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ABSTRACT 
Achieving higher aerodynamic performance in terms of 

efficiency, pressure ratio or stable operation range has been of 
interest to both researchers and engineers in the field of 
turbomachinery. The design of optimal shaped aerodynamic 
configurations based on Computational Fluid Dynamics (CFD) 
and predefined targets can be obtained by using deterministic 
search algorithms, which need to calculate the first and second 
order sensitivities of the objective function with respect to the 
design variables. With the characteristics of quick and exact 
sensitivity analysis, as well as less computational resource 
requirement, the adjoint method has become a research focus in 
aerodynamic shape design optimization over the past decades. 
In this paper, a discrete adjoint solver was developed and 
validated based on an in-house flow solver code. Moreover, a 
turbomachinery cascade optimization design system was 
established by coupling the flow solver, the discrete adjoint 
solver, the parameterization technology, the grid generation 
technology and the gradient-based optimization algorithms. 
During the development process of the discrete adjoint solver, 
the automatic differentiation tool was used in order to ease the 
construction of the discrete adjoint system based on the flow 
solver code. However, in order to save the memory requirement 
and to reduce the computational cost, the automatic 
differentiation tool was used selectively to build the 
fundamental subroutines. The top-most module of the discrete 
adjoint solver was established based on the discrete adjoint 
theory and the automatic differentiation technology manually. 
The treatments of the discontinuity in the flow field, such as 
strong shocks, and the imposition of strong boundary 
conditions which were implemented in the adjoint solver were 
discussed in detail. At the same time, several technologies were 
used to accelerate convergence. Based on the optimization 
system, a typical 2D transonic turbomachinery cascade was 
optimized under the viscous flow environment. The 
optimization results were analyzed in detail. The validity and 

efficiency of the present optimization design system were 
proved. 

INTRODUCTION 
The aerodynamic optimization design of turbomachinery 

cascades is a complex optimization problem because of its 
intrinsic characteristics of nonlinear, multi-variable, and multi-
objective. Generally, such problems can be solved using some 
stochastic or deterministic search algorithms, or any 
hybridization of them. Stochastic optimization methods, such 
as Simulated Annealing (SA), Evolutionary Algorithm (EA) 
and so on, are well known for their ability to capture the global 
optimal solution without being trapped into local optima. The 
price to pay is the higher computational cost which can be 
reduced only through introducing some surrogate analysis tools 
and Design of Experiment (DOE) methods[1-3]. Deterministic 
optimization methods have characteristics of great local optima 
searching ability and low computational cost, but they require 
the sensitivity information of objective function with respect to 
design variables. However, the traditional sensitivity analysis 
methods, such as the finite differences method, the direct 
differentiation method, and the complex variables approach and 
so on, are quite costly, since their computational cost is 
proportional to the number of design variables. The 
aerodynamic optimization methods which based on the control 
theory implement the sensitivity analysis independent of the 
number of the design variables and reduce greatly the 
computational cost of the sensitivity analysis. Pironneau[4] first 
introduced the continuous adjoint method based on the control 
theory in fluid dynamics context but the application to 
aeronautical design optimization was pioneered by Jameson et 
al.[5-7]. Since then, the continuous adjoint method has been a 
major research area for its characteristics of low memory 
requirement and low computational cost per iteration. 
Moreover, it can use the mature commercial CFD solvers 
which reduce the development work greatly. Therefore, the 
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continuous adjoint method has been applied widely in the 
aeronautical design optimization. In the area of turbomachinery 
aerodynamic design, the blade aerodynamic optimization based 
on the continuous adjoint method has been the research focus 
in recent years due to its complex internal flow characteristics, 
and several studies have been performed in the design of 
turbomachinery blades by using the continuous adjoint method 
[8-13].  

