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ABSTRACT
A methodology to couple two- and three dimensional thermal
models is described. The method uses reduced order fluid models
as a mechanism to transfer heat fluxes and average temperatures at
the interface. In particular the concept of a duct-void is introduced
to ease the coupling of different types of models. A new edge-
based thermal solver, which is used in this process, is briefly
described. A realistic case, corresponding to a two-stage turbine,
is used to illustrate the usefulness of the method. It is concluded
that the temperature difference between a fully coupled a approach
and a simpler unidirectional method (in which a two-dimensional
global model is first computed and, then, the temperatures at the
interface are transferred to three-dimensional sub-components)
may be large enough to affect engineering decisions.

NOMENCLATURE
A area pointing outward to the boundary.
Al wet area per length unit.
cp fluid specific heat at constant pressure.
cv fluid specific heat at constant volume.
c specific heat for solids.
CFD Computational Fluid Dynamics code.
CPU Central Processing Unit
ε radiating emissivity of a gray body.
fi→ j view factor of j as seen from i.

∗Also associate professor at the Department of Engine Propulsion and Fluid
Dynamics of the School of Aeronautics, UPM

h convective heat transfer coefficient.
HTC heat transfer coefficient.
k thermal conductivity at solids.
ṁ mass flow.
Ω solid domain.
Q Volumetric heat source
Ql total heat per length unit.
Q heat.
q heat flux.
ρ density.
RAM Random Access Memory
R thermal resistance.
Σ solid boundary.
σ Stefan-Boltzmann constant.
SOR Successive Over-Relaxation scheme.
s arc length.
Tw local temperature at solid walls.
T∞ fluid bulk temperature.
Subscripts/superscripts
∞ fluid bulk conditions.
i,j node indices.
s Stream bulk conditions.
w solid wall.

INTRODUCTION
Gas turbines operate in an aggressive thermal environment. Main
flow-path transfers heat by convection to airfoils, casings and
eventually disks. Heat is diffused by conduction from the surface
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to the inner part of the turbine components and further to other
components by contact. When the surface temperature is large
enough radiation may play a relevant role also, making the prob-
lem even more complex. Heat transfer analysis of a whole gas
turbine, or even of one of its modules, involves tens or hundreds
of components, which makes the problem even more complex
from a logistic point of view.

Ideally, a fully-coupled 3D unsteady thermo-fluid-mechanical
model of the whole turbine could be set up and solved. However
there are several bottlenecks (e.g.: pre-processing and computing
time) that make such solution not compatible with the current
design timescales. A hierarchical approach is followed in practice.
First Computational Fluid Dynamics (CFD), 0D and 1D fluid
network models are constructed. Today a huge effort is devoted to
the development of efficient coupling methods between the fluid
and solid domains [1, 2, 3]. The motivation behind this effort is
the pursue of higher fidelity models that may eventually increase
the accuracy of the predictions.

On the solid part a 2D/Q3D thermal model of the whole turbine,
with different types of boundary conditions to take into account
convection using simple models, and even radiation effects if
needed, is first constructed. The output of this model are turbine
metal temperatures and displacements which are used as boundary
conditions for 3D detail models. This type of modeling has a
clear directional effect since usually there is no feedback of the
3D sub-models to the Q3D global models. Alternatively full 3D
models of the whole turbine could be constructed but this is by
no means an easy task in practice. An example of such a similar
methodology is shown at [4].

Here we propose a new approach in which two- and three dimen-
sional models are linked in a fully consistent way. The method
allows the use of complex three-dimensional sub-components on
demand, while keeping the modeling complexity at a low profile
there where axi-symmetric models suffice. This approach is be-
lieved to be a good compromise between increase accuracy and
additional modeling effort.

The paper first presents a description of the thermal solver with
a brief outline of the different types of boundary conditions that
are supported. Then a description of the new methodology and
the tools needed for its practical implementation are presented
and applied to the analysis of a two-stage turbine. Finally the
results of the application of the approach are compared against
the classical approach.

The solver itself, the methodology and the conclusions derived
from its application presented in this work are believed to be
original since it is difficult, in practice, to set up such simulations.
The authors are not aware that a similar work had been reported
before.
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Figure 1: Typical hybrid-cell grid and associated dual mesh.

