrization has

been chosen which can handle already a wide range of
airfoil geometries and flow conditions. In the future other
parametrizations are possible and will also be tested, in order to
extend the range of airfoil geometries and to reduce the amount
of data.

An automatic process to build an airfoil database was
developed and used to create a database. This process is based
on AutoOpti an automatic optimizer developed at DLR-Institute
of Propulsion Technology [2, 14]. Based on experience with
Metamodels and Optimization, 106 sample points have been
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created and stored inside the database for the training of the
surrogate models. The dependency between the prediction
accuracy and the number of sample points should be investigated
in the future. Furthermore it should be checked if MISES is
sufficient as flow solver.

In this work Bayesian trained Neural Networks were chosen
as surrogate model because this approach is able to handle a huge
amount of sample points. An algorithm to reduce the amount
of sample points will be required for the use of other surrogate
models such as Kriging. The structure of the Neural Networks
was successfully optimized in order to increase the prediction
quality of the Neural Networks. The used objective function was
tested and validated successfully.

A transonic rotor of the test rig 250 was used to validate
the predictions based on the novel methodology. First of all
the 2D-Throughflow code ACDC using the neural networks was
used to calculate two speedlines of rotor 1 at 80% and 70%
RPM. The results are in good agreement with the 3D-CFD
calculation. The 100% speedline is missing due to the fact
that the surrogate models for choke prediction are still under
development. However at 80% RPM rotor 1 is already
transsonic. It should be emphasized that the airfoil geometries
of rotor 1 were not included to the training or to the test database
of the neural networks, all airfoils in the database were randomly
created. The prediction of secondary flow effects such as endwall
boundary layers and spanwise mixing is still needed.

Secondly a calculation of the rotor 1 midspan airfoil was
done in order to compare the blade to blade solver with the
surrogate model approach and the 3D CFD calculations more
detailed.

Hence the difference of the neural network and the 2D-blade
to blade solver is in the same dimension as the difference
between the blade to blade solver and the 3D-CFD calculations.

In regard to the input parameters and the accuracy this
new methodology is arbitrary expandable. The accuracy
can be increased global or just for small areas by adding
more sample points to the training. In summary it can be
stated that a preliminary design process can be improved in
regards to speed and accuracy when using this new methodology.

Further steps in the development of this approach are:

– Include the prediction of performance at choking condition
– Development of the 2D-Througflow solver particularly with

regard to the endwall boundary layer method
– Validation for a multistage configuration
– Developing a method for the automatic generation of airfoils

out of given performance data based on the created surrogate
models

– Development and extension of the airfoil database
– Developing a method of selection for sample points in order

to reduce the number of sample points without a loss in

accuracy
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