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ABSTRACT 
Designing a gas turbine from scratch has always been an 

extremely laborious task in terms of obtaining the desired 

power output and efficiency. Theoretical prediction of the 

performances of a gas turbine has proven in time to be a 

compromise between accuracy and simplicity of the calculus. 

Methods such as the Smith chart are very easy to apply, but to 

make an exact prediction of the flow in a turbine would lead to 

an almost infinite number of variables to be considered. A quite 

precise method of determining total-loss coefficients for a gas 

turbine, based on a large number of turbine tests, was developed 

by D.G. Ainley and G.C.R. Mathieson, with an error of the 

calculated efficiency within 2%. The accuracy of the method 

has been validated by Computational Fluid Dynamics 

simulations, included in the paper. Even if it is not a novel 

approach, the method provides accurate numerical results, and 

thus it is still widely used in turbine blade design. Its difficulty 

consists of the large number of man-hours of work required for 

estimating the performances at each working regime due to the 

many interdependent variables involved. Since this calculus 

must be conducted only once the geometry of the turbine is 

determined, if the results are not satisfactory one must go back 

to the preliminary design and repeat the entire process. Taking 

into account all the above, this paper aims at optimizing the 

efficiency of a newly design turbine, while maintaining the 

required power output. Considering the gas-dynamic parameters 

used for determining the preliminary geometry of a turbine, and 

the influence of the geometry upon the turbine efficiency, 

according to the procedure stated above, a Monte Carlo 

optimizing method is proposed. The optimization method 

consists in a novel genetic algorithm, presented in the paper. 

The algorithm defines a population of turbine stage geometries 

using a binary description of their geometrical configuration as 

the chromosomes. The turbine efficiency is the fitness function 

and also acts as the mating probability criterion. The turbine 

energy output is verified for each member of the population in 

order to verify that the desired turbine power is still within 

acceptable limits. Random mutations carried on by chromosome 

string reversal are included to avoid local optima. Hard limits 

are imposed on optimization parameter variation in order to 

avoid ill defined candidate solutions. The approach presented 

here significantly reduces the time between design goal 

definition and the prototype. 

INTRODUCTION 
The current turbine design methods contain 3 major 

sequences: the preliminary design, which is a global calculus at 

mean radius, the through flow design, which adds the radial 

dimension, by selecting a radial equilibrium closure and the 

airfoil design, materialized in a 3D model, which can be subject 

to a computational fluid dynamics (CFD) flow analysis. 

The main objective when designing a turbine is to obtain 

the highest possible efficiency and the desired power output at 

the given operating conditions. When running at low efficiency, 

the losses cause the net power to drop and, in order to 

compensate, more fuel must be burnt. Higher fuel consumption 

also implies an increase in the pollutant emissions level (NOx, 

unburned hydrocarbons, carbon monoxide). 

Therefore, every turbine design must include a model for 

determining the losses that occur. From this point of view, the 

main disadvantage of CFD commercial software, widely 

available today, is its place in the design process. This tool, 

rather expensive in terms of work time in itself, can only be 

used once the 3D model is available and, if the results in terms 

of performances are not satisfactory, one must go back, 

sometimes all the way to the preliminary design. It is fair to say, 
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under these circumstances, that a system of aerodynamic losses 

estimation is needed in earlier design stages. Such a system can 

also be enclosed in an optimization algorithm, such as the 

genetic algorithm presented here, to significantly reduce the 

number of iterations in the design cycle. 

The first reliable methods for the pressure loss calculation 

in an axial gas turbine emerged through the synthesis of the 

experimental data obtained by testing a considerable number of 

turbines under different circumstances [1, 6]. When dealing 

with the estimation of an axial turbine performance, one must 

always make a compromise between accuracy and the 

complexity of the calculus. This led to two different approaches 

of loss modeling over time. 

The first method is extremely simple to apply, modeling the 

overall losses against stage loading and flow coefficients. Some 

examples are the Smith chart [1] or the models described by 

Soderberg, and presented by Horlock [2], and Latimer [3]. 

However, these methods can be applied only to turbine families 

with similar characteristics.  

A more widely applicable approach breaks down the losses 

into profile loss, clearance loss, secondary loss and trailing edge 

loss and considers the influence of a larger number of 

geometrical and flow parameters. Such an approach was 

adopted by Muchatarov and Krichakin [4], Craig and Cox [5] 

and others. 

Probably the most comprehensive and complete method of 

predicting a turbine’s performances at design point and off-

design conditions, is that due to Ainley and Mathieson [6]. 

While Muchatarov and Krichakin correlated the profile and 

secondary loss coefficients directly to the incidence angle, 

Ainley and Mathieson first estimated the positive stalling 

incidence. Their original scheme has been revised several times, 

as test data from different turbines families has accumulated. 