In contrast with the continuous adjoint method, the 
discrete adjoint method starts with nonlinear discrete equations, 
linearizes the discrete equations, and then transposes the linear 
operator to form the corresponding discrete adjoint equations 
[14]. There are several significant advantages for the discrete 
adjoint method as compared with the continuous adjoint 
method. The construction of the discrete adjoint equations and 
the boundary conditions is a clear and straightforward process. 
The linearization of the nonlinear discrete equations can be 
performed either manually or by automatic differentiation 
software, and the linear code can be validated by directly 
comparing with the nonlinear code. With the great development 
of the automatic differentiation tools, several automatic 
differentiation tools can be used to substantially ease the 
development of the discrete adjoint code. Because the discrete 
adjoint code is obtained by transposing the linear operator, it 
yields exactly the same values for the linearized objective 
function and thus can be validated against the linear code[14].  

The aerodynamic optimization design based on the 
discrete adjoint method has been paid much attention by 
researchers since 1990’s. Elliott and Peraire[15] and Anderson 
and Bonhaus[16] applied the discrete adjoint method for the 
aerodynamic design optimization using the unstructured grid. 
Nadarajah[17] performed the aerodynamic design optimization 
of airfoil based on the discrete adjoint method and compared 
the calculation speed and the precision between the discrete 
adjoint method and the continuous adjoint method. 
Mohammadi et al.[18, 19] constructed the discrete adjoint system 
directly using automatic differentiation tool from a fluid solver 
and calculated the gradient information accurately. Marta et 
al.[20] proposed a methodology for the development of discrete 
adjoint solvers using the automatic differentiation tools. The 
aerodynamic optimization design of the turbomachinery 
cascade has been interested by researchers only in recent years. 
Florea and Hall[21] proposed a sensitivity analysis method based 
on the discrete adjoint method for the turbmachinery cascade 
unsteady inviscid flow. Giles et al.[22-24] studied the 
aerodynamic design optimization of the turbmachinery based 
on the discrete adjoint method and developed a series of design 
software. Papadimitriou and Giannakoglou[25] proposed an 
efficient calculation method of Hessian matrix by coupling 
direct differentiation and discrete adjoint method and applied it 
to the aerodynamic design optimization. Nielsen et al.[26] 
performed some works in the field of extending the flow to the 
turbulence based on the discrete adjoint method. Although 
some progress has been made in the area of the shape design 
optimization of the turbomachinery blades, the blade design 

optimization under the complicated constraints based on the 
discrete adjoint method is still worth studying because of the 
intrinsic complicated characteristics for the shape design 
optimization of the turbomachinery blades.  

This paper focused on the direct design optimization using 
the discrete adjoint method for the turbomachinery cascade. 
Firstly, the principles of the discrete adjoint method and the 
automatic differentiation were introduced briefly. Then the 
adjoint field solution strategy and the sensitivity analysis 
method for the design optimization of the turbomahinery blades 
were discussed in detail. Based on the principle of the discrete 
adjoint method and the adjoint field solution strategy, a discrete 
adjoint solver was developed and validated with an in-house 
flow solver code by using selectively TAPENADE[27]. After 
that, an aerodynamic shape design optimization system based 
on the discrete adjoint method for the turbomachinery blades in 
two-dimensional (2D) viscous flows was proposed and 
established by coupling the parameterization technology based 
on the Non-uniform B-Spline, the structured multi-block grid 
generation technology, the in-house CFD solver and the 
discrete adjoint solver developed above. Using the design 
optimization system, a typical 2D transonic turbomachinery 
cascade was optimized under the viscous flow environment. 
The minimization of the entropy generation rate was taken as 
the objective function in the design optimization process and a 
mass flow rate constraint was added at the same time. The 
optimization results were analyzed in detail, and the validity 
and efficiency of the optimization design system were proved 
too. 

NOMENCLATURE 
A Matrix 
C Coefficient 
f Scalar function 
I Augmented objective function 
J Objective function 
L Linear discrete operator 
P Non-singular square matrix 
R Nonlinear discrete residual operator 
s Entropy generation ratio 
u State variables 
x Coordinates 
y Coordinates 
α  Design variables 
ψ  Adjoint variables 
ε  Step size 

Subscripts  
ref Reference state 

Superscripts  
T Transpose 
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DISCRETE ADJOINT METHOD 
A typical aerodynamic shape design optimization problem 

for turbomachinery cascades minimizes an objective function 
J  with respect to the parameterized cascade shape parameters 
α . It can be described as follows: 
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s.t. , 0,  on

