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ABSTRACT 
 This paper presents an approach of the continuous 
adjoint system deduction based on the variation in grid node 
coordinates, in which the variation in the gradient of flow 
quantity is converted into the gradient of the variation in flow 
quantity and the gradient of the variation in grid node 
coordinates, which avoids the coordinate system transforming 
in the traditional derivation process of adjoint system and 
make the adjoint system much more sententious. By 
introducing the Jacobian matrix of viscous flux to the gradient 
of flow variables, the adjoint system for turbomachinery 
aerodynamic design optimization governed by compressible 
Navier-Stokes equations is derived in details. Given the 
general expression of objective functions consisted of both 
boundary integral and field integral, the adjoint equations and 
their boundary conditions are derived, and the final expression 
of the objective function gradient including only boundary 
integrals is formulated to reduce the CPU cost. Then the 
adjoint system is numerically solved by using the finite 
volume method with an explicit 5-step Runge-Kutta scheme 
and Riemann approximate solution of Roe’s scheme combined 
with multi-grid technique and local time step to accelerate the 
convergence procedure. Finally, the application of the method 
is illustrated through a turbine cascade inverse problem with 
an objective function of isentropic Mach number distribution 
on the blade wall.  

NOMENCLATURE 
A , B  Matrices defined in this paper 

CFL Courant-Friedrichs-Lewy number 

E  State equations 

if  Vector of inviscid flux 

vif  Vector of viscous flux 

I  Objective function 

J  Augmented objective function 

M  Field integral term of objective function 

Ma  Mach number 

N  Boundary integral term of objective function 

in  Component of outward unit normal vectors 
p  Static pressure 

0p  Total pressure at the inlet 

Res  Vector of numerical residual of adjoint equation 

Source  Vector of source term of adjoint equation 

T  Temperature 

iu  Velocity components 

ix  Cartesian coordinates 
α  Design variables 

SΔ  Element area 

δ  Variation operator with respect to design 
variables 

ijδ  Kronecker symbols 

φ  Flow quantity 
γ  Ratio of specific heats 

κ  Thermal conductivity 
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cΛ� , T�  Matrices defined in this paper 

cΛ , vΛ  Sum of the convective and viscous spectral radii 
over all faces on the control volume respectively

λ  Second viscosity coefficient 
μ  Dynamic viscosity 

Π  Variable defined in this paper 
ρ  Density 

nσ  Viscous stress of normal direction 

ijτ , inτ  Viscous stress 

Ω  Volume 

ω  Vector of flow variables 

′ω  
Vector of flow variables gradient with respect to 
Cartesian coordinates 

ψ  Vector of adjoint variables 

Subscripts and Superscripts 
blade Blade wall boundary 

hub Hub wall boundary 

in Inlet boundary 

is Isentropic 

L, R 
The left and right control volume of the element 
boundary respectively 

n Normal direction of the surface 

out Outlet boundary 

per Periodical boundary 

shroud Shroud wall boundary 

T  Matrix transpose symbol 

v Viscous 

wall Wall boundary 

Γ  Boundary of turbomachinery cascade 

Ω  Control volume 

∂Ω  Control volume boundary faces 

Abbreviation 
2D Two-dimensional 

3D Three-dimensional 

CFD Computational Fluid Dynamics 

FMG Full Multi-grid method 

PDEs Partial differential equations 

1. INTRODUCTION 
 Generally, gradient-based aerodynamic shape optimal 
design involves a limited number of cost functions (e.g., lift, 