Dunham and Came (AMDC) [7], followed by Kacker and 

Okapuu [8] improved the correlations of Ainley and Mathieson 

regarding the profile, secondary and tip leackage losses 

coefficients at design point, while Moustapha et al revised the 

correlations at off-design conditions for profile and secondary 

losses [9] and with respect to the influence of leading edge 

geometry upon the profile losses [10]. Most of the revisions 

were no more than a change in a coefficient value for a better 

match to the testing values for newly designed turbine families. 

That is, undoubtedly, a tribute to the wide employment that the 

original work of Ainley and Mathieson still finds today. It is 

true that an accurate design is within 0.5% error margins 

nowadays, while this algorithm provides 2 % accuracy, but once 

the optimization algorithm is completed, it can always be 

updated. 

The selection of the proper input parameters, such that the 

best turbine performance to be obtained at the end of the design 

phase, is never a straightforward task, irrespective of the 

preferred design method. With the development of modern 

computers, various numerical approaches to the input parameter 

selection have been proposed. Such a solution, proposed in this 

work, is the use of a genetic algorithm to select the set of input 

parameters that provides the best turbine stage efficiency while 

maintaining the desired turbine power output. 

Genetic algorithms were used in optimization problems 

related to turbomachinery design as early as the last decade of 

the 20
th

 century. Thus, in 1996, Selig and Coverstone – Carroll 

[11] combined a genetic algorithm with a classical inverse 

design approach to maximize the energy production of wind 

turbines. 

Over the last decade, a larger number of studies involving 

genetic algorithms applied in turbomachinery design 

applications, such as hub and shroud shape optimization [12], 

turbine blade cooling system [13, 14, 15], compressor blading 

optimization [16, 17, 18, 19], wind turbine power output 

increase [20], gas turbine engine health monitoring [21], or 

turbine blade profile optimization, like the one presented here. 

However, these previous studies, in order to determine each 

candidate profile performance, coupled the genetic algorithm 

either with CFD codes [22, 23, 24, 25, 26, 27], which requires a 

large amount of computational resources, and a significant 

computational time, while strongly reducing the genetic 

algorithm population, hence its chances of finding a true 

optimum point, or with Artificial Neural Networks trained off-

line by means of previous CFD simulations [28, 29, 30, 31], 

with impact on method accuracy if the candidate profile lies 

outside the initial training space [32]. 

The novelty of the approach proposed here is the use of a 

well known, and extensively tested and trusted design method to 

provide the turbine stage performance to the genetic algorithm, 

leaving the computationally expensive CFD simulation to be 

performed only at the end, for the optimum solution, in order to 

verify the turbine stage performances. 

NOMENCLATURE 
α gas flow angle, measured relative 

to the axial direction 

[°] 

β blade angle, measured relative to 

the axial direction 

[°] 

M Mach number [-] 

Re Reynolds number [-] 

c blade chord [m] 

t maximum blade thickness [m] 

te blade trailing-edge thickness, 

measured normal to the camber-

line at trailing edge 

[m] 

o blade opening, or throat [m] 

s blade pitch, or spacing [m] 

e mean radius of curvature of the 

convex surface of a blade between 

the throat and the trading edge 

[m] 

k radial tip clearance, or minimum 

shroud band clearance 

[m] 

H annulus height (equals to the blade 

height if radial tip clearance is 

zero) 

[m] 

D outer diameter of turbine annulus [m] 
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d inner diameter of turbine annulus [m] 

Yt total loss coefficient [-] 

Yp profile loss coefficient [-] 

Ys secondary loss coefficient [-] 

Yk clearance loss coefficient [-] 

z blade loading parameter [-] 

CL lift coefficient based on the vector 

mean velocity 

[-] 

ng   the number of seals [-] 

p
*
 total pressure [Pa] 

T
*
 total temperature [K] 

n rotational speed [rpm] 

M g 
mass flow rate [kg/s] 

Δh
*
 variation of the total specific 

enthalpy  

[J/kg] 

nred reduced rotational speed [rpm/ K ] 

redgM  reduced mass flow rate [m·s· K ] 

Δh
*

red reduced variation of the total 

specific enthalpy 

[J/kg/K] 

Suffices 

1 Inlet to a turbine row 

2 Outlet from a turbine row 

TURBINE DESIGN ALGORITHM 
When designing a new turbine, the first step is to analyze 

its application. Knowing exactly what the turbine is meant for, 

one can establish the basic input data. The basic parameters for 

the algorithm presented in this paper are the gas dynamic 

parameters of the turbine’s inlet and the power output or the 

total pressure at the turbine’s outlet. The algorithm is divided 

into three main parts.  

