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ABSTRACT 
 The conventional inverse method possesses several 
disadvantages: experience-dependence, inconvenience for 
multi-row application and lots of human intervention. This 
hinders it from becoming a routine design tool. In the present 
paper, those mentioned shortcomings are conquered by 
combining the inverse method with a multi-row adjoint 
method, which could give an automatic and optimized design 
in a multi-row enviroment. The principles of the inverse 
method and adjoint method are first introduced. Then a 
derivation for the adjoint equation based on the Euler inverse 
method is conducted, and the corresponding adjoint boundary 
conditions are deeply discussed. After that, the developed 
inverse method is validated by recovering a turbine stator from 
a different initial shape. And the validity of the proposed 
adjoint based inverse method are illustrated by the redesign of a 
1-1/2 turbine stage. Finally a comparison is made between the 
inverse method, the adjoint method based inverse method and 
the adjoint method based direct method. 

NOMENCLATURE 
Symbols  
f camber line wrap angle 
m mass flow rate 
n normal 
p static pressure 
r radius 
s area; entropy 
t tangential thickness 
u axial velocity 
v circumferential velocity 
vg grid velocity 
w radial velocity 
A Jacobian matrix (of axial flux) 
B Jacobian matrix of circumferential flux 
C Jacobian matrix of radial flux 

F axial flux 
G circumferential flux 
I objective function 
J line vector defined by Eq. (25) 
M integrated function of objective function 
H radial flux 
M transform matrix 
R flow equation residual 
S source term of flow equation 
U conservative flow vector 
V volume 
W relative velocity vector 
W primitive flow vector 
X line vector defined by Eq. (41) 
α design variable(s) 
φ adjoint variable corresponding camber line 

generation equation 
λ adjoint variable 
ρ density 
π total pressure ratio 
θ circumferential coordinate 
Δ difference between blade upper and lower 

surfaces 
Λ adjoint vector 
Θ camber line generation equation residual 
  
Subscripts  
0 baseline value 
1-5 vector index 
n normal 
bl blade average value 
b blade 
r derivative in r direction 
x derivative in x direction 
  
Superscripts  
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+ blade upper surface 
- blade lower surface 
-1 inverse matrix 
 
1. INTRODUCTION 
    Modern aerodynamic design of turbomachinery relies 
heavily on the use of Computational Fluid Dynamics (CFD), 
which makes the designer understand the flow physics better 
than ever before (Denton [1]). With the help of CFD, lots of 3D 
effects, such as blade sweep, lean and twist, and end wall 
profiling, are introduced during the design process confidently. 
However, the main role played by the current CFD is analysis 
and check. Its direct use in the design mode is rare, and three 
dimensional designs by CFD don’t prevail yet. Researchers 
have always been endeavoring to develop fully 3D design 
methods. One of them is the inverse method. 
    The basic principle of an inverse method lies in that, 
specifying some aerodynamic parameters initially, a 3D blade 
shape could be obtained by solving the corresponding 
governing equations with proper boundary conditions; during 
the iterations, the blade shape is modified accordingly and the 
converged blade shape will ensure the flow tangentially aligned 
with blade surfaces while satisfying the pre-specified 
aerodynamic parameters. The inverse method enables designers 
to directly control the blade aerodynamic performance, so that 
they could use their fluid dynamics insights to improve the 
designs. Originated from the incompressible flow, the state-of-
art inverse method has reached a fairly high level. Tiow and 
Zangeneh [2] developed an inverse method considering viscous 
effects by viscous body force, and used the developed methods 
for the inverse design of NASA rotor 67. Van Rooij and Dang 
et al. [3] utilized the inverse method to investigate the stage-
matching effect. Roidl and Ghaly [4] devised a new inverse 
method, based on the blade surface virtual movement and time-
accurate simulation, which demonstrated to be robust and 
reliable. 
    Although the inverse method is starting to be applied in 
multi-row environment, it is far from becoming a routine tool, 
because some obstacles still exist. These bottle-neck problems 
include: a) the inverse method is experience-dependent. How to 
specify the target aerodynamic parameter distribution is a tough 
task, and requires the designer to possess lots of experience, 
both in aerodynamics and in use of the inverse method. b) even 
if the inverse method is applicable to multi-row environment 
with the help of mixing plane treatment, it is hard to consider 
the blade-row matching in advance. Usually, a low order 
model, such as through-flow model, has to be used to prepare 
the input data. Here the blade-row matching specifically means 
a good match of the specified design aerodynamic parameters 
radial distributions between the adjacent blade rows. c) the 
initially specified target distribution may not be the optimized 
one, so several trial-and-error tests are needed in order to get a 
satisfactory design. This means that manual intervention is 
necessary in the design process. 

