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ABSTRACT 
Numerous methods have been developed to design axial-flow 

compressor blades. These methods are generally categorized 

into inverse or direct approaches. In the inverse design 

methods, a distribution of an aerodynamic parameter such as 

pressure or velocity on the blade surfaces is given, and the 

target blade geometry that can provide the corresponding 

distribution is to be determined. 

In the present work, a novel inverse design algorithm called 

Ball Spine Algorithm (BSA) is developed to design an axial-

flow compressor on the blade to blade surface. In the BSA, the 

blade surfaces are considered as a set of virtual balls that move 

freely along the specified directions, called „spines‟. At first, 

initial blade geometry is guessed and the blade-to-blade flow 

field is analyzed by an in-house inviscid flow solver based on 

the Roe scheme. Comparing the computed pressure 

distribution (CPD) on the blade surfaces with the target 

pressure distribution (TPD), gives a guideline in a differential 

movement for the balls to obtain a modified geometry. For the 

flow field analysis on the modified geometry, new grids are 

generated by a combined algebraic-elliptic code. The sequence 

is repeated until the target pressure is reached. For validation, 

the approach is applied on an arbitrary blade profile.  

1  INTRODUCTION 
The design of hardware involving fluid flow or heat transfer 

such as intakes, manifolds, duct reducers, compressor and 

turbine blades, etc., is defined as the shape determination of 

the solid elements so that the flow or heat transfer rate is 

optimal in some sense. Often, both Computational Fluid 

Dynamics (CFD) and design algorithms are involved in 

solving an optimal shape design problem. The limitations and 

computational cost of the design techniques are challenging 

problems for present time computational technology. 

One of the optimal shape design methods is the Surface Shape 

Design (SSD). Surface Shape Design (SSD) in fluid flow 

problems usually involves finding a shape associated with a 

prescribed distribution of surface pressure or velocity. It 

should be noted that the solution of a SSD problem is not 

generally an optimum solution in a mathematical sense. It just 

means that the solution satisfies a Target Pressure Distribution 

which resembles a nearly optimum performance  [1]. 

There are basically two different algorithms for solving SSD 

problems: decoupled (iterative) and coupled (direct or non-

iterative) techniques. In the coupled solution approach an 

alternative formulation of the problem is used in which the 

surface coordinates appear (explicitly or implicitly) as 

dependent variables. In other words, the coupled methods tend 

to find the unknown part of the boundary and the flow field 

unknowns simultaneously in a (theoretically) single-pass or 

one-shot approach  [1]. The governing equations of coupled 

methods are more complicated than well-known fluid 

dynamics equations; hence these methods are limited to 

simple flow regimes. In addition, the conventional flow 

solvers could not be used. 

The iterative shape design approach relies on repeated 

shape modifications such that each iteration consists of flow 

solution followed by a geometry updating scheme. In other 

words, a series of sequential problems are solved in which the 
surface shape is altered between iterations so that the desired 

TPD is finally achieved  [1]. In the iterative methods, the 

governing equations are similar to the flow field equations and 

the conventional solver could be used as a black box. Hence 

the iterative methods are applicable for complicated flow 

regimes. 

Iterative methods, such as optimization techniques, have 

been by far the most widely used to solve practical SSD 

problems. The traditional iterative methods used for SSD 

problems are often based on trial and error or optimization 

algorithms. The trial and error process is very time-consuming 

and computationally expensive and hence needs designer 

experience to reach minimum costs. Optimization methods 
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 [2], [3] are commonly used to automate the geometry 

modification in each iteration cycle. In such methods, an 

objective function (e.g., the difference between a computed 

surface pressure and the target surface pressure  [4]) is 

minimized, subjected to the flow constraints which have to be 

satisfied. Although the iterative methods are general and 

powerful, they are often computationally costly and 

mathematically complex. These methods can utilize the 

analysis methods for the flow field solution as a black-box. 