J u

R u
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where, J  is the objective function and R  is the state 
equations respectively. Both of which are function of the design 
variables α  and the state variables u . In the equation, the 
“s.t.” indicates that design variables and state variables are 
constrained by the state equation R  at the same time. 
Linearizing the above objective function, the variation of the 
objective function J  can be formulated as： 

J J J J uJ u
u u
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α α α

∂ ∂ ∂ ∂ ∂⎛ ⎞= + = +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
      (2)               

Linearizing the state equation gives sensitivity equation as 
follows： 
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Based on the discrete adjoint method, introducing adjoint 
variables { }1 2

, , , T

n
ψ ψ ψ ψ= , an augmented function ( ),I uα  

can be defined as: 
( ) ( ) ( ), , ,TI u J u R uα α ψ α= +           (4) 

The variation of the augmented objective function ( ),I uα  
with respect to the design variables can be expressed as 
follows:  
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     (5) 

Since the variation of the state equation is zero, the 
derivatives of the ( ),I uα  and of the ( ),J uα  are identical. 
The dependence of the augmented objective function on the 
state variable can be removed by setting the coefficient of uδ  
to zero. Thus the adjoint equation can be obtained. Introducing 
a pseudo-time term, the adjoint equation can be formulated as:  

T TR J
t u u

ψ ψ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
            (6) 

The adjoint equation does not contain any derivatives with 
respect to the design variable. Therefore the computational cost 
of solving the adjoint equation is nearly independent of the 
number of the design variables. Once the adjoint solution has 
been obtained, the gradient of the augmented objective function 
with respect to the design variables can be computed from the 
following formula: 

TI J Rδ ψ
δα α α

∂ ∂
= +

∂ ∂
                (7) 

According to the above equations, it can be seen that 
J u∂ ∂ , J α∂ ∂ , ( )T Rψ α∂ ∂  and ( )T R uψ ∂ ∂  should be solved 

firstly in order to calculate the gradient of the objective 
function with respect to the design variables. The item 

( )T R uψ ∂ ∂  should be solved iteratively but other items are 
cheaper to evaluate because they do not require any iterative 
solution and involve only matrix-vector products. 

AUTOMATIC DIFFERENTIATION 
Automatic differentiation, also known as algorithmic 

differentiation, is a well known technology which is 
implemented by using systematically the chain rule of 
differentiation to computer programs. Then a program can be 
generated automatically which can be used to compute the 
derivatives specified by user. With the development of the 
automatic differentiation technology and associated automatic 
differentiation tools, several automatic differentiation tools for 
different program languages are available at present. Among 
the automatic differentiation tools for different programming 
languages, there are two main approaches to implement the 
automatic differentiation: source code transformation and 
operator overloading[28]. The source code transformation 
method adds new statements to the original source code in 
order to generate the program unit used for derivatives 
calculation. The operator overloading approach defines a new 
user defined data type instead of the real numbers. This new 
data type includes not only the value of the original variable, 
but the derivative as well. All the intrinsic operations and 
functions have to be redefined for the derivative to be 
calculated together with the original computations.  

Automatic differentiation can be performed in two modes 
which are forward mode and reverse mode, respectively. Both 
modes employ the chain rule to accumulate contributions to 
derivatives in a different manner. The implementation details 
about the automatic differentiation can refer to Ref [29]. To 
sum up, the forward mode gives the tangential derivative 

f a∇ ⋅  for some given vector a , while the reverse mode gives 
all the components of f∇  for a scalar function f . For a vector 
function F , the forward mode automatic different gives 

F a∇ ⋅  while the reverse mode gives ( )TF a∇ ⋅ . According to 
the discussion in the previous section, the J u∂ ∂ , J α∂ ∂ , 

( )T Rψ α∂ ∂  can be calculated by the program unit generated by 
using the reverse mode of the automatic differentiation from 
the original flow solver with the adjoint field information. 
While the calculation of the ( )T R uψ ∂ ∂  will be discussed in 
detail in the following section.  