    The above listed problems of the current inverse method 
inhibit its wide application. One way to solve this is to combine 
the inverse method with an optimization technique. This 
thought is not new. Tiow, Yiu and Zangeneh [5] integrated the 
simulated annealing method with the inverse method for 2D 
cascade design; Bonaiuti and Zangeneh [6] reported their 
combination of the inverse method, response surface technique 
and multi-objective evolutionary algorithm to realize a multi-
row, multi-objective, multi-point optimization design.  
 The optimization method used here is the adjoint method. 
Adjoint method originates from control theory, and its wide 
acceptance in CFD field is largely due to the pioneering work 
of Jameson [7]. It has the merit that the flow sensitivity is 
independent of the number of design variables, so it is very 
suited for large scale optimization. The adjoint method recently 
had received lots of attention in turbomachinery field. Yang, 
Wu and Liu [8] presented an optimization design of 2D 
cascades based on the adjoint method. Wu, Yang and Liu [9] 
extended its application to three dimensional single row blade. 
Wang et al [10] further enlarged its application to multi-row 
environment by adding an adjoint mixing plane treatment to the 
adjoint solver. A redesign of a 7-row compressor with a total of 
1023 design variables resulted in a 2.47% increase in isentropic 
efficiency, which demonstrated the power of the adjoint 
optimization. Also a two-point optimization is adopted in the 
same paper, resulting in improved off-design performance. 
 The advantage of the adjoint method makes it a promising 
candidate for the inverse optimization. Actually, some attempts 
of combining the inverse method and the adjoint optimization 
together have been made by researchers. Iollo, Ferlauto and 
Zanetti [13] successfully integrated the adjoint method with an 
inverse method based on the meridional plane flow equation, 
which generated optimized design results for a single rotor and 
a counter-rotating compressor stage.  
 In present paper, first an inverse method based on the Euler 
equation is developed and verified. Then on the basis of the 
inverse formulation, the corresponding adjoint equation is 
derived and solved numerically. Finally the developed system 
is used to optimize a 1-1/2 turbine stage and numerical results 
demonstrate the ability of the method. 

 
2. METHODS 
2.1 Inverse method description 
    The inverse method adopted here is the same as the one 
proposed by Tiow et al. [2] and Dang et al.[14], which is based 
on the steady Reynolds Averaged Navier-Stokes (RANS) 
equation in the cylindrical coordinate system 