Other iterative methods presented so far use the physical 

algorithms instead of the mathematical algorithms to automate 

the geometry modification in each iteration cycle. The 
physical methods are easier and quicker than the mathematical 

(or optimization based) iterative methods. One of these 

physical algorithms is governed by a transpiration model, in 

which one can assume that the wall is porous and hence the 

mass can be fictitiously injected through the wall in such a 

way that the new wall satisfies the slip boundary condition. 

Aiming removal of nonzero normal velocity on the boundary, 

a geometry update determined by applying either the 

transpiration model based on mass flux conservation  [5]- [8] or 

the streamline model based on alignment with the streamlines 

 [10], must be adopted. 

An alternative algorithm is based on the residual-correction 

approach. In this method, the key problem is to relate the 

calculated differences between the actual pressure distribution 

on the current estimate of the geometry and the TPD (the 

residual) to required changes in the geometry. Obviously, the 

art in developing a residual-correction method is to find an 

optimum state between the computational effort (for 

determining the required geometry correction) and the number 

of iterations needed to obtain a converged solution. This 

geometry correction may be estimated by means of a simple 

correction rule, making use of relations between geometry 

changes and pressure differences known from linearized flow 
theory  [1]. 

The residual-correction decoupled solution methods try to 

utilize the analysis methods as a black-box. Barger et al.,  [11] 

presented a streamline curvature method in which they 

considered the possibility of relating a local change in surface 

curvature to a change in local velocity. Since then, a large 

number of methods have been developed following that 

concept  [12]- [21]. 

Nili et al. presented an iterative inverse design method for 

internal flows called Flexible String Algorithm (FSA). They 

considered the duct wall as a flexible string frequently 

deformed under the difference between TPD and CPD. They 

developed this method for non-viscous compressible  [22] [23] 

and viscous incompressible internal flow regime  [24].  

Recently, Nili et al., have presented a novel inverse design 

method called Ball-Spine Algorithm (BSA). They developed 

this method for quasi-3D design of meridional plane of 

centrifugal compressor [25]. 

In this research, the BSA is used for the 2-D design of 

axial compressor blading. For the flow field solution, a 

recently developed in-house code is used.  

2  NOMENCLATURE 

 
F  Force imposed on balls 

y  y position of balls (m), y coordinate 

A  Element area 

a  Acceleration of balls 

m  Balls mass (kg) 

n  Normal direction 

t  Tangential direction 

f  
Filtration coefficient 

C  Geometry correction coefficient 

P  Static pressure (Pa) 

P  Difference between target and computed pressures 

s  Displacement of each ball 

t  Time step(s) 

TPD  Target Pressure Distribution 

CPD  Computed Pressure Distribution 

maxI  Maximum number of grids in horizontal direction 

Subscripts 

rel Relative to the leading edge 

target Target conditions 

new New conditions 

old Old conditions 

comp. Computed conditions 

LE Leading edge 

3  FUNDAMENTALS OF THE METHOD 

In the present work, the wall is considered as a set of virtual 

balls, freely moving along the specified direction, shown in 

Figure 1. Passing fluid flow through the flexible duct causes a 

pressure distribution to be applied to the wall from the outer 

side. If a target pressure distribution is applied to the inner 

side of each duct wall (Figure 2), it is logical that the flexible 

wall deforms to reach a shape satisfying the target pressure 

distribution on the wall. In other words, the force due to the 

difference between the target and current pressure distribution 

at each point on the wall is applied to each virtual ball and 

causes them to move. As the target shape is obtained, this 

pressure difference vanishes. If each virtual ball moves in the 

same force direction, the adjacent balls may collide together or 

move away from each other. This can disturb the wall 

modification procedure. To avoid this problem, each ball 

should freely move in a specified direction called a spine. In 

Figure 1, the spines are the normal line connecting the balls 

with the same x position on two walls. In other words, the 

horizontal length of duct remains unchanged during the shape 

modification procedure. In duct inverse design problems, it is 
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essential that a characteristic length be fixed. The direction of 

the spines depends on what characteristic length should be 

fixed. Therefore, for different ducts, the spines are differently 

defined. Another constraint for wall modification is that one 

point of each wall should be fixed. Typically, the start point of 

each wall is fixed so that the duct inlet area remains fixed too.  

