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ABSTRACT
The implementation of an edge-based three-dimensional

RANS equations solver for unstructured grids that runs on both
central processing units (CPUs) and graphics processing units
(GPUs) is presented. This CPU/GPU duality is kept without
double-writing the code, reducing programming and mainte-
nance costs. The GPU implementation is based on the standard
OpenCL language. The code has been parallelized using MPI.
Some turbomachinery benchmark cases are presented. For all
cases, an order of magnitude reduction in computational time is
achieved when the code is executed on GPUs instead of CPUs.

NOMENCLATURE
CFL Courant-Friedrich-Lewis number
Cp Specific heat at constant pressure
Cpt Total pressure coefficient: (p01 − p02)/(p01 − ps2)
CTA Centro de Tecnologías Aeronáuticas
Cv Specific heat at constant volume
E Total energy
k Conductivity
LPT Low Pressure Turbine
n Edge normal: [nx ny nz]
Nprocs Number of MPI processes
#edi Number of edges that share the node i

p Pressure: ρ(γ−1)
(

E − 1
2

v ·v
)

∗Also associate professor at the Department of Engine Propulsion and Fluid
Dynamics of the School of Aeronautics, UPM, Madrid

PJ Block-Jacobi preconditioning matrix
q Heat flux: −k∇T
RANS Reynolds Averaged Navier-Stokes
T Temperature
U Conservative variables: [ρ ρu ρv ρw ρE]
v Velocity: [u v w]
vn Edge normal velocity: v ·n
x Vertex coordinates: [x y z]
α Swirl angle
γ Gas constant: Cp/Cv
µ Laminar viscosity
ρ Density
Σ Control volume boundary surface
σ Edge area

τi j Viscous stress tensor: µ(∂iv j +∂ jvi)−
2
3

µ(∇ ·v)δi j

ϑ Control volume

INTRODUCTION
The use of GPUs for general purpose computing is becom-

ing increasingly popular because of the outstanding computing
performance of GPUs compared with modern CPUs [1], and the
popularization of programming languages that ease the GPU pro-
gramming.

GPUs contain a large number of processor elements, of the
order of hundreds, which are connected to the GPU memory
through a bus that provides a high bandwidth when transferring
data between the memory and the processor. Thus, while the
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CPU GPU

Number of processors 6 448

Bandwidth (Gb/s) 32 144

Cache Size 12 Mb 768 Kb

Table 1: Comparison of representative properties of a modern
CPU (Intel Xeon X5680) and a modern GPU (NVIDIA C2050).

amount of data residing in the processor is small, the access to
additional data is very fast. In the CPUs, however, the num-
ber of processors is not as large as in the GPUs, and the data
transfer between memory and processors occurs at a much lower
rate. These limitations are partially overcome by the existence
of the processor’s cache memory that allows a re-use of the al-
ready accessed data. Modern GPUs have a very reduced cache
memory compared with that of CPUs. A comparison of the char-
acteristics of a modern CPU and a GPU is presented in table
1. These differences in the processor architectures have a direct
translation in the programming languages that are suitable for
each device. GPU programming has traditionally required the
knowledge of specific programming languages with a particular
nomenclature that is hard to translate to more general purpose
applications. This situation changed substantially with the re-
lease of CUDA [1] by NVIDIA in 2006. CUDA is an extension
to the C programming language that makes the execution of a
general purpose program in an NVIDIA GPU much easier. As a
result, the effort to write and execute a code on CPUs or GPUs
is now comparable. Since the computing performance of GPUs
is roughly one order of magnitude better than that of CPUs, the
number of applications developed for GPUs has grown substan-
tially.