 ( ) ( ) ( ) S
rr

HHr
r

GUvG
x

FF vvgv =
∂
−∂

+
∂

−−∂
+

∂
−∂

θ
 （1） 

where U are conservative variables, u, v and w correspond to 
axial, circumferential and radial velocities respectively, F, G 
and H are convective fluxes in axial, circumferential and radial 
direction respectively, Fv, Gv and Hv correspond to viscous flux 
in each direction, S is the source term considering the 
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centrifugal force in radial momentum equation, and vg is the 
circumferential grid moving velocity. 
    The flow governing equations are spatially discretized by 
a cell-centered finite volume method framework with inviscid 
fluxes calculated by the central difference scheme coupled with 
a blended second- and fourth-order numerical dissipation 
(Jameson [15]). Time integration is achieved by using the four-
stage Runge–Kutta method. The multigrid, local time-stepping 
techniques and implicit residual smoothing are employed to 
speed up the convergence of the solution process. Viscous 
effects are modeled by Baldwin-Lomax turbulence model and 
Denton’s wall laws is used in the approximation of walls. In the 
direct mode of the flow solver, a slip boundary condition is 
applied to the end walls and the blade surfaces. At inlet, total 
pressure and temperature, together with flow angles in 
circumferential and radial directions, are specified. Static 
pressure is fixed at hub of the outlet, and the radial pressure 
distribution is determined by the simple radial equilibrium 
equation. For multi-row calculation, the mixing plane is used to 
transfer information between upstream and downstream blade 
rows. 
    The inverse mode of the flow solver differs from the direct 
mode mainly in the imposement of the wall boundary 
conditions on blade surfaces. In the direct mode, the boundary 
conditions on the flow surfaces explicitly enforce the flow 
tangency condition (or no flux condition). However in the 
inverse method, the imposed blade-surface boundary 
conditions play two roles. One is to satisfy the given 
aerodynamic parameters (say pressure loading in the present 
case), and the other is, combined with the camber line 
generation process, to ensure the flow tangency condition. 
Following Tiow et al. [2], the pressure loading is satisfied by 
letting 

 ppp bl Δ±=±

2
1  (2) 

where the “+” and “-” represent parameters on the upper and 
lower blade surface, and the subscript “bl” denotes the blade 
averaged value, i.e. 

 ( )−+ += pppbl 2
1  (3) 

and the ∆ value is defined as 
 −+ −=Δ ppp  (4) 
which is the blade pressure loading. 
    The flow tangency condition is ensured by 

 vvv bl Δ±=±

2
1  (5) 

where ∆v must be obtained through the flow tangency 
condition on the upper and lower blade surfaces, which is 
written as 
 0=∇⋅ ±± αW  (6) 
where ( )2tf ±−=± θα define the blade surfaces, and f is the 
camber line wrap angle, t is the tangential thickness. Their 
definition is shown in Fig. 1. 

 

 
Fig.1 Camber line definition for inverse method 

 
    Expanding Eq. (6) and subtracting one from the other 
yields 
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The above inverse boundary condition will allow flux on 
blade surfaces during the iteration process, so it was termed as 
“transpiration boundary condition”. Although the flow may not 
align with the blade surfaces in the time-marching process, 
when converged, the flow tangential condition will be ensured, 
and there will be no flux on the blade surfaces any more. 
 Adding the expanded expressions of Eq. (6), one has  
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which is used for the camber line generation. 
    The flow chart of the inverse method is illustrated in Fig. 
2. The major steps are as follows: 
(1) Input the specified pressure loading chordwise and 
spanwise, together with the stacking grid line jstk and 
corresponding wrap angle fstk. The inverse method design is 
then started from an initial guess of the blade shape. 
(2) The discretised steady flow equation is marched for one 
step with the above derived inverse boundary condition on 
blade surfaces, while the boundary conditions at inlet, outlet 
and end wall are the same as those in the direct mode. 
(3) A new camber line is obtained by solving the camber line 
generation equation with the velocities on the blade surfaces. 
Then the grid is regenerated by an algebraic method. The 
geometric metrics, such as area and volume, are aslo updated. 
(4) Check the residual of the flow field and the camber line 
wrap angle to determine whether the inverse method is 
converged. If so, the computation results is post-processed; 
otherwise go to step (2) for the next design circle. 
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Fig.2 Flow chart of pure inverse method 

 
2.2 Adjoint principle 
    Before deriving the adjoint equation for the inverse 
method based on the Euler equation, a concise illustration of 
adjoint principle is present here. 
    In general, the objective function I is a function of flow 
variable U and the design variable α, i.e. 
 I=I(U, α) (9) 
and the flow governing equation relates to U and α by 
 R=R(U, α) (10) 
    A change of a design variable δα will yield changes in 
flow variables δU, the flow equation residual δR and the 
objective function δI. So the gradient of I to α could be written 
as 