SENSITIVITY ANALYSIS 
For a scalar function ( ),I uα  to be optimized, its 

calculation process can be formulated as follows 
x u Iα    →        →        →                  (8) 
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where α  is a set of design parameters, x  is the 
computational grid, and u  is the discrete flow solution. 

In order to use a gradient-based optimization method, one 
wishes to compute the derivative of I  with respect to α . 
Adopting the notation used in the automatic differentiation 
community, let α , x , u , I  denote the derivative with 
respect to one particular component of α , respectively. 

If at each stage in the process the output is an explicit 
function of the input, then straight forward differentiation gives 

xx α
α

∂
=

∂
，

uu x
x

∂
=

∂
，

II u
u

∂
=

∂
           (9) 

and according to the chain rule of differentiation,  
I u xI
u x

α
α

∂ ∂ ∂
=

∂ ∂ ∂
                   (10) 

Again following the notation used in the automatic 
differentiation community, the adjoint quantities α , x , u , 
I  denote the derivatives of I  with respect to α , x , u , I , 
respectively, with 1I =  by definition. Differentiating again, 
and with a superscript “T” denoting a matrix or vector 
transposing, we obtains 

T T TI I x x x
x
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α α α
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and similarly 
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thus giving 
T T Tx u I I

x u
α

α
∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

            (13) 

Note that the linear sensitivity analysis proceeds forwards 
through the process  

x u Iα    →        →        →                (14) 
While the adjoint analysis proceeds backwards 

x u Iα    ←        ←        ←                (15) 
Given these definitions, the sensitivity of the output I  

with respect to the inputs α  can be evaluated in a number of 
ways as follows 

T T TI u u x x α α= = =               (16) 
Therefore, it is possible to proceed forwards through part of the 
process and combine this with going backwards through the 
other part of the process. This is useful in applications in which 
part of the process is a black-box which cannot be touched. For 
example, if the step xα →  involves a proprietary CAD 
system or a grid generator, then the only option may be to 
approximate the forward mode linear sensitivity through a 
central finite difference using ( )x α α± Δ . 

SOLUTION STRATEGY OF ADJOINT SYSTEM 
The construction of the discrete adjoint system for the 

aerodynamic optimization design of turbomachinery cascades 
has its special characteristics. The construction method and 

solution strategy of the discrete adjoint system will be 
discussed in detail in the following section. According to the 
discussion in the automatic differentiation section, the items of 

J u∂ ∂ , J α∂ ∂ , ( )T Rψ α∂ ∂  can be calculated by using program 
units which are generated by using the reverse mode of the 
automatic differentiation from the original flow solver if the 
adjoint field have been obtained. This section shows how to 
calculate the ( )T R uψ ∂ ∂  in detail.  

The flow solution u  is not an explicit function of the 
grid coordinates x , but instead it is defined implicitly through 
the solution of a set of non-linear discrete flow equation 

( ), 0R u x =                    (17) 
To solve these equations, many CFD algorithms use 

iterative methods which can be written as 

( )1 , ( , )n n n nu u P u x R u x+ = −             (18) 
where P is a non-singular square matrix which is a 
differentiable function of its arguments. If P  is defined to be 

1L−  

 RL
u

∂
=

∂
                     (19) 

where L  is the non-singular Jacobian matrix. 
Linearising Eq.(17) gives 

0LU R+ =                    (20) 
where R  is defined as 

RR x
x

∂
=

∂
                    (21) 

with both derivatives being evaluated based on the implicitly-
defined baseline solution ( )u x .  

Differentiating Eq.(18) around a fully-converged baseline 
solution in which nu u=  gives  

( )1n nu u P Lu R+ = − +               (22) 

with P  based on ( )u x . This will converge to the solution of 
Eq.(20) with exactly the same terminal rate of convergence as 
the non-linear iteration. 