Two years after CUDA had been released, another program-
ming language named OpenCL [2] appeared as a joint effort of
the industry to provide a standard programming language for
heterogeneous multi-processor platforms. Programs written in
OpenCL are not only able to be executed on GPUs, but on any
multi-processor platform, such as multi-core CPUs, IBM Cell
processors, etc. This paradigm offers a clear advantage with
respect to CUDA, since different multi-core platforms are sup-
ported with exactly the same code in a transparent way. How-
ever, its detractors state that an optimal software implementation
is actually very hardware-dependent, therefore the use of hetero-
geneous platforms requires heterogeneous data access and exe-
cution patterns that make the code optimized for a chosen plat-
form highly inefficient for the others. Besides, it is also acknowl-
edged that writing the code in CUDA is more direct than writing
it in OpenCL, minimizing the time spent in setting up the GPU
simulation and allowing the programmer to focus just on the nu-
merical aspects of the code. However, there are wrappers, such

as PyOpenCL [3], that make the OpenCL setting-up easier and
allow some degree of abstraction of the basic OpenCL platform
layer.

There are a number of works describing the GPU imple-
mentation of CFD solvers either for structured or unstructured
grids. For all cases, a substantial reduction of the computing time
was reported when compared to their CPU counterparts. Elsen
et al. [4] solved the Euler equations on structured grids, using
Brook GPU [5] as a programming language and achieving speed-
ups of up to 15 with respect to a single CPU execution. Tölke [6]
solved the Lattice-Boltzmann equations on structured grids using
CUDA as programming language, obtaining roughly an order of
magnitude reduction in the computing time. Jacobsen et al. [7]
solved the 3D incompressible Navier-Stokes equations in struc-
tured grids on multiple GPUs using CUDA and MPI, achieving
also an order of magnitude speed-up with respect to the CPU
computational times. Jespersen [8] used CUDA to accelerate
parts of a RANS equation solver for structured grids. Brandvik
and Pullan [9] implemented a GPU parallel version of a RANS
solver for structured grids and reported a speed-up of up to 20
with respect to its CPU counterpart. They used a Python algo-
rithm to translate the solver source code into a number of multi-
processors platforms, CUDA among them. Recently Castonguay
et al. [10] used multiple GPUs to solve the RANS equations on
unstructured grids using high-order discretizations. This type of
discretizations require a large amount of computation per node
and are well suited to be solved on GPUs obtaining speed-ups
of about 70 when compared with the equivalent CPU execution.
Corrigan et al. [11, 12] designed an automatic code porting al-
gorithm capable of generating valid CUDA code from Fortran
legacy code. The resulting CUDA code could then be executed
on GPUs, allowing speed-ups of roughly an order of magnitude
compared with a single CPU process.

In this work we present the OpenCL re-implementation of
an existing CFD solver [13] in order to allow its execution on
one or more multi-core platforms, GPUs included. The existing
RANS solver, known as Mu2s2T , uses hybrid unstructured grids
to discretize the spatial domain and an edge-based data structure
to compute the fluxes. A second-order MUSCL scheme con-
forms the spatial discretization [14], which is marched in time
with an explicit five-stage Runge-Kutta [15]. Block-Jacobi pre-
conditioning [16] and multigrid [17] are used to accelerate steady
state convergence. Turbulence effects are modeled with the k−ω

model [18]. The solver is parallelized using MPI. The entire code
is written in Fortran. The new code, that reproduces all the fea-
tures of the existing one, has been re-written using a mixture of
C++ and OpenCL. This approach has three main advantages:

1. The C++ language provides enough flexibility to naturally
integrate the source code written in OpenCL as part of the
C++ class that manages the simulation. That, combined with
the use of compiler directives, allows the generation of a
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unified source code to be executed either on a CPU or on a
GPU, avoiding the need to have separate solvers for the CPU
and the GPU architectures. This has in turn several positive
aspects: the CFD results are ensured to be exactly the same
when running on the CPU or on the GPU, and the debugging
of the solver can be performed on the CPU side, where there
are applications that make this process much easier than on
the GPU.

2. The use of compiler directives, which is a standard program-
ming practice, avoids the need to have a script to translate
the code from one programming language to another. These
scripts often assume a number of ad-hoc coding conventions
that make the programming practices unnecessarily rigid.
Moreover, the extra programming cost is small and the por-
tions of the source code that are exclusively used in the CPU
or the GPU simulations are clearly delimited and naturally
removed of the compilation process when the GPU or the
CPU versions of the solver are generated.

3. Programming with OpenCL allows the use of several multi-
processor platforms, not only NVIDIA ones, obtaining com-
parable performances in the cases studied.