NUMERICAL MODEL
Governing Equations
The Heat Diffusion equation is solved at the solids [5]

ρc
∂T
∂t

= ∇ · (k∇T )+Q , (1)

with either Dirichlet, T = Tw, or Newmann-like boundary condi-
tions, −(k∇T ) ·n = qw, at the boundaries, ∂Ω. The heat flux at
the wall, qw, is in general a non-linear function of T and Q is an
arbitrary volumetric heat source.

The governing equations are weakly non-linear, because of both
the non-linear dependency of the material properties with the
temperature, c(T ) and k(T ), and the boundary conditions, that
may include sophisticated correlations.

Spatial discretization
The Heat Diffusion equation in integral form for an arbitrary
control volume may be written as

∫
Ω

ρc
dT
dt

dΩ =
∫

Σ

q ·dA+
∫

Ω

Q dΩ , (2)

where q = k∇T is the heat flux, Q, the volumetric heat sources,
Ω is the solid domain, Σ its boundary and dA the differential area
pointing outward to the boundary.

The solver, known as Mephisto, uses hybrid unstructured grids to
discretize the spatial domain and may contain cells with an arbi-
trary number of faces. The solution vector is stored at the vertexes
of the cells. The control volume associated to a node is formed
by connecting the median dual of the cells surrounding it, using
an edge-based data structure (see Fig. 1). For the internal node i,
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the semi-discrete form of the system of non-linear equations (2)
can be written, using a finite volume approach, as

ρiciΩi
dTi

dt
=

nedges

∑
j=1

qi j ·Ai j +QiΩi , (3)

where Ωi is the control volume, Ai j is the area associated to the
edge i j, qi j =

1
2 (qi +q j) represents the heat flux through area Ai j,

and nedges the number of edges that surround node i . The resulting
spatially discretized equations can be recast as a summation at
each vertex of contributions along all edges meeting at that vertex.
The resulting numerical scheme is cell-centered in the dual mesh
(dashed line in Fig. 1) and second-order accurate. It may be
shown that for triangular grids the scheme is equivalent to a cell
vertex finite volume scheme.
Heat fluxes may be evaluated in a number of ways. The gradients
of the temperature are approximated at the nodes using also the
divergence theorem,

(Ω∇T )i =

nedges

∑
j=1

1
2

Ai j(Ti +Tj). (4)

Implicit Temporal Discretization
Equation 3 can be expressed in the form

(ρcΩ)i
dTi

dt
= R(T ). (5)

where R is the residual vector. It is a common practice [6] to
use implicit time integration schemes to remove the severe time
step limitation of explicit schemes when the diffusion terms are
dominant. Equation (5) is then discretized as

(λiTi)
n+1− (λiTi)

n

∆t
= αR(T n+1)+(1−α)R(T n) (6)

where n denotes the time step level and λ = ρcΩ. When α = 1 we
obtain the backward Euler 1st order scheme while for α = 0.5 the
2nd order Crank-Nicholson scheme is obtained, which is preferred
for time accurate simulations.

Inner Iteration
The non-linear system of equations represented by Eq. 6 can be
linearized as:

Un+1
i −Un

i
∆t

= α

(
R(Un)+

∂Rn

∂U

)
(Un+1−Un)+(1−α)R(Un)

(7)

where U = λT . Writing the equation for all nodes leads to the
delta form of the scheme

A∆U = R(Un) (8)

where

A =
I

∆t
−α

∂Rn

∂U
(9)

and ∆U = Un+1−Un. When ∆t → ∞ and α = 1 the Newton
scheme to reach the steady state is recovered. The resulting
system of linear equations Eq. 8 is solved using the Symmetric
Successive Over-Relaxation (SSOR) method. It is a common
practice to use a simplified flux version to obtain the left-hand side
Jacobian matrix, or directly, as it is our case, to write a simplified
version of the Jacobian,

∂Rn

∂U
∆U ' 1

ρc(x)
∇ · (k(x)∇(∆T )),

This effectively means that the material properties, k(T ) and c(T ),
are frozen from the previous step. The non-linearities associ-
ated to non-linear boundary conditions, such as convecting or
radiating walls, are linearized by freezing the non-linear coef-
ficients. For instance, the heat flux at the wall is linearized as
qw = h(T n

w )(T
n+1

w −T n
w ), but the terms associated to ∂h/∂T are

neglected in the linearization.