drag, or target distribution of pressure), but a large number of 
design variables which are applied to search through a wider 
range of possible designs and to obtain better performances. 
Given the large number of design variables, conventional 
gradient-based methods (e.g. finite differences, complex 
variables, or linearized approaches) which compute the 
gradient at a cost proportional to the number of variables are 
clearly inefficient. On the limit of the current computing 
resources, the issues focus on aerodynamic shape optimization 
based on control theory [1-24]. In this method, adjoint system 
is adopted as the same as optimal control problems, and the 
gradient of cost functions with respect to design variables can 
be determined by solving the adjoint equations with 
coefficients depending on the solution of the flow equations. 
The cost for solving the adjoint equations is approximate to 
the cost for solving flow equations, so that sensitivity analysis 
is independent of the number of design variables and 
proportional to the number of aerodynamic cost functions. 
Thus, for aerodynamic shape optimization problems, the 
adjoint method seems to be an attractive alternative. Two 
adjoint methods, the continuous and the discrete ones, have 
been proposed in the literature. In the continuous adjoint 
method, the adjoint PDEs are first derived from the flow ones 
and then discretized, and in the discrete one, the discrete 
adjoint equations are derived directly from the discretized 
flow equations. 
 Adjoint method was firstly introduced into fluid 
dynamics by Pironneau [2], and the first application in 
aeronautical field was performed by Jameson [3]. Combining 
the adjoint method with CFD technology, Jameson developed 
the optimal design method and applied it to a transonic flow 
case. In succession, Reuther and co-workers published several 
papers about this approach [4-9], both continuous and discrete 
methods for inverse problems or direct problems governed 
respectively by potential equations, Euler equations and 
Navier-Stokes (N-S) equations. These literatures dealt with 
problems from the 2D/3D airfoil design to the complex 
aircraft configurations design, from the drag minimization of 
wings to the noise reduction of supersonic wings. 
 In recent years, the adjoint method has been extended 
into the internal flow in turbomachinery blades for 
aerodynamic optimization design [10,11]. Now the application 
of the adjoint method to turbomachinery blading aerodynamic 
design optimization has become a research focus. 
Campobasso et al [12] discussed the use of both steady and 
unsteady discrete adjoint methods for the design of 
turbomachinery blades. Florea and Hall [13] proposed a 
discrete adjoint solver based on the time-linearized method for 
sensitivity analysis of an unsteady inviscid flow through 
turbomachinery cascades. Wu et al [14], Papadimitriou and 
Giannakoglou [15,16] developed continuous adjoint solvers 
for 2D/3D turbomachinery blading aerodynamic design 
optimization. Li and Feng [17-19] applied the continuous 
adjoint method to the 2D and 3D inverse design of turbine 
blades. Wang and He [20,21] successfully employed adjoint 
aerodynamic design optimization to blades in multi-stage 
turbomachines. Li and Feng [22] presented an adjoint 
optimization technique and its application to the design of a 
transonic turbine cascade by minimizing of entropy generation 
rate. Luo et al [23] applied a viscous adjoint method to reduce 
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secondary flow loss of a linear cascade by the optimization of 
blade redesign and endwall contouring. Wang and Li [24] 
applied the adjoint method to turbomachinery blading 
aerodynamic design optimization in 3D inverse design and 
getting rid of flow separation design. 
 The traditional deduction of the adjoint system method 
needs to introduce the coordinate transformation matrices [3], 
and the variation in objective function with respect to design 
variables should be converted into calculating the variation in 
objective function with respect to coordinate transformation 
matrices. Furthermore, when using the continuous adjoint 
method, how to deal with the viscous term of the flow 
governing equations and the boundary conditions is still a 
challenging issue in the adjoint system derivation due to their 
difficulties. Traditionally, to obtain the viscous term of adjoint 
equations, the expansion forms of viscous terms in flow 
governing equations should be given and the variation in 
viscous stresses should be expressed in terms of variations in 
the velocity components and geometry [3]. Both above 
mentioned make the derivation procedure of the adjoint 
system in viscous flows much more cumbersome and 
error-prone. Other authors [25] have opted to use the discrete 
adjoint method combined with automatic differentiation tools 
to overcome these limitations. 
 In this paper, an approach of the adjoint system 
derivation based on the variation in grid node coordinates [16] 
is applied, in which the variation in the gradient of flow 
quantity ( ( / )ixδ φ∂ ∂ ) is converted into the gradient of 
variation in flow quantity ( ( ) / ixδφ∂ ∂ ) and the gradient of the 
variation in grid node coordinates ( ( ) /k ix xδ∂ ∂ ), which 
avoids the coordinate system transforming in the conventional 
derivation process of adjoint system and makes the derivation 
process much more intuitive. By introducing the Jacobian 
matrix of viscous flow flux to the gradient of flow variables 
defined in reference [18], the viscous term of adjoint system is 
derived succinctly and intuitively. For the first time by 
combining the two methods mentioned above, the adjoint 
system for the general problem of turbomachinery 
aerodynamic design optimization governed by compressible 
Navier-Stokes equations is derived in detail. Given the general 
expression of objective functions containing both boundary 
and field contributions, the adjoint equations and their 
boundary conditions are derived, and the final expression of 
the objective function gradient with respect to the design 
variables which depended only on the coordinates’ variation 
along the boundaries of the domain is formulated. 
Subsequently, the adjoint system is numerically solved by 
using the finite volume method with an explicit 5-step 
Runge-Kutta scheme and Riemann approximate solution of 
Roe’s scheme combined with multi-grid technique and local 
time step to accelerate the convergence procedure. Finally, a 
numerical example of a turbine cascade inverse problem is 
presented with an objective function of isentropic Mach 
number distribution on the blade wall to demonstrate the 
ability of the present optimization method. Results show that 
the proposed optimization method has a good performance 
and can be adapted for the inverse problem in aerodynamic 
shape design of turbomachinery cascades. 

2. ADJOINT FORMULATION OF GENERAL 
OPTIMIZATION PROBLEM 

 Aerodynamic shape optimization based on the adjoint 
method employs the control theory of PDEs system, and the 
gradient of cost functions with respect to design variables is 
calculated indirectly by solving the flow governing equations 
and then the adjoint equations, each only one time, and the 
repeated calculation for the solution of flow fields has been 
avoided. As a kind of optimization algorithm based on 
gradient, the adjoint method makes the computational 
complexity free of design variable numbers. Being the adjoint 
method cost independent of the number of design variables, it 
provides the sensitivity analysis required by gradient-based 
optimizers in a fast and inexpensive manner. 
 Here the general aerodynamic shape optimization 
problem for turbomachinery cascade has been considered. A 
typical shape optimization problem minimizes an objective 
function I  with respect to the parameterized α  of body 
shape Γ , under the given constrains jC . The general 
problem for the aerodynamic optimization of turbine cascades 
can be described as follows 

 

( , ) min, . .

( , ) 0,
( , ) 0, 1j

I s t

on
C j m

α
α

α
α

∈Λ

Γ

→⎧
⎪⎪ = Ω⎨
⎪ ≥ ≤ ≤⎪⎩

ω

ω
ω

E  (1) 

Where, ( , ) 0α =ωE  are the N-S equations, which define a 
unique flow ω  for the given shape Γ  in domain ΓΩ , and 
constrains ( 1,2, , )jC j m= ⋅ ⋅ ⋅  include geometric and other 
criteria. 
 Using Einstein notations, the unsteady N-S equations in 
Cartesian coordinates can be formulated as 

  
( ) 0, 1,2 2 ; 1,2,3 3i vi

i

i in D i in D
t x

∂ −∂
+ = = =

∂ ∂
ω f f

 (2) 

in which, the conservation flow variables ω , inviscid flux 
vector if , and viscous flux vector vif  are defined in the 
same way as reference [6]. 
 Introducing the conception of the adjoint system based 
on the control theory, and defining the adjoint vector as  

1 2{ , , , } , 4 2 ; 5 3T
m m in D m in Dψ ψ ψ= = ="ψ  (3) 

in which, the adjoint vector ψ  have the same space size of 
the flow vector ω . 

Then, the augmented objective function can be defined as 

 T i vi

i

J I dV
xΩ

⎡ ⎤∂ − ∂
= − ⎢ ⎥∂⎣ ⎦

∫ ψ
f f

 (4) 

which means that the augmented objective function J  is 
identically equal to the objective function I  defined in Eq.(1) 

for the steady flow (
( ) 0i vi

ix
∂ −

=
∂

f f
). To perform the 

sensitivity analysis, the variation in the augmented objective 
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function J  with respect to design variables takes the form 

 ( )T i vi

i

J I dV
xΩ

δ δ δ
⎡ ⎤∂ −

= − ⎢ ⎥∂⎣ ⎦
∫ ψ

f f  (5) 

 In order to formulate the adjoint problem, Gauss’ 
divergence theorem is applied to reduce the order of flow 
variable variations, and the variation in the partial derivative 
in Eq.(5) should be transformed to the partial derivative of a 
variation. Thus, for any flow quantity φ , in reference [16], 
the formula can be written as 

 
( ) ( )k

i i k i

x
x x x x

δφ δφ φδ
∂ ∂⎛ ⎞∂ ∂

= −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (6) 

 Equation (6) expresses the variation in a spatial 
derivative of φ  in terms of the spatial derivative of δφ  and 
the spatial derivative of the variation in position vector ( kxδ ). 
Using this equation, the variation in gradients is transformed 
to gradients of variations avoiding the coordinate system 
transforming in the conventional derivation process of adjoint 
system and making the derivation process much more 
intuitive, and then Gauss’ divergence theorem can be 
employed conveniently.  
 Subsequently, the adjoint equations and boundary 
conditions as well as the final formula for the general 
objective function gradient for viscous flows will be derived. 
Without loss of generality, the following analysis is valid for 
2D or 3D aerodynamic design problems. 