The rest of paper is organized as follows: first, the RANS equa-
tions and their discretization over an unstructured grid are pre-
sented. Next, we discuss the OpenCL implementation of the
parts of the solver that require the largest computation effort.
Then it is explained how the unified CPU/GPU source code is
generated. The performance of the resulting code is analyzed by
executing it on several GPU models, obtaining acceptable speed-
ups in all cases when compared to the CPU execution time. Fi-
nally, we will present comparisons between the solver results and
some experimental measurements that show the degree of accu-
racy of the code.

RANS SOLVER DESCRIPTION
The RANS equations may be expressed in compact form as:

d
dt

ˆ
ϑ

Udϑ+

ˆ
Σ

F ·ndσ = 0 (1)

where F = Fc −Fv represents the sum of convective and viscous
fluxes. The expression for the fluxes is:

Fc ·n =


ρvn

ρuvn + p ·nx
ρvvn + p ·ny
ρwvn + p ·nz
(ρE + p)vn

 , Fv ·n =


0

τxn
τyn
τzn

vT · τ ·n−q ·n

 (2)

being τkn = τkx ·nx + τky ·ny + τkz ·nz, where k = x,y,z. The dis-
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Figure 1: Hybrid cell grid and associated dual mesh.

crete equations are obtained from Eq. (1) using a finite volume
formulation, where the control volumes are constructed making
use of the dual mesh (see Fig. 1), that is, the mesh that re-
sults from connecting the centroids of the cells that surround a
node [19]. Thus, the conservative variables are stored in the cell
vertex, and the fluxes over the control volume faces are obtained
summing up contributions of all control volume faces. The pre-
conditioned semi-discrete version of Eq. (1) for each node i of
the mesh may be written as:

P−1
Ji

d (Ui ·ϑi)

dt
+

#edi

∑
j=1

1
2
(Fi +F j) ·ni jσi j = 0 (3)

The contributions of the domain boundary faces are omitted for
simplicity. Eq. (2) shows that the gradient of the primitive vari-
ables is needed in order to evaluate the viscous fluxes. Besides,
the MUSCL scheme also needs the gradient of the flow variables
to build the convective fluxes [14]. Therefore, the gradient of the
variables,

∇Ui =
1
ϑi

#edi

∑
j=1

1
2
(Ui +U j)ni jσi j (4)

must be evaluated before the computation of the fluxes is per-
formed. Finally, the formula for the computation of the block-
Jacobi preconditioning matrix of Eq. 3 is:

P−1
Ji =

1
ϑi

1
CFL

#edi

∑
j=1

(
1
2

∣∣Ai j
∣∣+Bi j

1∣∣x j −xi
∣∣
)

σi j (5)

where
∣∣Ai j
∣∣ is the absolute value of the inviscid fluxes Jacobian

matrix and Bi j contains the viscous terms contribution to the pre-
conditioning matrix.
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Algorithm 1 Generic edge loop for an edge-based solver.
ReadPointData represents the point data needed to perform
the inner loop computations, F(data1,data2) the inner loop
operations and WritePointResult the writing of the result-
ing data. Nedges is the number of grid edges and edgeNode
is the edge-node connectivity.
void edgeComputations(...)
{

for(edge=0;edge<Nedges;edge++)
{
point1 = edgeNode(1,edge);
point2 = edgeNode(2,edge);
data1 = ReadPointData(point1);
data2 = ReadPointData(point2);
term = F(data1,data2);
WritePointResult(point1,term);
WritePointResult(point2,term);

}
}

IMPLEMENTATION
All the routines needed to perform a Runge-Kutta iteration

are programmed as kernels in order to be executed on a GPU:
the block-Jacobi preconditioning matrix computation, the gradi-
ent and fluxes evaluation, the boundary conditions and the con-
servative variables updating. This ensures that there is no need to
exchange data between the CPU and the GPU during the execu-
tion process, which is an expensive operation that may degrade
the code performance when running on a GPU. The only infor-
mation that has to be communicated from the GPU to the CPU is
the data of the domain frontiers when several GPUs are used in
parallel, since by the time the code parallelism was implemented
there was no way for two GPUs to exchange data without having
to rely on the CPU that controls them. NVIDIA has recently re-
leased GPUDirect [20], which is a technology that allows direct
communication between GPUs, but it is not yet supported on all
GPUs and platforms and it has not been used in this work. Any-
way when the number of domains is small, as it is the case in
the present study, the communication time is much smaller than
the computing time and the code parallel performance is not se-
riously compromised.