 
ααα ∂
∂

∂
∂

+
∂
∂

=
U

U
II

d
dI  (11) 

the term α∂∂U is often named as flow sensitivity, whose 
computation is time-consuming, involving solving the flow 
governing equation lots of times when using the general finite 
difference method. The main idea of adjoint optimization is 
treating the flow governing equation as an additional 
constraint, and introducing a Lagrange multiplier, termed 
adjoint variable, to construct an augmented objective, then the 
problem become unconstrained. By selecting proper adjoint 
variables, the dependence of the objective function to the flow 
sensitivity will be eliminated, so the optimization process will 
be much more efficient. Linearizing the flow equation with the 
design variable will give 

 0=
∂
∂

+
∂
∂

∂
∂

=
ααα
RU

U
R

d
dR  (12) 

The above equation, multiplied with adjoint variable Tλ , and 
subtracted from the objective function gradient, becomes 
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collecting the like terms for α∂∂U will get 
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if we choose the adjoint variables by letting 

 0=
∂
∂

−
∂
∂

U
R

U
I Tλ  (15) 

then the first term on the RHS of Eq. (14) vanishes, and the 
gradient of objective function will be independent of flow 
sensitivity. The final reduced gradient of objective function is 
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d
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which could be calculated without too much labor. 
 
2.3 Adjoint equation for inverse method 
    Before derivation of the adjoint equation for the inverse 
method, it is helpful to clarify the relationship between the 
variables. In practical optimization, the objective function takes 
on a boundary integral expression, i.e. 

 ∫∂=
D
MdsI  (17) 

where ∂D are the boundaries of the integrated domain of the 
flow governing equation, the integrated function M is a 
function of flow variables M=M(U). In present application, 
because of using the inverse method, the design variable is 
chosen to be the pressure loading distribution factor α(x,r). The 
flow governing equation is expressed as R=R(U, α)=0, where R 
is a function of the flow variable U and the pressure loading.  
Also the camber line generation equation could be given as 
Θ=Θ(U+,U-,fx,fr)=0. At the same time, U=U(α), f=f(α). 

The derivation process here basically follows Wang and 
He[10] and Giles and Pierce[19]. Although RANS is used, the 
derivation is based on the Euler equation, since the principal 
aim here is to obtain adjoint boundary conditions for inverse 
methods, and this could be done readily based on the Euler 
equation. The adjoint counterparts of the viscous terms based 
on RANS was derived by Wang and He [10].  

First introducing the augmented objective function 
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where ( )T54321 ,,,, λλλλλ=Λ , 1φ  and 2φ  all are Lagrange 
multipliers, also termed adjoint variables here. The integration 
domain definition is shown in Fig. 3 and Fig. 4 for the flow 
equation and camber generation equation respectively. It should 
be noted that the integration domain for the camber line 
generation equation is defined on meridional plane, while the 
integration domain for the flow equation is defined in three 
dimensional spaces. 

N 
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Fig.3 Integration domain for the flow equation 

 

 
Fig.4 Integration domain for the camber line generation 

equation 
 
    For simplicity, the last two terms in Eq. (18) are combined 

into one term ∫ Θ−
bD

dsφ in the derivation, but it should be 

always noted that the above equation is integrated in two 
different domains. Otherwise there will be problems for the 
adjoint boundary condition imposement. 
    Computing the gradient of augment objective function to 
α, one has 
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where
α∂
∂

=
UU~ is the flow sensitivity, and

α∂
∂

= x
x

f
f
~ ,

α∂
∂

= r
r

ff
~ . 

    The linearized flow equation could be formulated as 
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where variables with tilde represent perturbed values of 
corresponding flow variables, and the term “g” can be 
considered to be the geometric source term, corresponding 
to α∂∂R  in Eq. (12).  Categorizing the above equation into 
two parts, the flow sensitivity part  
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and the geometric source term –g, then substituting the above 
equation into Eq. (19), we will obtain 
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The first term on the RHS of Eq. (22) is the final gradient, and 
the other terms on the RHS constitute the adjoint equation and 
its boundary condition. Some terms in the third term on the 
RHS could be further manipulated by integration by parts: 
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    For the camber line generation equation, 
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where W is the primitive variable vector ( )TpwvuW ,,,,ρ= , 
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then 
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because the meridional surface corresponds the circumferential 
projection of the blade surfaces, so 
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    Now consider the derivatives of Θ with respect to wrap 
angle,  
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in the same way 
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bΓ is the boundary of Db, which means the leading edge, 
trailing edge, hub and tip region in the bladed area. 
    Substituting Eq. (23), (27) and (32) into Eq. (22), and 
eliminating the coefficient of U~  on domain D, one obtains 
the adjoint equation for the Euler based inverse method. 
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after transposition, the expression becomes 
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which is the same as the general Euler based direct adjoint 
equation. 
    In order to eliminate the sensitivity f

~
,  
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This equation is named camber line adjoint equation. 
 