2.1  Variation Terms in N-S Equations 
 The function of the adjoint method is to separate the 
variations in flow variables and design variables from the 
variation in the augmented objective function. Thus, Eq.(5) 
should be expanded. Firstly, and by using Eq.(6) and Gauss’ 
divergence theorem, the second term on the right hand side of 
Eq.(5) can be written as 

( )T i vi

i

dV
xΩ

δ
⎡ ⎤∂ −

− ⎢ ⎥∂⎣ ⎦
∫ ψ

f f ( )T
i vi in dSδ

∂Ω
= − −∫v ψ f f  

( )
T

i vi
i

dV
x

δ
Ω

∂
+ −

∂∫
ψ f f  

( ) jT i vi

j i

x
dV

x x
δ

Ω

∂∂ −
+

∂ ∂∫ ψ
f f

 (7) 

in which, ( ) i vi vi
i vi j

j

′
′δ δ δ − δ

∂ ∂ ∂
− = −

∂ ∂ ∂
ω ω ω

ω ω ω
f f ff f , and 

( ) k
j

j j k j

x
x x x x

′ δδδ δ ∂∂ ∂ ∂
= = −

∂ ∂ ∂ ∂
ω ω ωω , so that the variation in 

the flow flux can be written as 

( )( ) ( )i vi vi k
i vi

j j k j

x
x x x′

δδδ δ −∂ − ∂ ∂∂ ∂
− = −

∂ ∂ ∂ ∂ ∂
ω ωω

ω ω
f f ff f  (8) 

 In order to avoid transforming the variation in stresses 
into variations in velocity components and geometry, the 
Jacobian matrices of inviscid and viscous flux with respect to 

both the flow variables and gradients of variables should be 
defined as 

i
iA ∂
=
∂ω
f

, vi
viA ∂
=
∂ω
f

, i
ix

′ ∂
=
∂
ωω ,

( )
vi

ij
j

B B ′

⎡ ⎤∂⎡ ⎤= = ⎢ ⎥⎣ ⎦ ∂⎢ ⎥⎣ ⎦ω
f

 (9) 

Then Eq.(7) is further rewritten as 

( )T i vi

i

dV
xΩ

δ
⎡ ⎤∂ −

− ⎢ ⎥∂⎣ ⎦
∫ ψ

f f ( )T
i vi in dSδ

∂Ω
= − −∫v ψ f f  

( )
T

i vi ij
i j

A A B dV
x xΩ

δδ
⎡ ⎤∂ ∂

+ − −⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

∫
ψ ωω  

T
k

ij
i k j

xB dV
x x xΩ

δ∂∂ ∂
+

∂ ∂ ∂∫
ψ ω

 

( ) jT i vi

j i

x
dV

x xΩ

δ∂∂ −
+

∂ ∂∫ ψ
f f

 (10) 

 In order to disappear the field integrals with respect to 
the variation of grid node coordinates in the final expression 
for the augmented objective function gradients, the third and 
the fourth terms on the right hand side of Eq.(10) should be 
formulated as follows by using Gauss’ divergence theorem,  

T T
k

ij ij k
i k j j i k

xB dV B x dV
x x x x x xΩ Ω

δ
δ

⎛ ⎞∂∂ ∂ ∂ ∂ ∂
= − ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∫ ∫
ψ ω ψ ω

 

T

ij k
i j k

B x dV
x x xΩ

δ
⎛ ⎞∂ ∂ ∂

− ⎜ ⎟∂ ∂ ∂⎝ ⎠
∫

ψ ω
 

T

ij j k
i k

B n x dS
x xΩ

δ
∂

∂ ∂
+

∂ ∂∫v ψ ω
 (11) 

( ) ( )T
jT i vi i vi

k
j i i k

x
dV x dV

x x x xΩ Ω

δ
δ

∂∂ − ∂ −∂
= −

∂ ∂ ∂ ∂∫ ∫
ψψ

f f f f
 

( )T i vi
k

i k

x dV
x xΩ

δ
⎛ ⎞∂ −∂

− ⎜ ⎟∂ ∂⎝ ⎠
∫ ψ

f f
 

( )T i vi
i k

k

n x dS
xΩ

δ
∂

∂ −
+

∂∫v ψ
f f

 (12) 

In steady N-S equations, there is 
( ) 0i vi

ix
∂ −

=
∂

f f
, which 

means that 
( ) ( ) 0i vi i vi

i k k ix x x x
⎛ ⎞ ⎛ ⎞∂ − ∂ −∂ ∂

= =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

f f f f
. And 

also, there is 
( ) ( )i vi

i vi ij
k k k j

A A B
x x x x

⎛ ⎞∂ − ∂ ∂ ∂
= − − ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

ω ωf f
. 