Next, we will discuss the implementation details of the most
time consuming kernels among those listed above. When the
code is executed on a CPU and the time per Runge-Kutta itera-
tion is measured, the computation of the block-Jacobi precondi-
tioning takes 10%, the computation of the gradient 10% and the
computation of the fluxes 60%. Together, they represent 80% of
the total execution time. Therefore a correct implementation of
these operations is crucial in order to obtain a computationally
efficient solver in whatever platform.

Algorithm 2 OpenCL kernel version of Algorithm (1).
__kernel void edgeComputations(...)
{
edge = get_global_id(0);
point1 = edgeNode(1,edge);
point2 = edgeNode(2,edge);
data1 = ReadPointData(point1);
data2 = ReadPointData(point2);
term = F(data1,data2);
WritePointResult(point1,term);
WritePointResult(point2,term);

}

The CPU coding of a generic edge loop representative of
Eqs. (3), (4) or (5) is written in Alg. 1. There is just one single
process which is in charge of performing all the loop computa-
tions. The option of running multiple processes using OpenMP is
not considered, since the parallelization is done explicitly using
domain decomposition and running separate processes for each
sub-domain, that are communicated using MPI.

Before presenting the multi-processor version of Alg. 1 a
brief clarification of the OpenCL nomenclature will help follow-
ing the discussion below. In OpenCL the functions that are exe-
cuted on the multi-processor device are called kernels. A call to
an OpenCL kernel distributes the execution of the kernel source
code in a number of threads called work items. The typical num-
ber of work items for a GPU is of the order of thousands. The
total number of work items of a given kernel is called the kernel
global size. Each work item runs independently of the others,
but multi-processors usually take advantage of those situations
where a group of threads execute the same instruction at the same
time.

Since the edge is the minimal entity of an edge-based solver,
it seems a natural choice to assign each work item the computa-
tions of a single edge. The equivalent kernel for Alg. 1 is out-
lined in Alg. 2. Each work item computes an edge whose index
is given by the get_global_id(0) function that returns, for
each item, which is its rank within the total number of threads.
When this kernel is executed on the GPU the result is almost cer-
tainly wrong. This is due to the fact that two different threads
can access the same memory position at the same time. If it is
a read access one of the threads must wait for the other to fin-
ish, the kernel execution time is increased since the data transfer
rate is smaller but the overall result is correct. But if it is a write
access the written data are corrupted, and the final result is ran-
domly wrong. For these reasons, the memory contention, i.e.,
the simultaneous access to the same memory position, must be
avoided. That requires reordering the edge loop to prevent a node
from appearing twice in the same thread group. Thus the edges
are grouped, and the size of these groups depends on GPU fea-
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Algorithm 3 Sequence of OpenCL kernel calls when the edge
loop is split in several edge groups. groupEdges points, for
each group, to the first edge index of the group.
...
for(group=0;group<nGroups;group++)
{

edgeComputations.globalSize =
groupEdges[group+1] - groupEdges[group];
edgeComputations(...,group,groupEdges);

}
...

Algorithm 4 Modified OpenCL kernel version of Algorithm
(2) used when the edge loop has been split into a number
of edge groups. Only the lines that are modified are shown.
groupEdges points, for each group, to the first edge index of
the group.
__kernel void edgeComputations(...,

group,
groupEdges)

{
edge = get_global_id(0)+groupEdges[group];
...