The first one, as expected, is a preliminary design at mean 

radius. In the preliminary design, the velocity triangles for the 

gas expansion in the turbine are determined, so that the required 

output is obtained. First, the turbine’s cross sections are 

calculated, by approximating the hub radius at the inlet of the 

first stator in accordance with the application and imposing a 

critical regime at the stator’s outlet. A value for the turbine’s 

efficiency is also predicted using the Smith chart [1]. The total 

and static gas dynamic parameters are determined using a 

polynomial approach, and then the corresponding degree of 

reaction and velocities triangle at each section are computed. 

So far, only the axial direction was analyzed. The next 

phase adds the radial dimension, analyzing the flow in a hub-to-

shroud plane, as a grid of streamlines. In order to perform this 

task, several closures for the radial equilibrium equation are 

proposed in the literature, from which the user may choose 

those that better satisfy the problem requirements. This 

equation, in conjunction with the conservation of mass 

(continuity equation) enables the velocity triangles to be 

calculated at any radius.  

Having all the above data thus determined, the airfoil 

design follows. The airfoil geometry at this stage will be 

represented as a set of two-dimensional sections, corresponding 

to the radii where the velocity triangles were determined. A 

minimum of three sections (hub, mean and tip) are required. For 

the airfoil design, the method of curving a known airfoil was 

chosen. A standard NACA airfoil mean camber line is curved so 

that the desired velocity triangles are obtained. Using the new 

mean camber line and a number of points from the original 

airfoil, its thickness is then added. For this calculus to be 

possible, supplementary input is required, such as the chord 

length, the maximum thickness, the number of blades in a row, 

and the maximum camber. Although one can only approximate 

these values form previous experience at this early stage of 

turbine design, these variables are part of an optimization 

process, which allows for less accurate initial guesses. 

The next step consists in the stacking of the determined 

airfoils, thus obtaining the 3D model. Having this model, a CFD 

analysis using dedicated software is usually conducted in order 

to determine the turbine’s performances at the design 

conditions, and beyond. The main drawback of such an 

approach is that, in most of the cases, the results are not 

satisfactory, and a return to the previous design steps, 

sometimes all the way to the preliminary design, is often 

required. This process may be repeated many times before the 

difference between the actual results and desired ones is small 

enough. 

Having that in mind, the third part of this design algorithm 

calculates the performances of the turbine using the Ainley and 

Mathieson method [6] for each airfoil determined at the 

previous step, and determines the mean values of the 

performances for the entire turbine. The values are, further in 

this paper, compared to the ones obtained through CFD for the 

same conditions, with the purpose of validating the pressure 

loss coefficients calculation method used here. 

The velocity triangles were previously determined using an 

approximation for the turbine’s efficiency. With the known 

geometry, they are now recalculated. The method developed by 

Ainley and Mathieson considers the gas flow angle at the outlet 

of a turbine row as a function of geometry and Mach number, 

and independent of the incidence angle at the row inlet. 

Based on the equations provided by Ainley and Mathieson 

and by interpolating the experimental data charts in their paper 

[6], a set of equations have been determined for the purpose of 

this work. The gas flow angle for the stator blade rows is 

determined by: 

i22    (1) 

for Mach numbers between 0 < M2 ≤ 0.5, by: 

  3
2

42
2

926122422 MMMicc    (2) 

for Mach numbers between 0.5 < M2 ≤ 1, and, respectively, by 

c22    (3) 

for Mach numbers M2 ≥ 1, where, 
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

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
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s

o
arc cos2  (4) 

e

s
ci 414.11.11 22   . (5) 

For the rotor blade rows, the gas flow angle relations 

become: 

i2
*

2    (6) 

for Mach numbers between 0 < M2 ≤ 0.5, 
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for Mach numbers between 0.5 < M2 ≤ 1, and 
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and the constant x = 1.35 for blades with radial tip clearance, 

respectively x= 0.70 for simple shrouded blades. 

The total-loss coefficient is calculated as a sum of profile 

loss, secondary loss and tip loss coefficients: 

kspt YYYY   (12) 

The last two coefficients are calculated together. Also, the 

total loss coefficient is calculated without taking into account 

the trailing edge thickness influence, for a value of te/s of 0.02. 

Since, in most cases, that’s not to true, a correction is made by 

means of a multiplication factor plotted against the total loss by 

Ainley and Mathieson in their work. The loss coefficients are 

determined with respect to the relative flow parameters 

The profile loss coefficient is a complex function of 

geometrical and flow parameters. Using empirical correlations, 

Ainley and Mathieson obtained a set of 6 charts allowing its 

calculation. These graphical dependencies have been 

transformed into higher order polynomials in order to be 

integrated in this algorithm. The first one is used to determine 

the gas flow angle at the exit of a turbine row for a value of the 

s/c ratio of 0.75, by knowing the true value of this ratio and its 

correspondent gas flow angle. The gas flow angle at the exit of 

a turbine row used here is not taking into account the tip 

clearance. With this result, and also knowing the geometrical 

angle of the turbine row, the second chart is used to obtain the 

stalling incidence for s/c = 0.75 and the third chart for the 

variation given by the actual value of s/c. 