Boundary Conditions
Thermal contacts The modelling of a perfect thermal contact
between two solids require the use of a conformal mesh. The
contact nodes exist at both sides of the contact interface. First
the energy equation corresponding to each of the half-volumes
associated to every individual node a the interface is written and
the fluxes collected and strored. Then the contributions coming
from both sides of the interface are sum to form a virtual volume
that spans at both sides of the interface. This flux is used to drive
the evolution of both nodes. This means that especial care has
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to be taken to ensure that nodes at both sides of the interface are
ordered consecutively in the SOR scheme.

Thermal contacts with non-null thermal resistance, R, are formu-
lated by computing the local heat flux:

q+ =−q− = R−1(T−−T+). (10)

Conformal grids are required also in this case. A virtual edge link-
ing the nodes at both sides of the interface is used to implement
this boundary condition. In this case the only caution required
-from the point of view of a SOR computation- is to use an up-
dated value of the first node for the second node heat flux. Then,
q+ and q− will be slightly different during the SOR iterations
until convergence.

Infinite cavities Infinite cavities represent large masses of
fluid whose thermal capacity is so large that their temperature,
T∞, is unaffected by the energy exchanged by convection with the
surrounding solids. Energy transfer is modelled using Newton’s
law, Qi = Aihi(T∞−Ti). The heat transfer coefficient, h, and the
solid temperatures may be local variables.

Voids Voids represent very small closed fluid zones with a
infinetely small mass. In this limit, the cavity reaches instantly
the equilibrium temperature, T∞, with the surrounding solids. As
a consequence, the bulk temperature of the cavity is such that
ensures that all the heat fluxes exchanged among all the solids in
contact with the void balance. If we assume that the energy is
exchanged by convection with local HTCs then the cavity fulfills
the following relationship:

∑
boundaries

Aihi(T∞−T i
w) = 0. (11)

Mass cavities Mass cavities are closed convecting regions
with a finite mass, m. At steady state, or if m ' 0, they behave
exactly as voids. The only difference appears in unsteady compu-
tations where the mass of the cavity imposes a thermal inertia:

mcv
dT∞

dt
= ∑

boundaries
Aihi(T∞−T i

w).

Streams or ducts Streams or ducts consists in a one-
dimensional (1D) description of a flow, whose upstream tem-
perature, T1, and mass flow, ṁ, are known. The enthalpy balace

of the stream with the surrounding walls governs the downstream
evolution of the stream temperature, Ts(s):

ṁcp
dTs

ds
= Ql convection +Ql other sources,

Ts = T1 at s = 0 .

The stream is discretized and attached to one or more solid walls.
The grid faces of the solids are sliced attending the discretization
of the stream segments. At the end of this process, there is a
correspondence between stream segments and solids zones (see
Fig. 2).
Each stream segment has associated an HTC, which may depend
on local wall and/or fluid temperatures. For 3D models it usual to
average the wall temperature and the HTC in each stream internal
location, using the local wet area, so the equation for the stream
becomes:

ṁcp
dTs

ds
= Al h

(
Tw−Ts

)
+Ql other sources , (12)

which yields the evolution of the stream temperature.
Discretizing Eq. 12 we obtain,

ṁcp
(
T i+1

s −T i
s
)
= (Al ∆s) h

(
Tw−

T i+1
s +T i

s

2

)
+Qother,

where i denotes an internal stream node; we can easily isolate
T i+1

s (T i
s ) . This is stable as far as ṁcp >

Ah
2 . Otherwise, the less

accurate but unconditionally stable form

ṁcp
(
T i+1

s −T i
s
)
= Ah

(
Tw−T i+1

s
)
+Qother

is used. Qother is used to model the stream viscous dissipation or
any other heat source
At unsteady computations, streams are assumed to behave quasi-
steadily, as it is the case of the cooling flows in a turbine operating
in transient conditions. This is realistic for gas turbines, since the
stream residence time is much smaller than the diffusion time of
the solid.