Since 
1u L R−= −                    (23) 

the adjoint sensitivities satisfy the equation  
1( )TR L u−= −                  (24) 

which implies that  
0TL R u+ =                   (25) 

This equation can be solved iteratively using the adjoint 
iteration 

( )1n n T T nR R P L R u+ = − +            (26) 

where u  is the I u∂ ∂  and T nL R  is the transposed results of 
the ( )T R uψ ∂ ∂ . From the above discussion we can learn that 
the physical significance of the adjoint variables is the 
derivative of the objective function respect to the residual of 
the state equations[14].  
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It can be seen from Eq.(26), the derivative of the objective 
function with respect to the numerical solution keeps constant 
for a converged flow field. Therefore it needs to calculate only 
once. In order to solve the adjoint field, following procedure 
can be applied: initializes the adjoint variables 0R = , 
establishes the discrete adjoint module to calculate the T nL R , 
combines the above I u∂ ∂  and T nL R  to form the final 
residual, and updates the adjoint field by using the iterative 
method until reaching the final convergence.  

In order to get the gradient information of the objective 
function with respect to the design variables after getting the 
adjoint field, we can calculate the gradient as following   

TI x x=                       (27) 
In Eq.(27), the variation of the coordinates is obtained by using 
a proprietary grid generator based on the central finite 
difference method in the present work. The step size used to 
calculate the variation of the coordinates is 1E-6 m. The 
gradient of the objective function with respect to the design 
variables can be obtained by iterating through the design 
variables. 

IMPLEMENTATION AND VALIDATION 

Development of discrete adjoint code 
The discrete adjoint solver was established based on the 

in-house flow solver code. In order to reduce the requirements 
of the computational cost and memory, the top-most module of 
the discrete adjoint was constructed according to the principles 
of the automatic differentiation and the solution strategy of the 
discrete adjoint system manually. The fundamental adjoint 
subroutines were constructed from the corresponding ones in 
the flow solver by using the automatic differentiation tool with 
the reverse mode. The fundamental subroutines included those 
which were used to construct state information at the interface 
of the grid, and to calculate the inviscid flux, viscous flux, 
gradient information of the state variables and so on. Because 
the limiter subroutines in the flow solver were also used to 
generate the corresponding adjoint limiter subroutine, the 
discontinuity in the adjoint field could be dealt with the adjoint 
solver. The adjoint boundary conditions subroutines were 
directly generated from the corresponding boundary conditions 
subroutine in the flow solver without any special treatment. 
However, the calling order of the fundamental adjoint 
subroutines generated by the automatic differentiation tool was 
arranged carefully according to the principle of the automatic 
differentiation with the reverse mode.  

As a result, the requirement of the memory of the adjoint 
solver was increased by 120 percent as compared with that of 
the original CFD solver. The computational cost of the discrete 
adjoint solver was about 2.5 time of that associated with the 
original flow solver. 

Verification of adjoint solver 
The verification of the adjoint solver was performed based 

on the following method. Firstly, suppose the adjoint code 
evaluate 

( )T TR u Aψ ψ∂ ∂ = , ( ) ( )R u
A u

u
∂

≡
∂

        (28) 

According to the follow identity 
T T Tx Ay y A x=                  (29) 

for any two vector x  and y , an approximation to Ay  can be 
obtained by using finite differences for some small 0ε > .  

( ) ( )1Ay R u y R uε
ε

≈ + −⎡ ⎤⎣ ⎦             (30) 

The correctness of the discrete adjoint code generated 
using the automatic differentiation tools can be verified using 
the dot-product test method as following:  

(a) Choose a random vector y  whose elements lie in (-1, 
+1) and a small step size 0ε > , compute  

( ) ( )1t R u y R uε
ε

= + −⎡ ⎤⎣ ⎦             (31) 

(b) Set 1x =  and compute Ts A x=  using the discrete 
adjoint code;  

(c) Verify the T Tx t y s≈ .  
Since t  is a finite difference approximation, we have to 

try out different values of ε  to get a good agreement between 
the two values in the last step. In present work, several step 
sizes from 1E-10 to 1E-6 were used to validate the adjoint 
solver code.  

OPTIMIZATION SYSTEM 

Parameterization 
The parameterization of the turbomachinery cascade was 

implemented based on the Non-uniform B-Spline library. The 
pressure side and the suction side of the profile for a 2D 
turbomachinery cascade were splitted firstly, and then the 
parameterization of the pressure side and the suction side were 
performed respectively. The distribution of the control points 
along the parameterization curve was controlled through setting 
the several stretch factors. 