2.4 Inverse boundary condition for the adjoint equation 
2.4.1 General adjoint boundary conditions 
    As shown in Fig. 3, the boundary of field integration can 
be classified into 5 groups, namely the inlet boundary iD∂ , the 
outlet boundary oD∂ , the end walls hubD∂ and tipD∂ , the blade 

surfaces bD∂ and the periodic boundary pD∂ . 

    For inlet and outlet boundary ioD∂ , the adjoint boundary 
condition is determined by 

 ( )[ ] 0~
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⎩
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∂
∂ UCnnIvBAn

U
M

rgx
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which is also the same as the Euler based direct adjoint 
equation. 
    For the end wall surfaces hubD∂ and tipD∂ , considering the 

normal velocities of the walls are zero, the adjoint boundary 
conditions are given by (see Wang and He [10] for more detail) 
 pMnvnrnn grx ∂∂=+++ θθ λλλλ 5432  (37) 

For periodic boundary pD∂ , the direct copy from the 

corresponding internal points is used. 
    The boundary condition on the blade surfaces is discussed 
in section 2.4.2. 
    In order to exchange information between different blade 
rows, Wang and He[10] developed an adjoint mixing plane 
treatment for multi-row turobmachinery simulation, which is 
found to be conservative and non-reflecting, so the same 
technique is used here. The basic process is summarized as 
follows: 
(1) Solve the flux averaged adjoint variables iλ̂ (i=1,…,5), i.e. 
the mixed out variables termed by Wang and He, on both side 
of the interface; 
(2) Compute primitive perturbation of the mixed out 
variables 1,2,

ˆˆ~
iii λλλ −= , and these perturbations will be used as 

global perturbations. 
(3) Transform the primitive perturbations to the characteristic 
perturbations using the eigen matrix of the Jacobi matrix. 
(4) Correct the perturbation on both sides of the interface 
according to wave propagation direction. If the wave is 
incoming, the global characteristic perturbation is used; else if 
the wave is outgoing, then local characteristic perturbation is 
used. 
(5) Convert the updated characteristic perturbations into 
primitive perturbations, and add them to the original adjoint 
variables. 
 
2.4.2 Inverse adjoint boundary conditions on the blade surfaces 

In current application, the most important part lies in a 
compatible boundary condition for the inverse boundary 
conditions on the blade surfaces. In the inverse flow solver, one 
boundary condition is specified on each blade surface and the 
other four boundary conditions are determined by the interior 
flowfield, so for adjoint boundary conditions, there will be four 
boundary conditions to be specified, and one determined from 
internal flowfield. 
    For the blade surfaces bD∂ in the inverse method, the 
boundary conditions to be satisfied on the blade surfaces are 

( )[ ]

( )[ ]∫

∫

−

+

∂

−

∂

−

⎭
⎬
⎫

⎩
⎨
⎧ −+−+Λ−
∂
∂

+

⎭
⎬
⎫

⎩
⎨
⎧ −+−+Λ−
∂
∂

b

b

D
rgx

T

D
rgx

T

dsUnJMCnnIvBAn
U
M

dsUnJMCnnIvBAn
U
M

~

~

θθ

θθ

φ

φ

1

1

 

=0   (38) 
    Supposed that the objective function is only applied at 

inlet and outlet, so
U
M
∂
∂ is zero on the blade surfaces, then Eq. 