Fluid network definition Streams can be mixed using a mass
an enthalpy balance at the mixing point to derive the initial con-
ditions of the downstream stream. In practice, a sort of fluid

4 Copyright c© 2011 by ASME



2

1

3

4

5

6

Figure 2: Sketch of a duct with six internal segments, attached to a group
of faces from a 3D solid and to the edge of a 2D solid . The stripes of the
surface mesh mark the correspondence with internal duct stations.

network linked to the solid model is defined. To solve the fluid
network, we keep updating the mixed variables at each of the
SOR iterations. This procedure has shown to be robust enough,
but it is worth noting that the sense of the streams must be defined
beforehand.
Following the SOR philosophy, mixing is performed as soon as
the information of the streams to be mixed is available, providing
an updated boundary condition for the downstream duct. In fact,
streams are ordered in terms of the mixing conditions because of
this reason. When circular references exist, some of the streams
cannot use updated values, so they use the values of the previous
iteration.
Finally, a stream can discharge into a void, contributing with its
enthalpy to the energy balance of the void,

∑
boundaries

Aihi(T i
w−T∞)+ ṁhstream(Td) = 0 (13)

where Td is the discharge temperature of the stream. Conversely,
a stream could depart from a void or a mass cavity.

Radiative heat transfer The thermal power emitted by a
perfect diffuse radiating gray boundary [5] is

q̇emitted = AεσT 4
w ,

being ε the emissivity which is considered constant. The boundary
i will intercept radiation emitted by any of the other boundaries j,

q̇intercepted = σ∑
j

A fi→ j ε j T 4
j .

where fi→ j is the corresponding view factor. Gray bodies reflect
a fraction 1− ε of all the received energy. These reflections are
intercepted again, and the 1− ε part of these interceptions is
reflected again and so on.

The net radiating flux at each boundary, depends at the end on all
the radiating boundaries. This flux may be written as:

q̇net = σA
(

f εT 4− εT 4
w

)
, (14)

where the rebounds effect is properly taken into account at
T (Tj,ε j, fi→ j), where f ε(ε j, fi→ j) and ε(ε j, fi→ j) are constant
values. Computing T̄ , f̄ ε and ε̄is equivalent to solve the gray body
problem.

The neat radiative heat flux (Eq. 14) is linearized as follows.
Firstly we express the flux as

qnet = σA
((

f ε− ε
)

T 4
+ ε

(
T 4−T 4

w

))
. (15)

Then, we use the temperatures of the previous iteration to com-
pute T mean. The first term of Eq. 15 is frozen at the present
iteration. The computation of the heat flux at iteration n+ 1 is
then linearized as

qn+1
net = σA

((
f ε− ε

)n
(T 4

)n (16)

+ ε

(
T 2

+T 2
w

)n (
T +Tw

)n (T −Tw
)n+1

)
.

The computation of the view factors, fi→ j, is expensive for cases
with a large number of surface elements [7]. The problem is not
the computation of the view factor itself but the checking of the
shapes generated by other elements located between the node i
and the node j, which has a computational cost which is O(n3),
where is n the number of radiating boundaries. However, for
axisymmetric geometries , it is possible to devise algorithms that
exploit this symmetry [8] to reduce the computational cost by
several orders of magnitude.
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INTERFACE PLANE TREATMENT
Introduction
Turbomachinery simulations are quite often based on the use
of reduced order models. These models are usually based in
some sort of mixing or averaging process in the circumferential
direction. The most classical example may be seen in multi-row
aerodynamic simulations, where the flow is averaged or mixed in
the interface between different rows, to remove unsteady effects
and allow the transfer of information between rows with different
pitches. The averaging process usually enforces that conservation
laws are fulfilled across the interface.
Enforcement of the conservations laws requires that across the
selected interface

∫
Σ

F(U−,∇U−) ·dA =
∫

Σ

F(U+,∇U+) ·dA (17)

where F is the flux vector, that in general is a non linear func-
tion of the vector of conservative variables, U, and its gradient,
∇U. When the gradients are neglected in the interface, as it is
usually the case in the solution of the Navier-Stokes equations,
Eq. 17 provides a relation between the variables at both sides of
the interface. For the 1D Euler equations Eq. 17 becomes the
Rankine-Hugoniot relationship. When the downstream flow is uni-
form Eq, 17 becomes

∫
Σ

F(U+)·dA = F(U+) ·An and determines
the mixed-out state.
Laplace equation, although significantly simpler than the Navier-
Stokes equations, presents some particularities related with the
averaging process. The flux-vector is a scalar since we only deal
in this case with the energy equation, actually F = q = k∇T .
This means that on the contrary than the standard case in fluid-
dynamics, F = F(U,∇U), since the gradient of the variables can
not be neglected. It is important to observed that if the conduc-
tivity is constant, k = k0, Eq. 17 only provides a relationship
between the gradients at both sides of the interface, what is not
enough to determine the solution.
The conservation law across the interface (Eq. 17) reduces in this
case to

∫
Σ

q(T−) ·dA =
∫

Σ

q(T+) ·dA (18)

which basically states that the total heat flux across the interface
is constant. Some degree of modelling is needed to fix the con-
dition that should satisfy the temperature. In a perfect contact
the temperature at both sides of the interface is point to point the
same, i.e.: T− = T+ ∀x at Σ. This automatically suggests that if
we consider a circumferential average state, T+ at Σ+, then

∫
Σ−

T−dA = T+A (19)

which essentially requires that the mean temperature is conserved
across the interface.