Grid Generation 
A multi-block grid generator for 2D turbomachinery 

cascade was implemented based on the Transfinite 
Interpolation (TFI) method. The H-Grid topology was used for 
the leading and the trailing regions, while the O-Grid topology 
was used for the blade region. In order to improve the quality 
of the grid, a Laplace smoothing functionality was appended. 
The output formats supported by the grid generator included 
the PLOT3D, TECPLOT and so on. 

Flow Solver 
An in-house flow field solver was used to perform the 

numerical simulation of the turbomachinery cascade. In order 
to evaluate the objective function and to satisfy the requirement 
of generating the discrete adjoint solver based on the previous 
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theory by using the automatic differentiation tool, the flow 
solver was adjusted properly, and validated against several 
commercial CFD solvers firstly. The solver was implemented 
based on the finite volume method with a multi-block 
structured grid. The non-dimensional compressible Reynolds 
Averaged N-S (RANS) equations were solved. The state 
variables were stored at the cell center. The information 
exchange between the blocks was implemented by defining 
interface boundary conditions in advance. The discretisation of 
the space and the time adopted the method of lines[30]. The 
inviscid convective fluxes were calculated based on Roe 
scheme of the flux-difference splitting. The reconstruction of 
the left and right state variables at the face of cell was 
implemented based on the Van Leer’s MUSCL (Monotone 
Upstream-Centered Schemes for Conservation Laws) 
approach[30]. Moreover, the MUSCL interpolation was 
enhanced by introducing several limiters. The viscous fluxes in 
the governing equations were evaluated from variables 
averaged at the faces of the control volume. The first 
derivatives of the velocity components and of the temperature 
were accomplished based on the Green’s theorem by 
constructing of an auxiliary control volume. The temporal 
discretisation of the governing equations contained the multi-
stage Runge-Kutta explicit scheme and the three factor 
approximate factorization implicit scheme. Some turbulence 
models, such as k ε−  and k ω−  two equation turbulence 
models, were implemented in the CFD solver. In order to 
accelerate convergence, several technologies, such as local 
time-stepping, residual smoothing and multi-grid, were 
implemented.  

Discrete Adjoint Field Solver 
The discrete adjoint field solver was implemented based 

on the above in-house flow field solver by using selectively the 
automatic differentiation tool Tapenade. Currently, the multi-
stage Runge-Kutta explicit scheme and the three factor 
approximate factorization implicit scheme were implemented to 
calculate the adjoint field. Several acceleration technologies, 
such as local time step, multi-grid method, were implemented 
in the discrete adjoint solver in order to accelerate convergence. 
In the present work, the three factor approximate factorization 
implicit scheme was used because of its faster computation 
speed. Currently there wasn’t turbulence model included in the 
adjoint field solver. Further work will introduce turbulence 
model to improve the solver farther. 

Optimization Flow Chart 
The whole optimization flow chart is shown in Fig. 1. The 

optimization algorithm used in the present work was the 
conjugate gradient optimization algorithm. After obtaining the 
flow field solution, the discrete adjoint solver read the solution 
and started to evaluate the adjoint field iteratively. The 
sensitivity information was obtained by coupling the adjoint 
field solution and the variation of the coordinates calculated 
with the center-difference method. 

NUMERICAL EXAMPLES 
In order to verify the validity and efficiency of the 

optimization design system established in this paper, a typical 
2D transonic turbine cascade was optimized under the viscous 
flow environment based on the proposed optimization system. 
The objective function was the entropy generation ratio 
through the cascade passage. At the same time, a mass flow 
ratio constraint was added in order to keep a constant mass 
flow ratio. The working condition of the cascade is shown in 
Table 1.  