In the end, the stalling incidence is the sum of those two, 

which is, of course, an approximate value, but accurate enough 

for this work's purposes. The stalling incidence is defined as 

that incidence at which the profile losses are double those for 

zero incidence. 

The next step is to determine the profile loss coefficient at 

incidence zero, using the formula: 
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(13) 

In this formula, the profile loss coefficients, having β1=0, 

respectively β1=- α2 and the same α2 and s/c as the actual profile, 

are obtained using the two polynomials derived from the fourth 

and fifth charts. 

In the end, the last chart is used to determine the profile 

loss coefficient as a function of profile loss coefficient at 

incidence zero and the ratio between stalling incidence and 

actual blade incidence. 

After interpolating the graphical dependencies and using 

the given equations for the secondary and tip clearance loss 

coefficients, their summed value can be expresses as following: 
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  2/21  tgtgarctgm   (16) 

  m
L tgtg
cs

C
 cos2 21  . (17) 

Also, B is a constant, with a value of 0.47 for radial tip 

clearance and 0.37 for shrouded blades. For the shrouded 

blades using more than one seal, the tip clearance used in this 

calculus becomes: 
42.0

gg nkk   
(18) 

where kg is the geometrical value of the tip clearance and ng 

represents the number of seals. 

The total loss coefficient in a turbine row is calculated for a 

Reynolds number of approximately 2x10
5
. 

For values different than this one, a correction is applied, 

as follows: 

  kspt YYYY 











 2.0

5102

Re
 

 

(19) 

For the proper functioning of this algorithm, a considerable 

set of input parameters are needed. For the purpose of the 

optimization algorithm that will be described in the next section 

of this paper, the input parameters may be split into two groups, 

as follows. 

A first set of input parameters, which are firstly 

approximated by the user, only to be completely defined at the 

end of the optimization process, are presented in Table 1. For a 

turbine stage, which was the case considered in this paper, a 

number of 27 such variables have been identified.  

The parameter variation limits have been chosen such that 

the middle of the interval to correspond to a known turbine 

configuration. When designing a completely new turbine, one 
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must rely on their experience or existing literature data in 

choosing these limits so they would best suit their application.  
TABLE 1   OPTIMIZATION PARAMETERS 

Name Units Limits 

Shroud radius for the stator inlet [m] 0.05 – 0.25 

Axial length of the stator [m] 0.002 – 0.065 

Axial length of the rotor [m] 0.002 – 0.065 

Channel divergence angle at the 

inner diameter of stator row 

[°] 0.1 – 1.5 

Channel divergence angle at the 

inner diameter of rotor row 

[°] 0.1 – 7.0 

Channel divergence angle at the 

outer diameter of stator row 

[°] 0.0 – 8.0 

Channel divergence angle at the 

outer diameter of rotor row 

[°] 0.0 – 2.0 

Tip clearance for the rotor blade [mm] 0.1 – 0.9 

Number of stator blades [-] 10 – 50 

Number of rotor blades [-] 10 – 110 

Trailing edge radius for the stator 

blades 

[mm] 1.0 – 3.0 

Trailing edge radius for the rotor 

blades 

[mm] 1.2 – 3.2 

Stator blade chord [mm] 100 – 650 

Shroud rotor blade chord [mm] 100 – 350 

Tip rotor blade chord [mm] 100 – 350 

The positioning of the maximum 

thickness, for the stator blades 

[% chord] 10 – 50 

The positioning of the maximum 

thickness, for the rotor blades 

[% chord] 10 – 70 

The admissible variation of the 

positioning of the maximum 

thickness, for the stator blades 

[% chord] 1 – 3 

The admissible variation of the 

positioning of the maximum 

thickness, for the rotor blades 

[% chord] 1 – 3 

Stator blades maximum thickness [% chord] 5 – 35 

Shroud rotor blades maximum 

thickness 

[% chord] 5 – 35 

Mean radius rotor blades 

maximum thickness 

[% chord] 5 – 20 

Tip rotor blades maximum 

thickness 

[% chord] 5 – 15 

The abscissa of the gravity center 

of the profile for the stator blades 

[mm] -10 – 10 

The ordinate of the gravity center 

of the profile for the stator blades 

[mm] -10 – 10 

The abscissa of the gravity center 

of the profile for the rotor blades 

[mm] -10 – 10 

The ordinate of the gravity center 

of the profile for the rotor blades 

[mm] -10 – 10 

The second set of data is represented by parameters 

considered constant throughout the entire design process, 

independent of the number of iterations as they are imposed by 

the desired application of the turbine. They are shown in table 

2. 