 

 
Figure 1. Simulation of a 2-D duct with balls and spines 

  

 
Figure 2. Applying the target and computed pressures 

on a sample ball 

4  MATHEMATICAL APPROACH 

4.1 Governing Equations  
To derive kinematic relations of the flexible wall, a uniform 

mass distribution along the wall is supposed. The free body 

diagram of a virtual ball on the wall is shown in Figure 3.  

 

 
Figure 3. Free body diagram of a ball. 

The net force applied on each ball in the spine direction is 

computed as: 

(1)       . .cosF P A   

Where, 

(2)        
.target compP P P   

and A  is the area of each element. 

If in specified time step ( t ), the ball can move on the spine, 

the corresponding displacement is computed from the 

following dynamic relations: 

(3)           21
, ( )

2

F
a s a t

m
    

Where, m  and s  are the mass and displacement of the ball, 

respectively. Substituting Eqns.  (1)  and  (2)  into Eqn.  (3)  

yields, 
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As seen in Eqn.  (5) , the coefficient C  is composed of the 

element area, ball mass, and time step. If a large value is 

selected for C , the displacements will increase and the 

convergence rate will be improved. On the other hand, if the 

parameter C exceeds from a limit, the solution is unstable. 

Although a small value of C causes the design procedure to be 

stable, the convergence rate decreases.  

The new position of each ball is calculated as follows: 

 

(6)                           
new oldy y s   

(7)                                new oldx x 

Having updated the wall geometry, the new grids are 

generated for the internal domain and the flow field over the 

new domain is solved to compute the wall pressure 

distribution.  The difference between computed and target 

pressure distributions causes the next shape modification. The 

procedure is repeated until the pressure distributions are 

matched. The convergence criteria are defined as 

(8)                 target computed PP P   

Or, 

(9) new old yy y   

 

The design algorithm is shown in Figure 4. 

Because the wall is considered as a set of separated balls, 

during the design process, the wall curvature may be 

discontinuous in adjacent nodes (balls). An example of such 

discontinuity is shown in Figure 5. To smooth the wall 

curvature, a filtration method is applied on the wall y 

components after each geometry correction step. The filtration 

method is formulated as follows: 

(11)                 
     1, . , 1,

,
2

y i j f y i j y i j
y i j

f

   



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Here, f  is the filtration coefficient. Large values for f  

correspond to low filtration and small values for f  results in 

major filtration. In the present work f  is set to 4, i.e. 

(11)               
     1, 4 , 1,

,
6

y i j y i j y i j
y i j

   
 

In Figure 5, the filtered geometry is plotted using a dashed 

line. A higher order of filtration decreases the convergence 

rate, but improves the stability of the design method. 

 

start

Read the target

pressure

Read the initial

geometry

Solve the

flow field

Determine the modified geometry

by a feedback signal from the

difference between the target and

computed pressures

Make grid for the

revised geometry

If target and computed pressures are equal?

No

Yes

Stop

Well done

 
 

Figure 4. The design flowchart 

 

  
 

Figure 5. Displacement filtration  

4.2 Grid Generation 
A combined algebraic-elliptic algorithm is used for grid 

generation [26]. To impose the grid orthogonality on the blade 

surface and clustering near the wall, the corresponding control 

functions are considered in an elliptic algorithm. An example 

of a generated grid for a blade cascade is shown in Figure 6. 