So, Eq.(12) can be rewritten as  

( ) jT i vi

j i

x
dV

x xΩ

δ∂∂ −
∂ ∂∫ ψ

f f
 

( )
T

i vi k
i k

A A x dV
x xΩ

δ∂ ∂
= − −

∂ ∂∫
ψ ω
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T

ij k
i k j

B x dV
x x xΩ

δ
⎛ ⎞∂ ∂ ∂

+ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
∫

ψ ω
 

( )T i vi
i k

k

n x dS
xΩ

δ
∂

∂ −
+

∂∫v ψ
f f

 (13) 

Therefore, Eq.(11) and Eq.(13) can be summed of 

( )T
jTk i vi

ij
i k j j i

xxB dV dV
x x x x xΩ Ω

δδ ∂∂ ∂ −∂ ∂
+

∂ ∂ ∂ ∂ ∂∫ ∫
ψ ω ψ

f f
 

( )
T T

i vi ij k
i j i k

A A B x dV
x x x xΩ

δ
⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂

= − − +⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
∫

ψ ψ ω
 

T

ij j k
i k

B n x dS
x xΩ

δ
∂

∂ ∂
+

∂ ∂∫v ψ ω
 

( )T i vi
i k

k

n x dS
xΩ

δ
∂

∂ −
+

∂∫v ψ
f f

 (14) 

 Using Gauss’ divergence theorem in the second term on 
the right hand side of Eq.(10) and combining Eq.(14), the final 
expression of the variation in N-S equations can be written as 

( )T i vi

i

dV
xΩ

δ
⎡ ⎤∂ −

− ⎢ ⎥∂⎣ ⎦
∫ ψ

f f
 

( ) ( )
T T

i vi ij k
i j i k

A A B x dV
x x x xΩ

δ δ
⎡ ⎤ ⎛ ⎞∂ ∂ ∂ ∂

= − +⎢ ⎥ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥ ⎝ ⎠⎣ ⎦
∫

ψ ψ ωω −  

T

ij j k
i k

B n x dS
x xΩ

δ
∂

∂ ∂
+

∂ ∂∫v ψ ω ( )T i vi
i k

k

n x dS
xΩ

δ
∂

∂ −
+

∂∫v ψ
f f

 

T

ij j
i

B n dS
xΩ

δ
∂

∂
−

∂∫v ψ ω ( )T
i vi in dS

Ω
δ

∂
− −∫v ψ f f  (15) 

 With the help of previous expressions, the variation in 
N-S equations is transformed into field integral and boundary 
integrals. In order to take into account the boundary 
conditions (inlet, outlet, wall and periodical boundary) of N-S 
equations, the boundary integrals of Eq.(15) will be discussed 
in detail as follows. 
Inlet and outlet boundary integral terms 
 In N-S equations, the flow viscous effect on the inlet and 
outlet boundary can be neglected. And the boundary integral 
of Eq.(15) at the inlet and outlet can be written as 

 
,

( )T
i iin out

n dSδ∫ ψ f
,

T
i iin out

A n dSδ= ∫ ψ ω  (16) 

where, 1,2i =  in 2D and 1,2,3i =  in 3D. 
Solid wall boundary integral term 
 Due to the non-slip boundary condition of the N-S 
equations on the solid wall ( 0iu = ), the solid wall boundary 
integral term of Eq.(15) can be formulated as 

( )
T

T
i vi i ij jwall wall

i

n dS B n dS
x

δ δ∂
− − −

∂∫ ∫
ψψ ωf f  

( )1
T

i i vi iwall
p n dSψ δ+⎡ ⎤= − − −⎣ ⎦∫ ψ f f m

wall
TdS

n
ψ

κ δ
∂

−
∂∫  

( )1i i in mwall

Tn p dS
n

ψ δ δτ κψ δ+

⎡ ⎤∂⎛ ⎞− − − ⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦
∫  (17) 

where, 1,2; 4i m= =  in 2D and 1,2,3; 5i m= =  in 3D. 

Periodical boundary integral term 
 The curvilinear integrals are counteracted on periodical 
boundary, i.e.  

 ( ) 0
T

T
ij j i vi iper per

i

B n dS n dS
x

δ δ∂
= − =

∂∫ ∫
ψ ω ψ f f  (18) 

 Finally, upon substitution of Eq.(16), Eq.(17) and Eq.(18) 
into Eq.(15), the variation in N-S equations can be formulated 
as 

( )T i vi

i

dV
xΩ

δ
⎡ ⎤∂ −

− ⎢ ⎥∂⎣ ⎦
∫ ψ

f f
 

( ) ( )
T T

i vi ij k
i j i k

A A B x dV
x x x xΩ

δ δ
⎡ ⎤ ⎛ ⎞∂ ∂ ∂ ∂

= − +⎢ ⎥ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥ ⎝ ⎠⎣ ⎦
∫

ψ ψ ωω −  

T

ij j k
i k

B n x dS
x xΩ

δ
∂

∂ ∂
+

∂ ∂∫v ψ ω ( )T i vi
i k

k

n x dS
xΩ

δ
∂

∂ −
+

∂∫v ψ
f f

 

,

T
i iin out

A n dSδ−∫ ψ ω
,

T

ij jin out
i

B n dS
x

δ∂
−

∂∫
ψ ω  

( )1
m

i i in mwall

Tn p T dS
n n
ψ

ψ δ δτ κ δ κψ δ+

∂⎡ ⎤∂⎛ ⎞− − − + ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
∫  

1 ( )T
i i vi iwall

p n dSψ δ+⎡ ⎤− − −⎣ ⎦∫ ψ f f  (19) 

2.2  Variation Terms in Objective Function 
 For the general aerodynamic design of turbomachinery 
cascade, the objective function can be formulated as 

 ( ) ( )( , ) ( ), ( ) ( )I M dV N dS′

Ω
α α α α

Γ
= +∫ ∫ω ω ω ω  (20) 

This is feasible in design problems where the objective 
function is either a boundary integral (e.g. pressure deviation 
along the solid walls) or a field integral (e.g. the entropy 
generation over the flow domain). And its variation can be 
formulated as 

( ) ( ) ( ) ( )I M dV M dV N dS N dSδ δ δ δ δ
Ω Ω Γ Γ

= + + +∫ ∫ ∫ ∫  (21) 

 As the same as Eq.(10), the field integrals with respect to 
the variation of grid node coordinates in the final expression 
for the augmented objective function gradients should be 
disappeared, and the first and the second term of Eq.(21) 
should be formulated by using Gauss’ divergence theorem. 