The working fluid parameters are only to be used in the 

preliminary design, in the through flow design being calculated 

using the polynomial approach. 
TABLE 2   CONSTANT PARAMETERS 

Name Units Value 

Total temperature at turbine’s 

inlet 

[K] 1263 

Total pressure at turbine’s inlet [Pa] 969204 

Total pressure at turbine’s 

outlet / Power output 

[Pa]/ 

MW 

613580/ 

1.091 

Mass flow rate [kg/s] 8.1345 

Fuel/air mass flow rates ratio [-] 0.01816 

Rotational speed [rpm] 22000 

Mach number at the turbine’s 

inlet 

[-] 0.1891 

Radial equilibrium solution type 

for each row (stator/ rotor) 

[-] const. enthalpy and 

geometric angle / 

const. circulation 

The turbine’s efficiency 

approximation for the mean 

preliminary design 

[-] 0.92 

The specific heat capacity at 

constant pressure for the 

working fluid 

[J/kg/K] 1080.8 

The specific gas constant for the 

working fluid 

[J/kg/K] 287.15 

The heat capacity ratio for the 

working fluid 

[-] 1.333 

The number of streamlines to be 

considered 

[-] 11 

OPTIMIZATION GENETIC ALGORITHM  
A genetic algorithm (GA) is a Monte Carlo type numerical 

method based on the paradigm of biological adaptation [33]. 

Essentially, a genetic algorithm is a homogeneous, irreducible 

Markov Chain [34] that applies the principle of mutation and 

selective reproduction on a group of candidate solutions that for 

the so-called population.  

The computer representation of the candidate solutions 

consists in a binary string, called a chromosome [34], which 

completely describes the significant characteristics of the 

candidate solution for the purpose of the optimization problem.  

The most important part of a genetic algorithm is the 

recombination (in GA terms, “the reproduction”) of two 

candidate solutions’ chromosomes, called parents, into a new 

chromosome characterizing a so-called “offspring” [34].  

During the creation of the new chromosome, like in the 

natural reproduction processes, a chromosome mutation may 

occur, that is a reversal of one or more bits in the offspring 

chromosome. 
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For each candidate solution, both in the initial solution and 

among the offspring of each generation, a fitness function, 

describing the function that is being optimized by the GA, must 

be computed. 

Finally, the candidate solutions that will form the next 

generation are selected from the current population with a 

probability of selection depending on the candidate solution’s 

fitness [34]. 

As a GA progresses, the population fitness improves, but 

the rate decreases since the individuals that form the population 

are more and more similar (or even identical). The value of the 

fitness function in such a case may be the desired global 

optimum, but it may also be only a local optimum value. Even 

though, through mutation, the GA will eventually find the global 

maximum, the total computational time will be much shorter if 

the GA run is stopped when no changes occur during a 

significant number of generations, and the run is restarted for 

several times, recording the best fitness solution for each run. 

The GA used here starts by defining minimum and 

maximum limits for the 27 optimization parameters in Table 1, 

thus defining the acceptable solution space. Even though this is 

a limitation for the GA, such a restriction of the solution space 

is aimed at eliminating non-physical, or unrealistic solutions 

(e.g. stages with thousands of blades, zero tip clearances, or 

paper thin blades). The solution space limits used for the GA 

runs presented here are given in the last column of Table 1. 

The initial population is created within these limits, its size 

being an optimization parameter, to be studied in the later 

sections of this paper. For each parameter, a random number is 

sampled from a Gaussian distribution having the mean at the 

middle of the interval defined by the limits. The variance of the 

Gaussian distribution is an optimization parameter, to be 

studied in the later sections of this paper. Any random numbers 

outside the imposed limits are discarded. The random number 

is, then, normalized through a linear transformation a brought 

into the [0; 1] interval, zero corresponding to the minimum 

value, and one to the maximum value. The first four digits after 

the decimal point will form the parameter value characterizing 

the current candidate solution. The chromosome is formed by 

the concatenation of the binary form of the 27 optimization 

parameter values determined as described above. 

Once the optimization parameters values are known the 

turbine stage power and efficiency is determined for each 

member of the population, using the performance evaluation 

algorithm described previously. If the turbine power is lower 

than an acceptable value (1 MW in this study), the population 

member is “condemned” (its efficiency value is set to zero). 

Due to the nature of the problem, some candidate solutions 

will be ill defined, i.e. some combinations of optimization 

parameters do not allow the performance evaluation algorithm 

describe previously to be completed, as some of the iterative 

parts it contains become divergent). In such a case, the 

diverging loop is broken and the performance evaluation stops. 

If this occurs during initial population evaluation, a new 

chromosome is randomly created through the process described 

earlier, as the initial population size must be the one specified at 

the start of the GA. 