(38) could be rewritten as 

 ( ) ( ) 0~~~~
=+Λ++Λ

−+
WJnFWJnF n

T
n

T
θθ φφ  (39) 

expressing Fn by the primitive variables, one obtains 

 ( )[ ] ( )[ ] 0~~
=+Λ++Λ

−+
WJnMAWJnMA n

T
n

T
θθ φφ  (40) 
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the expression of Fn and An are listed in the appendix. Defining 
 ( ) θφJnMAXXXXXX n +Λ== 54321 ,,,,  (41) 
then the above equation could be re-written as 

 
( )( )[ ]
( )( )[ ] 0~,~,~,~,~,,,,

~,~,~,~,~,,,,

54321

54321

=+ −−−−−−

++++++

T

T

pwvuXXXXX

pwvuXXXXX

ρ

ρ
 (42) 

Expanding it generates 

 
0~~~~~

~~~~~

54321

54321

=+++++

++++
−−−−−−−−−−

++++++++++

pXwXvXuXX

pXwXvXuXX

ρ

ρ
 (43) 

The inverse boundary conditions in the inverse flow solver 
equate to 
 0~~ =− −+ pp  (44) 

 ( ) ( )−−−−−+++++−+ +−+=− wfufrwfufrvv rxrx
~~~~~~  (45) 

substituting the above two equation into the Eq. (43) gives 

 

( ) ( )
( ) ( )

( ) ( ) 0~~

~~~

~~~

5533

34321

34321

=−+−+

−+−++

++++

−+−−+−

−+−−−−+−−−−−

++++++++++++

pXXvXX

wXfrXuXfrXX

wXfrXuXfrXX

rx

rx

ρ

ρ

 (46) 

In order to eliminate the perturbations of p and circumferntial 
velocity v, it is sufficient and necessary to let 
 055 =+ −+ XX  (47) 

 033 =+ −+ XX  (48) 
also setting 
 01 =+X  (49) 

 032 =+ ++++ XfrX x  (50) 

 034 =+ ++++ XfrX r  (51) 
to eliminate density, axial and radial velocity perturbations on 
the upper surface, and setting 
 01 =−X  (52) 

 032 =− −−−− XfrX x  (53) 

 034 =− −−−− XfrX r  (54) 
to eliminate density, axial and radial velocity perturbations on 
the lower surface. The specific numerical implementation of 
this boundary condition is given in the appendix. 

The adjoint equation corresponding to the camber line 
generation equation is determined by 
 [ ] 0

~
=+ fnwnu rblxblφ  (55) 

When deriving Eq. (55), the zero normal velocity condition 
along the hub and tip is used. For a general stacking lime, 
which is in aligned with j=jstk grid line, 01 =φ should be applied 
at the leading edge, and 02 =φ at the trailing edge.  
 
2.5 Design optimization 
    The objective function used in present study is the entropy 
generation rate,  
 ( ) ( )202

2
010 1 ππσσ +−+ΔΔ= mmssI  (56) 

where the subscript “0” denotes the baseline value and σ are 
weight factors. For the application in present study, both weight 
factors are set to 100. The same objective function is used by 
Wang and He [10]. The pressure loading perturbation is 
parameterized using Hicks-Henne function. After getting 
gradients by solving the adjoint equations, a deepest decent 
method is used to give the change of design variables. Actually 
the gradients calculation and optimization process is termed as 
adjoint method in present paper. 

A typical flowchart of the optimization application is 
illustrated in the Fig. 5. The problem is set up by supplying the 
design condition, the tangential thickness and an initial blade 
shape, also an initial aerodynamic parameter distribution is 
needed to start the calculation, which could be obtained by 
former direct calculation. After solving the inverse flow 
equation and adjoint equation, the gradients and the changes of 
the design variables are obtained. Then a check is made to see 
whether the design variables change is within some pre-
specified convergence criteria. If satisfied, then the 
computation will stop. Otherwise, a new blade shape is 
computed and problem is reset up to start the next round 
computation. 
 

 
Fig.5 Flow chart of the adjoint based inverse method  

 
3. RESULTS AND DISCUSSIONS 
3.1 Aachen 1-1/2 stage turbine 
    The Aachen turbine, illustrated in Fig. 6, comprises of an 
IGV, a rotor and a stator, operating in an axial configuration at 
modest Mach numbers of ~0.5. The low aspect ratio of the 

N 
Y 

Inverse flow solver 

Inverse adjoint solver 

Compute gradient and obtain the 
change to design variables

Update blade shape 

Problem re-setup 

Optimized? 