Duct-Void Concept
With the aim of easing the implementation of the aforementioned
ideas we introduce the concept of duct-voids, which is nothing
else that a 1D concatenation of voids. The main idea is to satisfy
Eqs. 18 and 19 by forcing to both sides of the interface to ex-
change heat by convection against a virtual cavity with zero mass.
Duct-voids are similar to streams/ducts from the pre-processing
point of view; this means that each duct-void internal segment has
a correspondence with several solid zones (see Fig. 2). Solving a
duct-void consists in obtaining the local temperature of the void,
T i

∞, which balances the total heat flux received locally:

∀i, ∑
j∈segment i

A jh j(T i
∞−T j

w) = 0. (20)

Note that in this case segments are totally independent, and a duct-
void behaves as a group of independent voids. As it is discussed
below, duct-voids may be used for several purposes.

Modeling 2D/3D interfaces using duct-voids Setting up
a duct-void with two branches, each of it attached to a solid wall,
is equivalent to define a thermal contact with a thermal resistance,
as can be derived by direct comparison of Eqs. 10 and 20.
The main advantage of using a duct-void instead of a thermal
contact is that the duct-void entity does not require a conformal
mesh (the pre-processing stage has split the solid faces into the
slices required by each duct-void segment -see Fig 2-). As a
result, a resistive contact can be defined between the 3D and Q3D
solids. It can also be used to define a three-component ,or even
a n-component, contact if it is required. On the other hand, a
duct-void cannot model a perfect contact since the use of very
small thermal resistance spoils the solver convergence.
The use of duct voids to transfer information between the 3D and
2D sides ensures that the heat flux is locally balanced. The local
HTC is a degree of freedom. If the HTC is very large, the contact
is nearly perfect and the duct void tends to smooth the azimuthal
temperature distribution at the 3D side of the contact (i.e.: in
the stripes direction at Fig. 2). This effect could be potentially
corrected computing the wall temperature average for each side,
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Figure 3: Scheme of a duct-void set-up between a 3D model face (left)
and a 2D model segment used to model a thermal contact (right).

and using that temperature to impose the heat flux in the solid
wall, instead of the local temperature.
Figure 3 shows the internal representation parameter contour lines
of a 3D face with a duct-void attached to it and the matching
branch at the 2D side.
It is worth noting that plain voids can also model thermal contacts
but the heat flux is averaged along the contact. Solid wall tem-
peratures are smoothed out at the contact zone. Duct-voids retain
a one dimensional spatial variation of the contact phenomenon,
which is a good approach when combining Q3D and 3D models.

Scaling factors Setting up a contact between 3D and axi-
symmetric models requires a scaling of the fluxes either at the 2D
or the 3D side. Three-Dimensional models cover a certain pitch,
whereas axi-symmetric models cover either the whole circumfer-
ence or an arbitrary pitch. In order to fix this problem a scaling
factor, m j, is specified at each convective condition affecting only
to the duct-void energy equation -not the solid part-. This means
that the energy balance equation for the duct void (Eq. 20) is
modified as:

∀i, ∑
j∈segment i

m jA jh j(T i
∞−T j

w) = 0 , (21)

whereas the solid is still receiving the heat flux Q = A jh j(T i
∞−

T j
w).

Scaling factors are usually set to 2π/pitch on the 3D side , and
to 1 at the 2D/Q3D side. This practice ensures that energy is
conserved in the contacts between 2D and 3D models, while the
averaged temperature difference is controlled by the HTC level.
Scaling factors are also necessary at ducts and voids attached to
both 2D and 3D models.