 
FIGURE 1. GENETIC ALGORITHM DIAGRAM 

For each member of the population, with a probability 

determined by the corresponding efficiency, reproduction may 

occur at each generation. For this, a “mate” is randomly 

selected from the remaining population and an offspring 

chromosome is created by concatenating binary optimization 

parameter values inherited from either of the two parents, with 

equal probability. 

During the reproduction step, a mutation in the offspring 

chromosome may occur with a probability set is this study to 

0.5 %. This translates numerically into the reversal of a two bits 

string in the chromosome, at a randomly selected position. 

Mutations that translate into optimization parameter values 

outside of the initial range render the offspring as “condemned” 

and no efficiency evaluation will be performed in the next stage. 

For each viable offspring, the turbine power and efficiency are 

computed. 

If a diverging loop in the performance evaluation algorithm 

occurs during offspring evaluation, that the particular offspring 

is deemed as not viable, its power and efficiency are set to zero, 

and will die before the next generation starts, as it will be shown 

next. The parents’ chance for reproduction is lost for the current 

generation. 

Finally, the current population is ranked by efficiency and a 

number of individuals equal to the initial population size will 

form the population for the new generation, while the rest of the 

 START 

Read input parameters 

Evaluate profile performance 

Store results 

END 

Construct random chromosome 

Viable individual? 

Generate initial population 

Last generation? 

Reproduce 

Mutate 

Sort population by efficiency 

Dispose of surplus population 

Selected for reproduction? 

Chromosome mutation? 

Viable offspring? 

Generation life 

Evaluate offspring performance 
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candidate solutions are discarded (“killed”). The chromosomes 

providing the maximum efficiency and the maximum turbine 

power are recorded. The diagram describing the algorithm is 

presented in Figure 1. 

OPTIMIZATION RESULTS 
The previously described GA and turbine design algorithm 

coupled together in that the design algorithm is used as fitness 

evaluation algorithm by the GA , have been used to find the 

optimal set of parameters that provide the biggest turbine 

efficiency on condition that the turbine power remains over 1 

MW. 

Two GA parameters were considered significant for the 

final results, the population size and the variance of the 

Gaussian distribution that governs the chromosomes of the 

initial population, controlling the chromosome variability in the 

initial population. 

To assess the impact of these parameters, a parametric 

study was carried on, according to Table 3. The first line and 

the first column of Table 3 indicate the tested parameter 

combinations, while inside Table 3 is shown the number of 

generations for each case, determined as the point where no 

change was recorded in the maximum efficiency, or the 

maximum power, for over 20 previous generations. A number of 

10 runs for each case were carried on, for the initial conditions 

specified in Table 2.  
TABLE 3   GA PARAMETRIC STUDY 

 SIG = 5 SIG = 10 SIG = 50 SIG = 100 

NPOP = 

100 
300 300 300 300 

NPOP = 

1000 
500 500 500 500 

NPOP = 

10000 
800 800 800 800 

In Table 3, NPOP is the population size, while SIG is 

related to the Gaussian distribution variance σ by the equation: 

SIG

XX minmax   
 

(20) 

where Xmin and Xmax are, respectively, the minimum and 

maximum limits imposed o the current optimization parameter 

by Table 1. 

Figure 2 presents the time evolution of the largest 

efficiency of the generation for the 10 runs carried on for NPOP 

= 100 and SIG = 5. 

The results show that the same maximum efficiency is 

reached by all runs, with a difference in value of maximum 

0.1%, and the situation is similar for the other cases, not shown 

here due to space constraints. Since different variance values 

provide a different maximum efficiency, the convergence of the 

10 runs to the same value for the case in Fig. 2 indicates the 

even though it is not the global optimum of the solution space, 

the obtained maximum efficiency is the local maximum that 

characterizes the given variability in the initial population, so 

the stop criterion is correct and the results are significant. Each 

series represented in Fig. 2 is a distinct run of the GA. 

 
FIGURE 2. TIME EVOLUTION OF THE LARGEST 

EFFICIENCY FOR for NPOP = 100 and SIG = 5 

Figs. 3, 4 and 5 present the time evolution of the largest 

efficiency of the generation, averaged over the performed runs, 

for, respectively, a population size of 100, 1,000 and 10,000. 

 
FIGURE 3. TIME EVOLUTION OF THE MEAN EFFICIENCY 

FOR for NPOP = 100 and SIG = 5, 10, 50, 100 

 
FIGURE 4. TIME EVOLUTION OF THE MEAN EFFICIENCY 

FOR for NPOP = 1000 and SIG = 5, 10, 50, 100 
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FIGURE 5. TIME EVOLUTION OF THE MEAN EFFICIENCY 

FOR for NPOP = 10000 and SIG = 5, 10, 50, 100 

Generally, for a fixed population size, the maximum 

efficiency found by the GA is larger for the runs with greater 

variability in the initial population (smaller SIG parameter). 