Problem setup 

Stop 
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blades, and the constant tip and hub end wall contours enhance 
strong secondary flow phenomena. Both the 36 vanes and 41 
blades are cylindrical and untwisted. The rotor is unshrouded 
with a tip clearance of 0.4mm, but in the simulation, the tip 
clearance does not be modeled.  

 
Fig. 6 Schematic of the Aachen turbine stage used in the study 

 
The IGV of the turbine is used to validate of the inverse 

method, and the rotor and stator of the stage are redesigned 
using the presnet adjoint method based multi-row inverse 
method. 

 
3.2 Validation of the inverse method 

In order to validate the developed inverse method, the IGV 
of the turbine stage was recovered starting from a different 
geometry, with the target pressure loading and tangential 
thickness specified. 

Figure 7 compares the initial blade profiles, the redesigned 
and the target ones at mid span position. The target and 
redesigned pressure distributions are shown in Fig.8. The 
consistence of comparison is very good except some subtle 
difference at the trailing edges due to the large grid skewness 
there.   

target
initial
inverse

 
Fig. 7 Initial, inverse and target blade profile comparison 
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Fig. 8 Target and inversely computed pressure comparison 

 
3.3 Redesign using the developed adjoint method based 
multi-row inverse method 

The rotor and stator of the turbine stage are optimized 
simultaneously to verify the developed method, and the IGV is 
kept unchanged. A 105×41×41 grid density for each row is 
used throughout the calculation. Figure 9 shows the 
computational grid on meridional plane and quasi-stream 
surface. 11 control points in chordwise and 11 in radial 
direction are distributed to parameterize the pressure loading 
distribution.  

After 24 optimization cycles, the objective function 
decrease about 10%. The objective function evolution history is 
shown in Fig. 10. The optimized performance is compared with 
the baseline in Table 1. According to the computation, the 
efficiency was increased about 1 point, while keeping the mass 
flow rate and pressure ratio change less than 0.6%. 

 

 

 
Fig. 9 Meridional and quasi-stream surface computational grid 

for Aachen turbine stage 
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Table 1. Original and optimized performance of the Aachen 
turbine stage 

 mass flow 
rate 

total pressure 
ratio 

isentropic 
entropy 

original 8.2214 kg/s 0.8283 83.26% 
optimized 8.2059 kg/s 0.8233 84.27% 
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Fig. 10 Objective function evolution history 

 
Figures 11-13 show the geometric changes of the 

optimized from the original blade profiles at the 10%, 50% and 
90% span respectively. All the original blades are ruled blades, 
which means the blades can be defined by two sections at hub 
and tip respectively. It is straightforward to see that, after 
optimization, the geometry change is nonlinear between hub 
and tip. For both the rotor and the stator, the largest geometry 
change happens at the mid-span section. The geometric 
changes of blades make the passage curvature decrease at the 
rear part.  

original
optimized

 
 

Fig.11 Geometry change of the original blade profile and the 
optimized one at 10% span position from hub 

 

original
optimized

 
Fig.12 Geometry change of the original blade profile and the 

optimized one at 50% span position from hub 
 

original
optimized

 
Fig.13 Geometry change of the original blade profile and the 

optimized one at 90% span position from hub 
 

Figures 14-16 compare the flowfiled on quasi-stream 
surface. Examining those figures, it it easy to discover that 
there is elevated Mach number distribution in the optimized 
blade passage, which is consistent with the geometric change. It 
is believed that the efficiency increase is due to the higher 
passage velocity which improves the boundary layer behavior. 
Also, for the stator, there is a little change of incidence, which 
makes the rotor and stator matching better than the original.  