Temperature transfer between 2D and 3D models
Duct-voids may be also used as a mechanism to transfer a tem-
perature distribution from a 3D model, usually a circumferential
variation, into a 2D representation of the same model. If the
scaling factor is set to zero at one of the sides, the equilibrium
temperature of the duct void, T i

∞, becomes the weighted area
average of the temperatures of the other side:

T i
∞ =

1
AT

∑
j∈segment i

A jTj (22)

The side at which the scaling factor is set to zero is heated by
convection against this temperature.

A 2D (axi-symmetric) approximate representation of a 3D model
at the Q3D part may be used to compute radiative heat transfer in
a simplified way to reduce the computational time. Another use is
the later computation of thermo-mechanical displacements with a
pure Q3D model. When using a 2D representation, it is important
that the represented part needs to be thermally decoupled from
the rest of the Q3D model; otherwise the heat transfer of the
component would be accounted for twice.

When a scaling factor of zero is used at the 2D side to prescribe
the average temperature distribution of a detailed 3D model, it
is convenient to use a low HTC at the 3D branch and a high
one at the 2D one. In one hand, the low HTC at the 3D branch
(strictly speaking hLc/ks� 1,where Lc is the characteristic length
in the normal direction to the wall) ensures that the duct-void
reaches locally the azimuthal average of the 3D temperatures
without altering the 3D temperature distribution. On the other
hand, a large HTC at the 2D branch (strictly speaking hLc/ks�
1), ensures the temperatures at the 2D are the same than that of
the duct-void internal representation, T∞, which is nothing else
that the azimuthal average of the temperatures of the 3D model.

APPLICATION EXAMPLE
The aforementioned modeling techniques have been applied to
the thermal analysis of a two-stage turbine. The actual model
is quite complex and it will not be described here in full detail
for the sake of brevity. The model consists of a Q3D model of
the whole turbine and 3D sub-components of the rotor blade and
stator vanes which may be linked to the Q3D model in different
ways. In this case only the the first vane -which has active cooling-
has been replaced by a 3D component.

The refrigeration effect was not properly included in the original
model (which consisted in a Q3D model of the whole turbine, plus
a 3D detail model of the vane using boundary conditions extracted
from the results of the Q3D model). The cooling effect could have
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Figure 4: Baseline Q3D model temperature distribution.

been modeled at the original Q3D model using simplifications,
certain hypothesis and some tricks. With the use of a combined
2D/3D model, these simplifications and uncertainties are reduced.

Baseline uncoupled model

Figure 4 shows the baseline Q3D model. Essentially all the com-
ponents are axi-symmetric except the airfoils, which are modeled
as two-dimensional objects with an equivalent thickness. Contacts
and radiation among different components have been specified,
but they are not described here since this is not the main purpose
of this work. Solids have as well convection against cavities and
different types of streams, being the HTC correlations embedded
in the software. A close-up of one of the zones of interest because
of the coupling effects is shown in Fig. 5. Figure 6 shows the
first NGV 3D model and temperature contours, whose boundary
conditions have been extracted from the global Q3D. The NGV
is hollow and may be cooled, but cooling has not been included
neither in the Q3D nor in the 3D model.

The so-called standard procedure consists in constructing a Q3D
model of the whole turbine including the maximum amount of
information related with convection and radiation, and then use
these temperatures as BCs for the 3D models.

Infinity

Ra
dia
tio
n

Void

Stream

Void

Figure 5: Detail of the boundary conditions around the refrigerated vane.
Blue lines: convection ; arrows are used where streams or ducts are
attached. Yellow lines: internal radiation

Coupled model
Conduction and Convection Treatment The basic idea
behind the coupled model is to increase the accuracy of the pre-
dictions by using a model of higher fidelity. It is assumed that
the use axi-symmetric models for casings, disks, etc., is a cost
effective approach, while it is acknowledged that fully 3D models
are required for rotor blades and vanes packets, for instance. It is
considered that a model that could link global Q3D models and
detail 3D models in an effective way, would be optimum from a
practical point of view. The coupled model, on the contrary than
the standard practice, supports a bidirectional coupling between
the Q3D and the 3D models, and allows a native support for tran-
sients. At transients, the equivalent thickness approximation of a
Q3D model may not be able to properly reproduce the behaviour
of a hollow blade, which depends on the local thickness, rather
that on the total mass (i.e. the total thickness). Moreover the
coupled approach provides feedback to the global Q3D model of
the information collected from the 3D models.
The information transfer between Q3D and 3D models it is not
obvious since both models are computed simultaneously and
convection and radiation are present. Therefore some modeling
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Figure 6: Vane temperature distribution obtained using the boundary
conditions derived from the baseline uncooled Q3D model.