Minor deviations from this rule for some runs are most likely 

due to flukes in the random numerical generator output. The 

reason is that the more variability exists in the initial 

population, the more opportunities arise for better fitted 

candidate solutions to appear (similarly to real life genetics). 

Also, the runs with larger variability also converge faster to the 

final solution, since in most cases, a solution close enough to 

the final one will likely be found in the initial population if 

enough variability exists. Finally, the final solution of the GA 

runs improves as the population size increases. Again, this 

relates to the chromosome variability not only in the initial 

population, but also during the run cycle. 

Thus, the best results are achieved for a population size of 

10,000, with a variance factor SIG of 5. The best run of this 

case was carried out for an additional 1,200 generations, to a 

total of 2,000. The total computational time was 49.25 single 

CPU hours on an 8 processors (type Intel Core2 Quad) 

machine. The run provided a maximum efficiency of 0.89388, 

at a turbine power of 1.091 MW. The optimization parameters 

yielding the maximum efficiency are given in Table 4, and the 

shape of the resulting turbine stage is presented in Fig. 6. 

 
FIGURE 6. THE SHAPE OF THE RESULTING TURBINE 

STAGE (STATOR AND ROTOR BLADES) 

TABLE 4   OPTIMIZATION PARAMETERS FOR BEST 

EFFICIENCY 

Name Units Value 

Shroud radius for the stator inlet [m] 0.14864 

Axial length of the stator [m] 0.004961 

Axial length of the rotor [m] 0.003051 

Channel divergence angle at the inner 

diameter of stator row 

[°] 0.7265 

Channel divergence angle at the inner 

diameter of rotor row 

[°] 5.5712 

Channel divergence angle at the outer 

diameter of stator row 

[°] 6.5528 

Channel divergence angle at the outer 

diameter of rotor row 

[°] 0.0 

Tip clearance for the rotor blade [mm] 0.1 

Number of stator blades [-] 43 

Number of rotor blades [-] 62 

Trailing edge radius for the stator 

blades 

[mm] 1.0152 

Trailing edge radius for the rotor 

blades 

[mm] 1.2004 

Stator blade chord [mm] 272.032 

Shroud rotor blade chord [mm] 208.7488 

Tip rotor blade chord [mm] 218.9888 

The positioning of the maximum 

thickness, for the stator blades 

[% chord] 33.3495 

The positioning of the maximum 

thickness, for the rotor blades 

[% chord] 42.328 

The admissible variation of the 

positioning of the maximum thickness, 

for the stator blades 

[% chord] 1.0 

The admissible variation of the 

positioning of the maximum thickness, 

for the rotor blades 

[% chord] 1.0 

Stator blades maximum thickness [% chord] 5.8932 

Shroud rotor blades maximum 

thickness 

[% chord] 18.6192 

Mean radius rotor blades maximum 

thickness 

[% chord] 7.8272 

Tip rotor blades maximum thickness [% chord] 5.0 

The abscissa of the gravity center of 

the profile for the stator blades 

[mm] -3.94 

The ordinate of the gravity center of 

the profile for the stator blades 

[mm] 1.544 

The abscissa of the gravity center of 

the profile for the rotor blades 

[mm] 3.914 

The ordinate of the gravity center of 

the profile for the rotor blades 

[mm] 1.816 

DESIGN ALGORITHM VALIDATION THROUGH CFD 
The approach presented in this paper postpones the use of 

CFD tools in the axial turbine design process until the 
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optimization is completed. The CFD tools role of predicting the 

performances of an axial gas turbine is taken over by the Ainley 

and Mathieson algorithm [6]. 

Therefore, once the optimal turbine stage geometry is 

known, a CFD study was conducted in order to validate the 

turbine design algorithm presented earlier. The validation was 

achieved by comparing the results provided by the two methods 

at the same operating conditions. The comparison was 

conducted both at design conditions as well as at off-design 

conditions. 

The full geometry of a turbine consists of at least one stator 

and one rotor row, as in the case considered in this paper, each 

row having a few dozens of blades. In order to avoid the 

complexity of this geometry, the CFD model was reduced to a 

single stator and a single rotor blade passage, using periodic 

boundaries. The mesh resulted contains over 1.5 millions of 

elements. The CFD numerical simulation was carried on using 

the ANSYS CFX solver. 

Using the known sector geometry, the SST (Shear Stress 

Transport) turbulence model and the steady frozen rotor 

simulation type, and with known thermodynamic parameters for 

the turbine’s inlet, the same as those used in the GA 

performance evaluation computations, part of the turbine’s 

universal characteristic was determined by varying the 

rotational speed of the rotor as well as the mass flow rate. 