'
'( ) i
i

M MM dV dVδ δ
Ω Ω

⎛ ⎞∂ ∂
= + ∂⎜ ⎟∂ ∂⎝ ⎠

∫ ∫ ω ω
ω ω

 

' k
i i k

M MdV x dV
x x

δ δ
Ω Ω

⎛ ⎞∂ ∂ ∂ ∂
= + ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
∫ ∫

ωω
ω ω

 

' k
i i k

M x dV
x x

δ δ
Ω

⎛ ⎞⎛ ⎞∂ ∂ ∂
− ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠
∫

ωω −
ω
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' 'i i k
i i k

M Mn dS n x dS
x

δ δ
∂Ω ∂Ω

∂ ∂ ∂
+ −

∂ ∂ ∂∫ ∫v v ωω
ω ω

 (22) 

 According to reference [16], the variation of the finite 
volume ( )dVδ  is expressed in terms of dV   

 ( ) ( )k

k

x
dV dV

x
δ

δ
∂

=
∂

 (23) 

Therefore, the second term of Eq.(21) can be expanded as 

'

'

'

( )( ) k

k

k k k
k

i
k k k

k i k

k k
k i k i

xM dV M dV
x

M x dV Mn x dS
x

M M x dV Mn x dS
x x

M Mx dV x dV
x x x

δ
δ

δ δ

δ δ

δ δ

Ω Ω

Ω ∂Ω

Ω ∂Ω

Ω Ω

∂
=

∂

∂
= − +

∂

⎛ ⎞∂∂ ∂ ∂
= − + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂ ∂
= − − ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

∫ ∫

∫ ∫

∫ ∫

∫ ∫

v

vωω
ω ω

ω ω
ω ω

 

k kMn x dSδ
∂Ω

+ ∫v  (24) 

 From Eq.(21), Eq.(22) and Eq.(24), the objective 
function variation finally reads 

( ) ( ) ( ) ( )I M dV M dV N dS N dSδ δ δ δ δ
Ω Ω Γ Γ

= + + +∫ ∫ ∫ ∫  

k
i i k

M M x dV
x x′Ω

δ δ
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

= −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫

ωω −
ω ω

 

i k k k
i k

M n x dV Mn x dV
x′Ω Ω

δ δ
∂ ∂

∂ ∂
− +

∂ ∂∫ ∫v vω
ω

  

i
i

M n dS′Ω
δ

∂

∂
+

∂∫v ω
ω

 

( ) ( ) ( )N dS N dS N dSαδ δ δ
Γ Γ Γ

+ + +∫ ∫ ∫ω  (25) 

2.3  Variation in Augmented Objective Function 
 Upon substitution of Eq.(19) and Eq. (25) into Eq.(5), 
the variation in the augmented objective function can be 
finally expressed as 

( )T i vi

i

J I dV
xΩ

δ δ δ
⎡ ⎤∂ −

= − ⎢ ⎥∂⎣ ⎦
∫ ψ

f f  

( ) ( ) ( )
T T

i vi ij k
i j i i i k

M MA A B x dV
x x x x x

AdjEQ

′Ω
δ δ

⎡ ⎤ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂
= − + + −⎢ ⎥ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎝ ⎠⎣ ⎦
∫
���������������	��������������


ψ ψ ωω−
ω ω

 

( )
,

T
i i iin out

i

M n dS A n dS N dS

AdjBC

′Ω
δ δ δ

∂ Γ

∂
+ − +

∂∫ ∫ ∫
�����������	����������

v ωω ψ ω

ω
 

( )1
m

i i in mwall

Tn p T dS
n n

AdjBC

ψ
ψ δ δτ κψ δ κ δ+

∂⎡ ∂ ⎤⎛ ⎞− − − +⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
∫

�����������	����������

 

( ) ( )1 ( )T
i i vi iwall

p n dS N dS N dS

Grad
αψ δ δ δ+ Γ Γ

⎡ ⎤− − − + +⎣ ⎦∫ ∫ ∫�������������	������������

ψ f f  

( )T i vi
i k i k

k ki

M n x dS n x dS
x x

Grad

′Ω Ω
δ δ

∂ ∂

∂ −∂ ∂
− +

∂ ∂∂∫ ∫
����������	���������

v vω ψ

ω
f f  

T

ij j k k k
i k

B n x dS Mn x dS
x x

Grad

Ω Ω
δ δ

∂ ∂

∂ ∂
+ +

∂ ∂∫ ∫
���������	��������

v vψ ω  (26) 

As shown in Eq.(26), it consists of three parts, the variation 
terms in flow variables over the flow domain (marked with 
AdjEQ); the variation terms in flow variables along the 
boundary (marked with AdjBC); and the variation terms in 
grid-coordinate (marked with Grad). Therefore, the adjoint 
system for aerodynamic shape design of turbomachinery 
cascade can be naturally derived in the following section. 

2.4  Adjoint System for General Problem 
 The adjoint system consists of the adjoint equations, the 
boundary condition of adjoint equations and the objective 
function derivatives. From Eq.(26), the adjoint equation of the 
adjoint system can be described by choosing ψ  to ensure the 
field integral marked with AdjEQ to be zero, 

( ) ( ) ( ) 0
T T

i vi ij
i j i i i

M MA A B
x x x x ′

∂ ∂ ∂ ∂ ∂ ∂
− + + − =

∂ ∂ ∂ ∂ ∂ ∂
ψ ψ

ω ω
 (27) 

with boundary conditions of adjoint system determined by 

( )1
m

i i in mwall

Tn p T dS
n n

ψ
ψ δ δτ κψ δ κ δ+

∂⎡ ⎤∂⎛ ⎞− − − +⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
∫  

( )i
i

M n dS N dS′Ω
δ δ

∂ Γ

∂
+ +

∂∫ ∫v ωω
ω

 

,
0T

i iin out
A n dSδ− =∫ ψ ω  (28) 

 It should be indicated that the coefficients of pδ , inδτ , 
Tδ  must be zero to ensure Eq.(28), which means that under 

the given adiabatic wall condition boundary the operator N  
needs to contain surface pressure, viscous stress and 
temperature. Considering that the coefficient of Tδ  is linear 
independent of that of pδ , inδτ  and can be zero, therefore 
N  must contain surface pressure and viscous stress. 
 Finally, the remaining terms in Eq.(26), denoted by Grad, 
can be expressed as the augmented objective function 
derivatives with respect to the design variables 

Jδ =
T

ij j k k k
i k

B n x dS Mn x dS
x xΩ Ω

δ δ
∂ ∂

∂ ∂
+

∂ ∂∫ ∫v vψ ω
 

( )T i vi
i k i k

i k k

M n x dS n x dS
x x′Ω Ω

δ δ
∂ ∂

∂ −∂ ∂
− +

∂ ∂ ∂∫ ∫v vω ψ
ω

f f
 

1 ( )T
i i vi iwall

p n dSψ δ+⎡ ⎤− − −⎣ ⎦∫ ψ f f  

( ) ( )N dS N dSαδ δ
Γ Γ

+ +∫ ∫  (29) 
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As shown in the equation above, although the function to be 
minimized is a field integral over the whole computational 
domain, the final expression for the augmented objective 
function gradient includes only boundary integrals which can 
readily be calculated, and it simplifies the calculations to 
reduce the CPU cost by avoiding computing the variation of 
each internal grid node coordinate with respect to the design 
variables, especially for the complex 3D configurations. 