2D
q

3D
q

ooT

R
q
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T

3D

2D

Duct−Void

Figure 7: Coupling scheme of the 2D and 3D models. White: Convection
and conduction scheme. Yellow: Radiation scheme

decisions need to be made. We will use the 1st vane of the turbine
as a demonstrator of the new approach, because of its capability
to include internal cooling, that certainly has an added difficulty
for its modeling in a Q3D environment.

The vane is now computed using a 3D sub-model, and all the con-
vective boundary conditions that were applied in the 2D counter
part model have been moved to the 3D model. It is important to
pay attention to the contacts between the Q3D and the 3D mod-
els. The rest of boundary conditions are a direct translation. The
modeling of the heat exchange between the airfoil and the main
flow-path, for instance, existed in both models and is conceptually
the same, although obviously much more detail could be included
in the 3D case by for instance importing the HTCs from a CFD

Figure 8: The coupled model, with the 3D NGV and the Q3D rest of the
turbine.

Figure 9: Detail of the solution of the coupled model at the NGV zone,
where active cooling has been modeled.
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Figure 10: Detail of the grid used for the coupled model, showing one of
the zones where a 2D-3D contact is modeled with a duct-void.

model. Contacts at the two rails of the hook (at the tip of the
airfoil) and at the four faces of the seal contacts (at the hub of
the airfoil), are modeled using duct-voids between the 3D faces
of the vanes and the segments of the 2D models. Scaling factors
are used at the 3D side to ensure energy conservation at these
interfaces.

At this point, the 2D counterpart of the vane could be removed
from the 2D model, but instead the 2D approximation of the vane
is kept. Nevertheless, its conductive and convective BCs have
been removed, since only the contributions coming from the 3D
model are trusted. In the absence of radiation this is equivalent to
removing the vane from the 2D model.

Radiation Treatment When radiation effects need to be re-
tained, the situation is somewhat more complex. This is the case
in our problem in the cavity defined by the outer annulus of the
flow-path, the external casing and the hooks that support the vane.
In this cavity the convection velocity is due to small leakages and
convection and radiation can be comparable.

Radiating conditions of the 2D model (internal radiation with the
turbine case on top and the turbine disk at the bottom) are however
kept. Therefore, at these radiating faces, the temperature distri-
bution obtained from the 3D vane is prescribed in the 2D model,

in order to compute the net flux associated to the radiation. The
turbine casing and the rest of the Q3D model sees the 3D model
temperature distribution on the 2D vane geometry. Then, the
radiative heat transfer will be correctly computed, but under the
limitations of the assumption that the geometry is axi-symmetric.
This approximation can be taken into account to compute the view
factors in a very efficient way [8, 7]. This approach is good com-
promise, since it allows to take into account radiation effects in
the whole turbine, retain 3D conduction and convection effects in
complex parts and avoid a fully 3D computation of the radiation
in the whole turbine, that could be not practical in terms of CPU
time.

Using this approach, the cavity above the vane will receive a pre-
cise radiative heat transfer balance with the 3D model, including
radiation. The radiation heat flux at the 3D model may be simpli-
fied by emitting against a virtual external infinity, at the average
of the temperature for the 2D radiating zone. This is a reasonable
hypothesis in this case since the cavity closure is almost perfect
and the shape of the vane top is convex in the major part of its
extent. This is also a standard inexpensive method at 3D detail
thermal models. Alternatively the radiative heat flux from the 2D
vane counterpart could be collected, which is certainly a more
consistent approach.

RESULTS
Two different cases for the whole turbine have been simulated
to compare the coupled and uncoupled approaches. The sole
difference is the presence of a cooling flow or not in the cooling
passage of the first NGV. Figures, 4 and 5 present the temperature
distribution of the baseline case when cooling is not considered.

Uncooled models
Figure 11 shows the temperature difference between the uncou-
pled and coupled models for this case. There are important differ-
ences at the vane contacts, at the vane top and at the casing zone
above the vane. At the contacts the highest differences are found,
because the uncoupled model is not consistent; the heat flux ob-
tained at the 3D vane with the temperature specified at the contact
zone is different from that found at the Q3D model. These incon-
sistencies come from the geometric differences between the Q3D
and the 3D vane, and the different sets of boundary conditions
used in the 2D and 3D models.