By definition, the universal characteristic of an axial 

turbine represents a set of curves which contain the variations of 

the gas expansion ratio in relation with the similarity parameters 

of mass flow rate and rotational speed [35]. The turbine 

characteristic is required to establish the gas turbine’s work line 

in correlation with the other gas turbine components. 

The similarity parameters are those parameters that provide 

the turbine characteristic its universality, a single point on the 

universal characteristic representing a set of operating regimes 

under the Mach similarity criterion [36.]. 

Applying this criterion, the similarity parameters for the 

mass flow rate, enthalpy and rotational speed are defined by 

ratios of their effects and, therefore, they are further called the 

reduced parameters: 
*

1
** /Thhred   (20) 

*

1

*

1 / pTMM gredg    (21) 

*
1/ Tnnred   (22) 

For the presented case, an inlet total temperature of 1124 K 

and an inlet total pressure of 527,573 Pa were considered. 

The universal characteristic for the considered turbine, 

computed through CFD analysis (black) and using the turbine 

design algorithm described earlier and based on the Ainley and 

Mathieson method [6] (red), is shown in Fig. 7. The figure 

presents 4 constant reduced mass flow rate lines, having the 

values presented in the legend, the top value corresponding to 

the curve having the smallest slope. This figure shows a very 

small difference in results obtained using the two methods 

proving the validity of the design and optimization approach 

proposed here. 

 
FIGURE 7. UNIVERSAL CHARACTERISTIC OF AN AXIAL 

TURBINE 

To allow a better quantitative evaluation of this difference, 

a numerical example is given below. For a mass flow rate of 

8.15 kg/s and a rotational speed of 14000 rpm, by taking into 

account the considered values for the total inlet pressure and 

temperature, the reduced rotational speed is of 417.6 rpm/ K  

on the first curve from the chart, counted from top to bottom. 

That leads to a calculated value of 126.7 J/kg/K for the reduced 

total specific enthalpy variation for the first method and 131.1 

J/kg/K for the CFD one. In terms of power output, this is 

equivalent to 1.616 MW, respectively to 1.201 MW. The 

relative error between these two values is of approximately 3.5 

%, and represents the maximum difference between the two 

methods, corresponding to the most distant two points, as it can 

be seen in Fig. 7. 

Fig. 8 presents the velocity streamlines and the temperature 

field on the blades obtained with CFD,which is usefull in the 

blade material choosing process. 

From an aerodynamic standpoint, the results show a vortex 

free flow, both in the stator and in the rotor. Also, secondary 

flow patterns cannot be observed in the CFD data. Both these 

results confirm that a minimal aerodynamic losses configuration 

has been obtained.  

 
FIGURE 7. VELOCITY STREAMLINES AND TEMPERATURE 

CONTOURS 
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CONCLUSIONS AND FUTURE WORK 
A novel genetic algorithm for the optimization of turbine 

stage geometry has been developed and used for the 

optimization of an axial turbine. The GA uses the turbine stage 

efficiency as fitness function and verifies the turbine power to 

remain above 1 MW. The turbine performance evaluation 

required by the GA is performed using a design algorithm based 

on the methodology developed by Ainley and Mathieson [6]. 

A parametric study of the influence of population size and 

initial population distribution on the GA performance shows 

that the algorithm provides better results if the population 

chromosome variability is sufficiently high throughout the GA 

run. The population variability is limited, however, geometrical 

constraints imposed on the optimization parameters in order to 

avoid non-physical, or unrealistic solutions. 

As previously mentioned, even though a GA is guaranteed 

to eventually produce a global maximum [34], the 

computational time required to do so may be very large. To 

verify that a global maximum has been reached for the given 

initial conditions, a restarting technique has been used, by 

running the algorithm for several times using different random 

number generator seeds. The final result presented in the paper 

has been recorded in all the five instances the numerical 

procedure has been carried out, indicating a high probability 

that it is, indeed, a global optimum. Theoretically, two 

parameters may be considered important for the time required 

to find the global optimum: the mutation rate and the 

reproduction probability. If the reproduction probability is 

controlled only by the turbine profile efficiency, in an attempt to 

improve the odds to reproduce of the best fitted “individuals”, 

the effect of the mutation rate, set at 0.5% in this paper, will be 

analyzed in a future study. 

The GA provides an optimal solution yielding an efficiency 

of 0.89388, at a turbine power of 1.091 MW. The solution 

geometry is tested by a CFD simulation both at the design point, 

and for off-design regimes. The maximum differences for the 

tested geometry are below 4 %. 

Future developments of the method will aim at improving 

the empirical coefficients of the design algorithm in order to 

achieve a better match with the CFD simulation results, 

parallelize the GA to reduce the computational time and find a 

method for the a priori detection of the geometrically ill defined 

candidate solutions such that their performance evaluation to be 

completely avoided, as well as a better definition of the possible 

solution space that provides the GA initial population. 
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