3. NUMERICAL TECHNIQUE FOR SOLVING 
ADJOINT EQUATION 

 Just as the unsteady N-S equations are solved to find the 
asymptotic solution to the steady equation, the adjoint 
equations, Eq.(27) are augmented to an unsteady hyperbolic 
system of euqations to be numerically solved via marching in 
the time-direction. Based on the numerical technique of the 
N-S equations, the augmented unsteady equations for adjoints 
can be formed as 

( ) ( ) ( ) 0T T T
i vi ij

i j i i i

M MA A B
t x x x x ′

∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − − + =

∂ ∂ ∂ ∂ ∂ ∂ ∂
ψ ψ ψ

ω ω
 (30) 

Using the finite volume method in the N-S equations, the 
integral form of the adjoint equations in the control volume 
Ω  can be expressed as  

( )T T T
i vi i ij j

i

dV A A n dS B n dS
t xΩ ∂Ω ∂Ω

∂ ∂
− − −

∂ ∂∫ ∫ ∫v vψ ψψ  

( ) 0
i i

M M dV
x ′Ω

⎡ ⎤∂ ∂ ∂
− − =⎢ ⎥∂ ∂ ∂⎣ ⎦
∫ ω ω

 (31) 

Hence the semi-discretized form of the adjoint equations is  

1 ( )T T T
n vn in

i
FluxA

FluxB

A A S B S
t x∂Ω ∂Ω

⎛ ⎞∂ ∂⎡ ⎤− − Δ − Δ⎜ ⎟⎣ ⎦Ω ∂ ∂⎝ ⎠
∑ ∑���	��
 ���	��


ψ ψψ  

( ) 0− =ψSource  (32) 

where, n i iA A n= , vn vi iA A n= , in ij jB B n= , and the source 

term is defined as ( ) ( )
i i

M M dV
x ′Ω

⎡ ⎤∂ ∂ ∂
= −⎢ ⎥∂ ∂ ∂⎣ ⎦
∫ψ

ω ω
Source . 

 In Eq.(32), Roe’s approximate Riemann scheme is 
implemented to calculate the convective fluxes (marked with 
FluxA) of the adjoint equations, while a second-order central 
difference scheme is adopted to discretize the third derivative 
items (marked with FluxB). Hence,  

{( ) ( )
2

T T
n vn L n vn RL R

SFluxA A A A A
∂Ω

Δ
= − + −ψ ψ  

( )}T
Roe R LA+ −ψ ψ  (33) 

( )4
T T
in inL R

i iL R

SFluxB B B
x x∂Ω

⎛ ⎞Δ ∂ ∂
= + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

ψ ψ
 (34) 

and the residual vector of the adjoint equations is defined as 

( ) {( ) ( )
2

( )}

T T
n vn L n vn RL R

T
Roe R L

S A A A A

A

∂Ω

Δ
= − + −

+ −

∑ψ ψ ψ

ψ ψ

Res
 

( )4
T T
in inL R

i iL R

S B B
x x∂Ω

⎛ ⎞Δ ∂ ∂
+ + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
∑ ψ ψ

 (35) 

in which, L and R denote the left and right control volume of 
the element boundary ∂Ω , respectively, and RoeA  denotes 
the so-called Roe matrix. As the same as the definition of 

1
Roe cA T T −= Λ� � �  in the N-S equations, 1T −�  denotes the 

matrix of left eigenvectors, T�  of right eigenvectors and cΛ�  
represents the diagonal matrix of eigenvalues, and they are 
evaluated by using Roe’s averaging [26]. Then, Eq.(32) can be 
evaluated as 

 
1 ( ) ( )

t
∂

= +
Ω ∂

ψ ψ ψRes Source  (36) 

 In the present paper, an explicit 5-step Runge-Kutta 
scheme is applied for the time term in the equation above,  

0 n=ψ ψ  (37) 

1 1 1( ) ( )i i i i
i

t
α− − −Ω

Δ
⎡ ⎤= + +⎣ ⎦Ω

ψ ψ ψ ψRes Source   (38) 

1 5n+ =ψ ψ  (39) 

In which, 1 5i = ∼ , 1
1
4

α = , 2
1
6

α = , 3
3
8

α = , 4
1
2

α = , 

5 1α = , 
CFL

c v

t
C

Ω
Δ

=
Ω Λ + ⋅Λ

. t
Ω

Δ  denotes the local time 

step to accelerate the convergence procedure and CFL denotes 
the Courant-Friedrichs-Lewy number, cΛ  and vΛ  
represent a sum of the convective and viscous spectral radii 
over all faces on the control volume, which are defined in the 
same way as reference [26], and 4C =  is usually used. 
 To accelerate convergence, a Full Multi-grid (FMG) 
method in reference [26] is implemented. In this method, the 
restriction operator is defined as a sum of the residuals from 
all cells which are contained in one coarse-grid control 
volume, and the prolongation of the coarse-grid correction is 
defined as a zeroth-order prolongation operator. 

4. INVERSE DESIGN OF TURBINE BLADE 
 In this section, a numerical example of a turbine cascade 
inverse problem is presented with an objective function of 
isentropic Mach number distribution on the blade wall to 
demonstrate the ability of the present optimization method. 
Here, the objective function is defined as follows 

 ( )21
2

d
is isblade

I Ma Ma dS= −∫  (40) 
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where, 
1

02 1
1is

pMa
p

γ
γ

γ

−⎡ ⎤
⎛ ⎞⎢ ⎥= −⎜ ⎟⎢ ⎥− ⎝ ⎠⎢ ⎥⎣ ⎦

, 0p  is the total pressure 

on the inlet, p  is the static pressure on the blade wall, and 
d
isMa  is the prescribed isentropic Mach number distribution. 