These inconsistencies are avoided in the coupled model, where
the heat flux is conserved at the interface and the temperature
jump controlled. In this case the temperature at the contacts is
lower for the coupled approach.

The uncoupled model has simplified HTCs imposed on the top
of the vane which cause the differences of about 7K at that zone.
There, differences are in average negative (even though there is a
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Figure 11: Temperature difference for the coupled and uncoupled approaches, Tcoupled −Tuncoupled , for the uncooled case. Left: view of the turbine layout.
Right: close-up of the zone of interest.

Figure 12: Difference of temperatures between the coupled and uncoupled models, Tcoupled −Tuncoupled , for the cooled case . Left: layout view. Right: detail
of the zone of interest.
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positive hot spot), and the coupled model has a lower radiating
interaction with the casing. Because of these facts, and the colder
temperature at the contacts, the temperature of the casing at the
zone on top of the vane is about 10K colder at the coupled model.
The vane temperature at the flow-path region is very similar in
both cases, because, there, the HTC is very high and the behavior
is controlled by the stagnation temperature of the main flow-path.

Cooled Models
In the second case, the cooling effect of the passage has been
modeled using an stream with an HTC correlation, in both coupled
and uncoupled 3D vanes flowing trough the main cooling hole.
The stream definition is the same in both coupled and uncoupled
3D models.
Coupled model results are shown for this case at the Figs. 8-9.
Since the uncoupled 2D model is not aware of this cooling, bigger
differences are found (see Fig. 12). Differences at the top of the
vane are lower in this case because that zone is controlled by the
cooling flow. The contact temperature jump has increased notably,
because the uncoupled models are more inconsistent now. The
casing differences are now bigger, of about 20 oC, in the top of
the vane. This difference is about a 3% of the range between flow
path and the cooling flow temperatures. At the coupled case, the
heat conducted from the vane to the casing is now lower because
of the cooling. Also, the radiative effect is lower because the
vane top is colder. Similar differences, but in an smaller scale,
are found at the bottom zone of the vane, also because of these
reasons.

COMPUTATIONAL COST
The axisymmetric view factors computation requires about 14
seconds using an Intel Core 2 Duo T7200@2GHz CPU. The
3D standalone model mesh has 44,000 nodes and requires 17
seconds to be converged, after 490 SOR iterations. The Q3D
standalone model, with 21,000 nodes, requires 3,000 iterations
and takes 26 seconds to be converged. The coupled model, needs
about 182 seconds to be converged, requiring 3240 iterations. The
coupled approach needs more than four times CPU time than the
uncoupled approach.
The computational cost of the coupled model is large compared
to the uncoupled models. The reason for this is that the 3D sub-
components are reaching the local equilibrium quickly during the
SOR evolution because their HTCs are large. The 2D global
model has, however, zones with weak heat fluxes imposed by the
local boundary conditions. These regions need more iterations
to converge. Also, the 2D model covers a much larger domain,
what leads as well to longer characteristic times. Since 3D model
has more nodes than the 2D one, there is a noticeable penalty due
to the larger number of iterations induced by the 2D model on

the 3D sub-component. The coupled approach is still interesting
because the required time for convergence is still small in absolute
terms.

CONCLUSIONS
Axi-symmetric Q3D models are very useful to predict the temper-
ature distribution of a gas turbine, since they allow a cost-effective
multi-component modelling of the whole turbine. Radiative heat
transfer computation is affordable for Q3D models, whereas it is
significantly more expensive at 3D models. On the other hand,
thermal models require of intensive modeling of cooling and
sealing flows, due to the complexity and cost associated to their
simulation within the current design timescales.
A thermal solver which deals with this intensive modeling has
been briefly outlined. The solver was initially conceived to sim-
ulate either Q3D or 3D models. A new methodology to create
mixed models which contain both Q3D and 3D sub-components
has been described. The method has been successfully used to
link a 3D cooled NGV with a Q3D model of the whole. Dif-
ferences of up to 3% of the temperature range between the flow
path and cooling flow temperatures have been found with the
baseline model (that first computes the whole turbine and, then,
uses the temperatures at the interfaces between 2D and 3D model
as boundary conditions). These differences may be important
from an engineering point of view.
The logistics of the coupled approach is easier for the designer, es-
pecially for transient calculations, since many manual operations
are removed and are handled in a transparent way by the system.
As a consequence the coupled approach is less prone to errors.
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