MA: 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

optimizedoriginal

 
Fig.14 Relative mach contour at 10% span position starting 

from the hub 
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MA: 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

original optimized

 
Fig.15 Relative mach contour at 50% span position starting 

from the hub 
 

MA: 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

optimizedoriginal

 
Fig.16 Relative mach contour at 90% span position starting 

from the hub 
 
3.4 Comparison between the inverse method, adjoint based 
direct optimization method, and adjoint based inverse 
method 
   At present, there are generally three kinds of methods to 
realize three-dimensional turbomachinery aerodynamic 
designs. The first is the optimization based on using the CFD in 
direct mode which is called direct optimization method (DOM) 
for short. The second is the pure inverse method (PIM) which 
utilize flow tangency condition and re-adjusting the camber 
line to satisfy the provided loading. The third is the 
optimization method based on inverse method, such as one 
developed in present paper, which is termed Inverse 
Optimization Method (IOM) for short. The following table 
compares the advantages and disadvantages among those 
methods. It is easy to conclude that, the DOM and IOM are 
counterparts, which basically share the same properties. The 
exception is that DOM deals with geometric design variables 
and it is easy to apply geometric constraints, while IOM takes 
aerodynamic parameters as design variables and can impose 
aerodynamic constraints easily. Table 2 compares the pure 
inverse method, the adjoint based direct optimization method 
and the adjoint based inverse optimization method. It should be 
pointed out that, because of solution camber line generation 
equation and inverse boundary condition imposement for 
inverse flow solution and adjoint equation solution, IOM takes 
about 30% longer time for one solution pass than the DOM. 

 

Table 2. Comparison between the pure inverse method (PIM), 
the adjoint based direct optimization method (DOM) and 

inverse optimization method (IOM) 
 PIM DOM IOM 
turn-around 
time 

a little longer 
than a direct 
analysis 

hundreds of cycles 
of a conventional 
direct analysis 

hundreds of cycles 
of a conventional 
direct analysis 

multi-row 
capability 

difficult to 
handle multi-
row problem 

easy to handle multi-
row  problem  

easy to handle 
multi-row problem 

experience 
dependence 

strong 
experience 
dependence 

weak experience 
dependence 

weak experience 
dependence 

optimized 
results 

improved 
result, but not 
guarantee to 
be optimized 

yes yes 

geometric 
constraints 

with limited 
ability of 
applying 
geometric 
constrains 

easy to apply 
geometric 
constraints 

with limited ability 
of applying 
geometric 
constraints 

aerodynamic 
constraint 

easily apply 
aerodynamic 
constraints 

with limited ability 
of applying 
aerodynamic 
constraints 

easy to apply 
aerodynamic 
constraints 

automation human 
intervention 
may be 
needed 

full automation,  full automation 

 
CONCLUSIONS 
    In present paper, an inverse method is first developed and 
validated using the IGV of the Aachen 1-1/2 turbine stage, then 
the inverse method is extended to multi-row environment by 
combining with the adjoint optimization technique. Flow and 
adjoint mixing plane treatment is adopted to transfer 
information between upstream and downstream of the mixing 
plane. Inverse boundary conditions imposed on the blade 
surfaces for adjoint equation are derived and implemented. The 
rotor and stator of the Aachen turbine stage are redesigned 
simultaneously to verify the developed multi-row inverse 
method. The entropy generation rate is selected as the objective 
function, and the pressure loading distribution perturbation is 
parameterized using Hicks-Henne function. Numerical results 
demonstrate that the current method possesses lots of merits, 
such as no experience dependence, giving optimized results 
and considering the aerodynamic matching between blade 
rows.  
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APPENDIX 

NUMERICAL IMPLEMENTATION OF INVERSE 
BOUNDARY CONDITION FOR ADJOINT EQUATION 

The normal flux is defined by 
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where  
 rx wnvnunQ ++= θ  (A.3) 
and M is defined by 
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where ( )222

2
1 wvuq ++= . Substituting Eq. (A.2) and (A.3) 

into Eq. (41) will give 
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For the inverse adjoint boundary conditions 
implementation,  5λ is extrapolated for both upper and lower 
surfaces, then Eq. (47)-(54) construct a linear system for the 
unknowns ( ±

1λ , ±
2λ , ±

3λ and ±
4λ ), which can be solved by direct 

matrix inversion method.