It means that there are ( , , ) 0M ′α =ω ω , bladeΓ =  and 

( )21( , )
2

d
is isN Ma Maα = −ω  in Eq.(20). The variation in 

objective function is 

blade
I pdSδ δ= Π∫ ( ) ( )21

2
d

is isblade
Ma Ma dSδ+ −∫  (41) 

in which ( )
1 2

0 0

1 d
is is

is

p Ma Ma
p Ma p

γ
γ

γ

−

⎛ ⎞
Π = −⎜ ⎟

⎝ ⎠
. 

 Just as the previous description, for boundary inverse 
problem, the operator N  must contain surface pressure and 

viscous stresses. But in viscous flows, the relation 0nu
n

∂
=

∂
 

over the solid wall nodes leads to 0nσ =  (see Appendix A), 
and Eq.(41) can be switched as 

( )nblade
I p dSδ δ δσ= Π −∫  

( ) ( )21
2

d
is isblade

Ma Ma dSδ+ −∫  (42) 

due to n i innσ τ= , 1i in n = , the variation in the objective 
function can be formulated as 

( )i i in in iblade
I n n p n dSδ δ δτ τ δ= ⎡Π − −Π ⎤⎣ ⎦∫  

( ) ( )21
2

d
is isblade

Ma Ma dSδ+ −∫  (43) 

 Upon substitution of Eq.(43) into Eq.(27), Eq.(28) and  
Eq.(29), the adjoint system for the present inverse problem 
can be formulated subsequently. 

Adjoint equation of present inverse design 
 In the present inverse problem, it only considers the flow 
quantity distribution on blade wall and the objective function 

( , , )M ′α ω ω  equals to zero. Thus, the adjoint equation is 
written as 

 ( ) ( ) 0
T T

i vi ij
i j i

A A B
x x x

∂ ∂ ∂
− + =

∂ ∂ ∂
ψ ψ

 (44) 

Blade wall boundary condition 
 Here, the adiabatic wall boundary condition of the N-S 
equations is imposed on the blade surface, and it can be 

written as 0T
n

∂
=

∂
, and also 0T

n
δ ∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠

. Finally, the blade 

wall boundary condition of adjoint equation can be formulated 
as 

 
1

0

i i

m

n

n

ψ
ψ
+ = Π⎧

⎪
⎨∂

=⎪ ∂⎩

 (45) 

where, 1,2; 4i m= =  in 2D and 1,2,3; 5i m= =  in 3D. 
 Similarly, if boundary condition of the N-S equations is 
given with surface temperature and can be written as 
T constant=  and 0Tδ = , then the blade wall boundary 
condition can be expressed as 

 1

0
i i

m

nψ
ψ

+ = Π⎧
⎨ =⎩

 (46) 

Inlet and outlet boundary conditions 
 On the inlet and outlet sides, the curvilinear integral 
should be equal to zero and viscous effects can be neglected, 
the inlet and outlet boundary conditions are 

 
,

0T
i iin out

A n dSδ =∫ ψ ω  (47) 

 For the inlet and outlet boundary conditions, by using 
Thompson’s time-related boundary condition theory for 
hyperbolic PDEs, the detailed discussion is the same as that of 
the adjoint equation presented by reference [17]. 

Hub and shroud wall boundary conditions 
 In the case of 3D, the hub and shroud wall boundary 
conditions can be derived as 

2 3 4

5
5; 0

0

0 for adiabatic wall or for isothermal wall
n

ψ ψ ψ
ψ

ψ =

= = =⎧
⎪
⎨∂

=⎪ ∂⎩

 (48) 

Sensitivity analysis 
 In this paper, the blade shape is parameterized by using 
B-splines and the design variables (denoted as α ) consist of 
control dots coordinates of B-splines. Using a differential 
method, the derivative of cost function can be estimated by 
making a small perturbation on design variables. Due to the 
fixed computation domain in the body-fitted coordinates, the 
grid node coordinates have fixed values at the cascade inlet 
and outlet; and the periodic boundary integral is offset, the 
gradient of augmented objective function with respect to the 
design variables is finally written as follows in two cases. 
1) In case of 2D 

T
k

ij jblade
i k

xdJ B n dS
d x x

δ
α δα

∂ ∂
=

∂ ∂∫
ψ ω

 

( )T i vi k
iblade

k

xn dS
x

δ
δα

∂ −
+

∂∫ ψ
f f

 

1 ( )T i
i i viblade

np dSδ
ψ

δα+⎡ ⎤− − −⎣ ⎦∫ ψ f f  

i
inblade

n dSδ
τ

δα
− Π∫  

( ) ( )21
2

d
is isblade

dS
Ma Ma

δ
δα

+ −∫  (49) 
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2) In case of 3D  

, ,

T
k

ij jhub shroud blade
i k

xdJ B n dS
d x x

δ
α δα

∂ ∂
=

∂ ∂∫
ψ ω

 

, ,

( )T i vi k
ihub shroud blade

k

xn dS
x

δ
δα

∂ −
+

∂∫ ψ
f f

 

1, ,
( )T i

i i vihub shroud blade

np dSδ
ψ

δα+⎡ ⎤− − −⎣ ⎦∫ ψ f f  

i
inblade

n dSδ
τ

δα
− Π∫  

( ) ( )21
2

d
is isblade

dS
Ma Ma

δ
δα

+ −∫  (50) 

After the gradient is obtained, a gradient-based steepest 
descent method is applied to the optimization. 
Numerical example and discussion 
 In this paper, the adjoint system of the inverse problem 
described previously is applied to a 2D turbine cascade by 
modifying its isentropic Mach number distribution. Table 1 
shows the working condition of the test cascade. 

Tab. 1  Working conditions of the cascade 
Working medium Air 

Total inlet temperature (K) 1,600.0 
Total inlet pressure (Pa) 2,489,000.0 

Inlet axial flow angle (deg) 0.0 
Static outlet pressure (Pa) 1,140,000.0 

Wall properties Adiabatic smooth surface 
Blade numbers 36 

Pitch diameter (m) 0.282 
 

 
Fig. 1  Designed blade and control dots 

 
The numerical simulations of flow fields are performed 

by solving the steady compressible Laminar N-S equation 
using ANSYS CFX 11.0. The boundary conditions are listed 
in Table 1. The total temperature (1,600.0 K), the total 
pressure (2,489,000.0 Pa), and the axial flow angle (0º) are 
given at the inlet. The outlet static pressure is 1,140,000.0 Pa. 