4.3 Flow Field Solution 
To solve the inviscid flow field, a recently developed in-house 

code based on the flux difference splitting (FDS) scheme of 

Roe  [27] is used. The governing equations are discretized in 

the computational domain using formulations presented by 

Kermani [28]. The Roe scheme gives non-physical expansion 
shocks in the regions where the eigenvalues of the Jacobian 

matrix vanish, e.g., the sonic regions and stagnation points. To 

avoid expansion shocks in the regions where the eigenvalues 

vanish, an entropy correction formula from Kermani and Plett 

is used here  [29]. To validate the solver, the numerical results 

are compared with the experimental data of Emery et al. for a 

2-dimensional NACA65-410 cascade [31]. In Figure 7, the 

pressure coefficient on the blade surfaces is plotted for a 

cascade with solidity of 1.0, stagger angle of
0

22.5 , and 
0

7.5 angle of attack.  

4.4 Boundary Conditions 
For compressible flow in a compressor blade cascade, the 

pressure inlet and pressure outlet boundary conditions are 

applied at inlet and outlet boundaries respectively. Two 

periodic boundaries are considered before and after the blade. 

The slip boundary conditions are applied on the blade suction 

and pressure surfaces.  

 

 
Figure 6. A sample grid generated using developed code 

4.5 BSA Design Procedure 
For compressor blade design, a target pressure distribution is 

given for each airfoil surface – suction side and pressure side. 

To satisfy both distributions, the geometry correction is done 

by applying the pressure distributions alternatively on the 

suction and pressure surface in such a way that only one 

boundary is corrected at each step and the other one is fixed. 

Finally, when both pressure distributions match, the geometry 
is fixed.  

Because, in the flow field solver, the back pressure is imposed 

at the outlet (which is fixed) and the first point on the walls 
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must be fixed, the target and computed surface pressures are 

gauged relative to the leading edge pressure, i.e., 

rel LEP P P      

 

Figure 7. Comparison between numerical and 
experimental results for 2-D NACA65-410 cascade.  

5  RESULTS AND DISCUSSION 
The BSA is applied on an arbitrary blade to assess the 

applicability of this method. The blade cascade is shown in 

Figure 8. To validate the BSA, the flow field within the 

cascade is solved using the flow field solver, and the pressure 

distribution on the blade surfaces is determined.  Then, these 

distributions are considered as the target pressure distribution 

and the design process starts from an initial geometry 

consisting of two straight walls making a constant area 

passage. Applying the design algorithm results in a designed 

geometry matching the target geometry, and thus the target 

pressure distributions are satisfied. In Figure 9, the target and 

the final pressure distributions show good agreement. The 

initial, target and designed geometries as three cascades are 

shown in Figure 10.  

In Figure 11, the history of geometry correction is shown for 

various intermediate iterations. Similarly, the history of 

pressure side and suction side pressure distributions are shown 
in Figure 12 and Figure 13, respectively. 

The L1 norm of the design process is calculated as: 

(12) 
   

max max

Suction Pressure
surface surface1 1

max2

i I i I

new old new oldi i
i i

y y y y

error
I

 

 

  




 

 

In Figure 14, the convergence history of the design process is 

shown for different values of coefficient C . The convergence 

rate is increased as the C is increased to an optimum value of 

0.00035. More increase in values of C  results in divergence 

of the method.  

In Figure 15 and Figure 16, the Mach number and static 

pressure contours are shown. 