 

Fig. 1  Optimization flow chart 

Tab. 1  Working condition of the turbine cascade 

Fluid Perfect air 

Blade number 30 

Middle diameter (m) 0.24 

Inlet total temperature  (K) 709.0 

Inlet total pressure (Pa) 344,000.0 

Inlet flow angle (deg) 0 

Outlet static pressure (Pa) 172,370.0 

The 2D cascade profile was divided into suction side and 
pressure side, and each side was parameterized by using Non-
uniform B-Spline. The number of the control points used to 
parameterize the suction side and the pressure side was 39 and 
34, respectively. In order to simplify the optimization process, 
we chose to optimize the suction side and selected 10 control 
points of the Non-uniform B-Spline as the design control 
points, with the leading and trailing edge geometry fixed. The 
distribution of the control points on both pressure side and 
suction side is shown in Fig. 2. The control points marked with 
filled red square were the adjustable control points during the 
optimization process, which were labeled from the leading edge 
to the trailing edge with 1 to 10 respectively. The coordinates 
of the adjustable control points were taken as the design 
variables. The total number of the design variables was 20.  



 7 Copyright © 2011 by ASME 

A 2D H-O-H multi-block structured grid of 9,467 nodes 
was generated by a multi-block grid generator based on the TFI 
method and Laplace smoothing technology. The computational 
grid generated is shown in Fig. 3. It can be seen from Fig. 8 
that the wake and shock wave are clearly visible, which 
indicates that the grid quality satisfies the requirement of the 
flow solver. 

 

Fig. 2  Blade parameterization method 

The numerical simulation of the flow field was performed 
by solving the steady non-dimensional compressible N-S 
equation with the in-house CFD solver. The boundary 
conditions were given as follows: the total pressure, the total 
temperature and the axial flow direction were given at the inlet; 
the static pressure was given at the outlet. The desired 
convergent target of each simulation was that the root mean 
square residuals of the momentum and mass equations, energy 
equation reached 1E-6. The adjoint field was analyzed based on 
the discrete adjoint solver developed in the present work. The 
convergence target of each simulation was the root mean 
square residuals of the adjoint equations reached 1E-5. The 
gradient of the objective function was calculated using the 
discrete adjoint method described previously.  

The objective function was defined as follows: 
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  (32) 

where, C is the weight coefficient of the mass flux constraint, 
and here 300C = , ref

sΔ is the reference entropy generation ratio 
from the inlet to the outlet of the cascade, which was set as 

0.0002 during the optimization process. After the initial 
iterative step, the gradient components of the objective function 
J  with respect to the 20 design variables is shown in Fig. 4. 
The gradient components of the objective function with respect 
to the 20 design variables calculated by using the center finite 
difference method with step size of 1E-6 m is given in the 
figure in order to verify the validity of the adjoint solver. The 
comparison result indicates almost the same trend of the 
gradients computed by using the adjoint method and the center 
finite difference method, respectively. It indicates the validity 
of the current discrete adjoint solver. It can be seen from the 
figure, the largest partial gradient occurs at the adjustable 
control points 6, 7 and 8, which just locates at the throat of the 
cascade passage. It indicates that the most losses locate at the 
cascade throat at the initial step.  

 

Fig. 3  Computational grids 

 

Fig. 4  Gradient components at the first iterative step 

The adjoint field at the initial iterative step is shown in 
Fig. 5. The variables of 1

ψ  and 4
ψ  represent the adjoint 

density and density pressure, respectively. While the variables 
2

ψ  and 3
ψ  represent the adjoint velocities of velocities u  

and v , respectively. The absolute value of the adjoint variable 
indicates level of the sensitivity according to the meaning of 
the adjoint variable. From the distribution of the four adjoint 
variables, we can see there is a high value region near the 
passage throat. The sensitivity of the design variables near the 
throat region should be higher as compared with design 
variables in other region, which has been verified from the 
gradient information in Fig. 4. 
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psi1
853.1
665.3
477.6
289.8
102.0
-85.7