The desired convergent target of each simulations is that the 
root mean square residuals of the momentum and mass 
equations, energy equation reach (or even lower than) 10-6. 
The gradient of the objective function is calculated using the 
continuous adjoint formulation described previously. The 2D 
blade shape consists of suction and pressure surfaces 
parameterized by using B-splines. 
 In the present inverse problem of isentropic Mach 
number distribution, the source codes of the optimization 
system are programmed by C++, and the codes include 
several modules, such as blade profile parameterization by 
B-splines, automatic mesh generation, ANSYS CFX 11.0 
integrated by text-based input files, adjoint PDEs solved by 
time-marching finite volume method, sensitivity calculation 
with mesh perturbation and steepest descent algorithm.  
 The original blade and its B-splines control points are 
shown in Fig. 1. During the design process, only the suction 
side of original blade is changed and 8 control points of the 
B-splines are selected as design control dots. The leading edge, 
throat point and trailing edge of suction profile are fixed in 
order to satisfy the restriction on blade geometry.  
 In this numerical computation, two-grid scheme is taken 
and the CFL number is selected as 3. Convergence history of 
the adjoint solvers for the initial cascade is shown in Fig. 2; 
and the residual of the adjoint equations reaches 10-12 in 5000 
iterative steps of coarse grid and 10000 iterative steps of fine 
grid.  
 

  
Fig. 2  Convergence history of adjoint solver 

 
The adjoint fields of the initial cascade are given in Fig. 

3. It is shown that the largest partial gradient occurs at the 
throat section of the cascade (which can also be seen in Fig. 8, 
the 4th and 5th adjustable control dots).  
 Figures 4, 5 and 6 give the comparisons of blade profile, 
suction side curvature distribution and isentropic Mach 
number distribution respectively. They show that the design 
result agrees well with the aim isentropic Mach number, and 
the optimal blade profile is much smoother (especially at the 
throat section, see in Fig. 5).  
 With 8 design variables the optimization gets 
convergence by 76 iterative steps and takes 148 times flow 
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a) Distribution of 1ψ                                          b) Distribution of 2ψ  

     
c) Distribution of 3ψ                                          d) Distribution of 4ψ  

Fig. 3  Adjoint fields contours of the initial cascade 

          
Fig. 4  Blade geometry comparisons                   Fig. 5  Suction side curvature distribution 

             
Fig. 6  Isentropic-Mach number distribution          Fig. 7  Scaled convergence history of objective function 
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Fig. 8  Gradient components comparisons 

filed computation, the residual of objective function reaches 
10-2.5. The scaled convergence history of objective function is 
shown in Fig. 7, and the contrast diagram of the objective 
function gradient with respect to design variables between 
initial and optimal blades is shown in Fig. 8. It indicates that 
the gradient magnitude of optimal blade is reduced 
significantly in comparison to initial blade, and the gradient of 
optimal blade is nearly zero. The reverse design process falls 
into a local optimal solution, and the optimization gets the 
comparative optimal blade in an acceptable time.  

5. CONCLUSIONS 
 In the present work, an aerodynamic inverse design 
method for turbine cascade in viscous flows is developed by 
using the continuous adjoint method and N-S equations. The 
important features of the proposed formulation are as follows: 
firstly, the adjoint system is deducted based on the variation in 
grid node coordinates and the Jacobian matrices of inviscid 
and viscous fluxes; secondly, the computation of the objective 
function gradient is exclusively based on boundary integrals, 
and the repetitive grid generation of the cascade passage could 
be avoided in order to reduce the CPU cost, especially in 
complex 3D configurations; and finally, the adjoint system is 
numerically solved by using the finite volume method with an 
explicit 5-step Runge-Kutta scheme and Riemann 
approximate solution of Roe’s scheme combined with 
multi-grid technique and local time step to accelerate the 
convergence procedure. 
 The present method is validated by a turbine cascade 
inverse problem with an objective function of isentropic Mach 
number distribution on the blade wall. For boundary inverse 
problem, in order to figure out blade wall boundary condition 
of viscous adjoint system, the variation in objective function 
is redefined by introducing the variation in normal direction 
viscous stress which should be zero. Results show that the 
design result agrees well with the aimed isentropic Mach 
number, and the gradient magnitude of the optimal blade is 
reduced significantly in comparison with that of the initial 
blade. The reverse design process falls into a local optimal 

solution, and the optimization gets the comparative optimal 
blade in an acceptable time. The numerical results 
demonstrate that the adjoint equation solver in this paper can 
work effectively, and the present turbomachinery aerodynamic 
design optimization is available and has advantages both in 
accuracy and computational cost. 
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Appendix A  

 In viscous flows, there are 0nu
n

∂
=

∂
 on the wall 

boundaries, therefore  

 
( ) 0n i i i

j i j
j j

u u n un n n
n x x

∂ ∂ ∂
= = =

∂ ∂ ∂
 (51) 

i.e. 0i
i j

j

un n
x
∂

=
∂

 and 0j
i j

i

u
n n

x
∂

=
∂

 (52) 

 The continuity equation in compressible flows takes the 
form as 

 
( ) 0i

i

u
x
ρ∂

=
∂

 (53) 

i.e. 0i
i

i i

u u
x x

ρρ
∂ ∂

+ =
∂ ∂

 

due to the non-slip boundary condition of the N-S equations, 
there is 0iu =  on the wall, and there is 0ρ >  in 
compressible flows. Hence, 

 0i

i

u
x
∂

=
∂

 (54) 

 The viscous stresses are defined as 

 ji k
ij ij

j i k

uu u
x x x

τ μ λδ
⎛ ⎞∂∂ ∂

= + +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
 (55) 

where, ijδ  is the Kronecker symbols.  
With definition of the normal viscous stress 

n i in i j ijn n nσ τ τ= = . Hence, 

 ji k
n i j ij

j i k

uu un n
x x x

σ μ λδ
⎡ ⎤⎛ ⎞∂∂ ∂

= + +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
 (56) 

Upon substitution of Eq.(52), Eq.(54) and 1i in n =  into 
Eq.(56), we can get 

 0nσ =  (57) 
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