 
X

Y

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 
Figure 8. The case study blade cascade 
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Figure 9. Pressure distributions for the target and the 
designed geometry    
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Figure 10. Initial, target and designed geometries 
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Figure 11. History of geometry correction  
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Figure 12. History of pressure side pressure distribution 

X

0 0.5 1 1.5
80000

85000

90000

95000

100000

105000

P
re

ss
ur

e(
P

a)

1

5

12

24
35

100

 
Figure 13 History of suction side pressure distribution 

 
Figure 14. Effect of C coefficient on convergence rate of 
the design process 
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Figure 15 Mach number contours 
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Figure 16. Static pressure contours 



 Copyright © 2011 by ASME                                                             7 

6  CONCLUSIONS 
The BSA is used to design a compressor blade profile for a 

target pressure distribution. A recently developed in-house 

inviscid flow solver is used and for mesh generation a 

combined algebraic-elliptic algorithm is implemented. Starting 

from an initial geometry consisting of two straight lines, 

imposing the target pressure distribution results in a blade 

geometry which satisfies the target pressure. The BSA is 

tested on an arbitrary blade profile and the designed geometry 

shows good agreement with the target geometry.  

 

7  REFERENCES 
[1] Ghadak, F., 2005, “A Direct Design Method Based on the 

Laplace and Euler Equations with Application to Internal 

Subsonic and Supersonic Flows”, Ph.D Thesis, Sharif 

University of Technology, Aero Space Department, Iran. 

[2] Cheng, Chin-Hsiang and Wu, Chun-Yin, 2000, “An 

approach combining body fitted grid generation and 

conjugate gradient methods for shape design in heat 

conduction problems”, Numerical Heat Transfer, Part B, 

37(1), 69-83. 

[3] Jameson, A., 1994, “Optimal design via boundary 

control”, Optimal Design Methods for Aeronautics, 

AGARD, 3.1 - 3.33. 

[4] Kim, J. S., and Park, W. G., 2000, “Optimized Inverse 

Design Method For Pump Impeller”, Mechanics Research 

Communications, Vol. 27, No. 4 , pp.465-473. 

[5] Dedoussis, V., Chaviaropoulos, P., and Papailiou K. D., 

1993, “Rotational Compressible Inverse Design Method 

for Two-Dimensional, Internal Flow Configurations”, 

AIAA Journal, Vol. 31, No. 3, pp. 551-558. 

[6] Demeulenaere A., and Braembussche, R. van den, 1998, 

“Three–Dimensional Inverse Method for Turbomachinary 

Blading Design”, ASME Journal of Turbomachinary, 

Vol. 120, No. 2, pp. 247–255. 

[7] De Vito, L., and Braembuussche, R.V.D., 2003, “A Novel 

Two-Dimentional Viscous Inverse Design Method for 

Turbomachinery Blading”, Transactions of the ASME, 

Vol. 125, pp. 310-316. 

[8] Leonard, O., and BraemBussche, R., 1997, “A Two-

Dimensional Navier Stokes Inverse solver for Compressor 

and Turbine Blade Design”, Proceeding of the IMECH E 

part A Journal of Power and Energy, 211, pp. 299-307. 

[9] Henne, P. A., 1980, “An Inverse Transonic Wing Design 

Method”, AIAA Paper 80-0330  

[10] Volpe, G., 1989, “Inverse design of airfoil contours: 

Constraints, numerical method applications”, See 

AGARD, Paper 4. 

[11] Barger, R. L., and Brooks, C. W., 1974, “A Streamline 

Curvature Method for Design of Supercritical and 

Subcritical Airfoils”, NASA TN D-7770. 

[12] Garabedian, P. and McFadden, G., 1982, “Design of 

supercritical swept wings”, AIAA Journal, Vol. 30, No. 3, 

pp. 444–446. 

[13] Malone, J., Vadyak, J. and Sankar, L.N., 1986, “Inverse 

aerodynamic design method for aircraft components”, J. 

Aircraft, Vol. 24, No. 1, pp. 8–9. 

[14] Malone, J., Vadyak, J. and Sankar, L.N., 1985, “A 

technique for the inverse aerodynamic design of nacelles 

and wing configurations”, AIAA Paper 85–4096. 

[15] Campbell, R.L. and Smith, L.A., 1987, “A hybrid 

algorithm for transonic airfoil and wing design”, AIAA 

Paper 87–2552. 