-273.5
-461.2
-649.0
-836.7

-1024.5
-1212.2
-1400.0

 

a) Distribution of 1
ψ  

psi2
630.6
353.1

75.5
-202.0
-479.6
-757.1

-1034.7
-1312.2
-1589.8
-1867.3
-2144.9
-2422.4
-2700.0

 

b) Distribution of 2
ψ  

psi3
735.7
478.6
221.4
-35.7

-292.9
-550.0
-807.1

-1064.3
-1321.4
-1578.6
-1835.7
-2092.9
-2350.0

 

c) Distribution of 
3

ψ  

psi4
324.1
260.4
196.7
133.1

69.4
5.7

-58.0
-121.6
-185.3
-249.0
-312.7
-376.3
-440.0

 

d) Distribution of 
4

ψ  

Fig. 5  Adjoint fields at the initial iterative step 

The objective function value and the mass flow ratio were 
non-dimensional with respect to the reference values which 
were given in advance. Figure 6 shows the convergence history 
of the normalized objective function and the change history of 
the normalized mass flow ratio through the passage with 
relative to the initial values of the cascade for the sake of 
succinctness. It indicates that the optimization process gets 
convergence by 29 iterative steps and takes 88 times flow field 
computation with 20 design variables. 

 

Fig. 6  Convergence history 
 
The comparison between the profiles corresponding to the 

initial cascade and the optimized one is shown in Fig. 7. The 
thickness of the optimized cascade profile in the regions after 
the leading edge and after the throat is reduced a little as 
compared with that of the initial cascade profile. 

 
Fig. 7  Comparison of cascade profiles 
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The comparison of the entropic generation ratio, the mass 
flow ratio of the cascades and the objective function value are 
listed in Table 2. The entropic generation ratio was reduced by 
23.6%, while the mass flow ratio through the final cascade 
passage was only reduced by 0.001% as compared with the 
values correlated to the initial cascade. Figure 8 gives a 
comparison of the Mach number contours in blade passage. 
From the figure we can see that the optimization system is able 
to weaken the shock wave strength in the trailing edge. The 
shock wave strength in the region after the throat is enhanced 
as compared with that of the initial cascade.  

Tab. 2  Comparison of objective function and mass 
flow ratio  

Items Initial Final Changed 

Mass flow ratio 6.23236 6.23230 -0.001% 

Entropy generation ratio 3.067E-2 2.341E-2 -23.66% 

Objective function 153.47 117.16 -23.66% 

 

Mach

1.23
1.16
1.09
1.02
0.94
0.87
0.80
0.73
0.66
0.59
0.52
0.45
0.38
0.31
0.24
0.17
0.10

 

a) initial cascade 

Mach

1.23
1.16
1.09
1.02
0.94
0.87
0.80
0.73
0.66
0.59
0.52
0.45
0.38
0.31
0.24
0.17
0.10

 

b) final cascade 
Fig. 8  Comparison of the Mach number contours 

The entropy generation ratio along the pitch at the outlet 
of the computational domain is shown in Fig. 9. It can be seen 
from the figure, the entropy generation ratio at the outlet of the 
final cascade in the region between the 0-25% of the pitch and 
the 50%-100% of the pitch is reduced as compared with that of 

the initial cascade. The area covered by the curve and the y-
axis indicates the total entropy generation ratio from the inlet to 
the outlet of the cascade. It can also be seen from the figure, the 
area is reduced a lot as compared with that of the initial 
cascade. 

 

 

Fig. 9  Comparison of entropy generation ratio 

CONCLUSION 
This paper focused on the study of direct design 

optimization by using the discrete adjoint method for the 
turbomachinery cascade. An aerodynamic shape design 
optimization system based on the discrete adjoint method for 
the turbomachinery blades in 2D viscous flows environment 
was established and validated, by coupling up the 
parameterization technology based on Non-uniform B-Spline 
technology, the structured multi-block grid generation 
technology, the in-house CFD solver and the discrete adjoint 
solver. A typical 2D transonic turbine cascade was optimized 
under the viscous flow environment. The minimization of the 
entropy generation rate was taken as the objective function and 
a mass flow rate constraint was added.  

According to the optimization result, the thickness of the 
optimized cascade profile in the regions after the leading edge 
and after the throat is reduced a little with unchanged throat 
diameter. The shock wave strength at the trailing edge is 
weakened as compared with that of the initial cascade profile. 
The entropic generation ratio was reduced by 23.6%, while the 
mass flow ratio through the final cascade passage was only 
reduced by 0.001% as compared with the initial cascade. The 
validity and efficiency of the optimization design system were 
proved. 
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