[16] Bell, R.A. and Cedar, R.D., 1991, “An inverse method for 

the aerodynamic design of three-dimensional aircraft 

engine nacelles, in Proceedings of the Third International 

Conference on Inverse Design Concepts and Optimization 

in Engineering Sciences”, ICIDES-III, G.S. Dulikravich, 

ed, Washington, D.C., 23–25, October, pp. 405–417. 

[17] Malone, J.B., Narramore, J.C. and Sankar, L.N., 1989, 

“An efficient airfoil design method using the Navier–

Stokes equations”, AGARD, Paper 5. 

[18] Malone, J.B., Narramore, J.C. and Sankar, L.N., 1991, 

“Airfoil design method using the Navier–Stokes 

equations”, J. Aircraft, Vol. 28, No. 3, pp. 216–224. 

[19] Takanashi, S., 1985, “Iterative three-dimensional 

transonic wing design using integral equations”, J. 

Aircraft Vol. 22, pp. 655–660. 

[20] Hirose, N., Takanashi, S. and Kawai, N., 1987, 

“Transonic airfoil design procedure utilizing a Navier–

Stokes analysis code”, AIAA J., Vol. 25, No. 3, pp. 353–

359. 

[21] Dulikravich, G.S. and Baker, D.P., 1999, “Aerodynamic 

shape inverse design using a Fourier series method”, 

AIAA Paper 99–0185. 

[22] Nili-Ahmadabadi, M., Durali, M., Hajilouy, A. and 
Ghadak, F., 2009 “Inverse Design of 2D Subsonic Ducts 

Using Flexible String Algorithm”, Inverse Problems in 

Science and Engineering, Vol. 17, No. 8, 1037-1057. 

[23] Nili-Ahmadabadi, M., Hajilouy, A., Durali, M. and 

Ghadak, F., 2010, Duct Design in Subsonic and 

Supersonic Flow Regimes with and without Normal 

Shock Waves Using Flexible String Algorithm, Scientia 

Iranica Journal, Vol. 17, No. 3, pp. 179-193. 

[24] Nili-Ahmadabadi, M., Hajilouy, A., Ghadak, F. and 

Durali, M., 2010, “A Novel 2-D Incompressible Viscous 

Inverse Design Method for Internal Flows Using Flexible 

String Algorithm”, Journal of Fluids Engineering, ASME, 

Vol. 132/031401-1-9. 

[25] Nili-Ahmadabadi, M., Durali, M., and Hajilouy, A., 2010 

“A Novel Quasi-3D Design Method for Centrifugal 

Compressor Meridional Plane”, Proceedings of ASME 

Turbo Expo 2010, Glasgow, UK, GT2010-23341. 



 Copyright © 2011 by ASME                                                             8 

[26] Hoffmann K.A. and Chiang S.T., Computational Fluid 

Dynamics 

[27] Roe P.L., Approximate Riemann Solvers, Parameter 

Vectors and Difference Schemes, J. of Computational

Physics, Vol. 43, pp. 357-372, 1981. 

[28] Kermani M.J., Development and Assessment of Upwind 

Schemes with Application to Inviscid and Viscous Flows 

on Structured Meshes, Ph.D. Thesis, Department of 

Mechanical & Aerospace Engineering, Carleton 

University, Canada, 2001. 

[29] Kermani M.J. and Plett E.G., Modified Entropy 

Correction Formula for the Roe Scheme, AIAA Paper # 

2001–0083, 2001. 

[30] Chakravarthy S.R. and Szedma K.Y., Euler Solver for 

Three Dimensional Supersonic Flows with Subsonic 

Pockets, AIAA Conference, 1987 

[31] Emery J.C., Herrig L.J., Erwin J.R., and Felix A.R., 

Systematic Two Dimensional Cascade Tests of NACA 

65-Series Compressor Blades at Low Speeds, NACA 

Reports 1368, 1957.    

 

 

 