}

tures such as the number of processors and the maximum num-
ber of simultaneous threads per processor. An example of an
edge ordering for a simple case with 25 nodes and 40 edges with
groups of up to 10 edges is depicted in Fig. 2b. As a result of
the grouping process, an additional array, called groupEdges,
has been created. This array yields, for each group, which is
its first edge. Thus, the number of edges of a given group is
groupEdges[group+1]-groupEdges[group], and the
index of the first edge of the group is groupEdges[ngroup].
After the grouping has been performed, we execute as many calls
to the OpenCL kernel as edge groups have been found, as speci-
fied in Alg. 3. For each kernel, the total number of work items is
the number of edges of the group. The OpenCL kernel of Alg. 2
is also slightly modified to make the edges within the group point
to the correct global index. The resulting kernel is presented in
Alg. 4, where only the lines that change with respect to Alg.
2 are written. Executing Alg. 3 in the GPU produces correct
results.

The next question that arises after ensuring that the results
are correct is if the kernel implementation is optimal to be ex-
ecuted in whatever computing platform. The limiting factor for
all cases is the data transfer rate between the memory and the
processors. The faster the transfer of data, the faster the code
will perform, since the speed at which the processors can pro-
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(a) Reverse Cuthill-McKee ordering to minimize cache-misses.
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(b) Reverse Cuthill-McKee followed by an ordering by groups to avoid simultane-
ous memory access within a group.

Figure 2: Edge and point numbering with different strategies.

cess the data is actually much higher than the speed at which
the data enters the processing units. When the grid is structured,
the access pattern to the grid data is regular and the compiler
knows in advance where to find them. That allows a fast data
transfer between memory and processor. For unstructured grids,
however, the memory location of the edge nodes is not known a
priori by the compiler since the access to the data is controlled by
an array of pointers, in our case the edgeNode array. This is re-
ferred to as indirect addressing in the literature. The access to the
memory in these situations is much less efficient and hence some
improvements must be introduced to avoid an excessive perfor-
mance degradation. The strategy may be different depending on
whether the processor has cache memory or not.
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In cached-processors like standard modern CPUs, when the
executing process requires data from the processor memory, it
places these data in the cache. It takes not only the required
data but also a block of contiguous data. As these data are in
the cache, they can be re-used at no cost. If data outside of
this block are required, then they must be taken from the mem-
ory again, consuming much more time. This is called a cache
miss. Hence, if we renumber the grid nodes and reorder the
edges making nearby edges point to nearby points, the number
of cache misses is minimized when performing the edge loop of
Alg. 1. The reordering algorithm applied in this work is the re-
verse Cuthill-McKee (RCM) [21]. An example of the resulting
edge-node ordering when this technique is applied to the same
case with 25 nodes and 40 edges presented above is depicted in
Fig. 2a.

In processors without or with small-sized cache mem-
ory, such as modern GPUs, this reordering technique is
of little help. As stated in the introduction, GPUs base
his superior performance in the higher values of the data
transfer rate between the memory and the processor el-
ements. But the conditions for achieving such rate are
usually very stringent, and certainly hard to meet if indirect
memory addressing is used. For instance, NVIDIA GPUs’
memory bandwidth is greatly degraded if a memory ac-
cess pattern such as vec[stride*point+variable]
is used with stride>1, and the access pattern
vec[point+variable*numberOfPoints] is pre-
ferred instead. However, when the data is accessed indirectly,
the OpenCL vector types, such as float4, float8, etc.
provide higher bandwidth, hence all the indirect accesses
are performed using these vector types whenever possible.
Nevertheless, it continues to be crucial to minimize as much as
possible the amount of data transferred from the global GPU
memory to the local on-chip memory, performing as many
operations as possible with variables that physically reside on
the local memory.

Therefore, the parameter that influences the performance
the most is the relation between the number of floating point
operations (FLOP) and the number of indirect reads or writes.
Roughly speaking, the larger the number of FLOPS per indirect
addressing, the better the performance and thus the greater the
benefit expected when porting the code execution from a CPU
to a GPU. That is why the CFD codes that employ high order
discontinuous Galerkin discretizations [10], which require per-
forming many FLOPS per grid node, have reported the largest
speed-ups when comparing GPU and CPU execution times. But
in codes where the amount of computation per cell is not as high,
like the one we are presenting here, the speed-up can be seriously
compromised if we do not pay attention to this issue. An excel-
lent review of the techniques employed to minimize the num-
ber of indirect addressings in edge-based solvers can be found
in [22]. In order to better understand the importance of this opti-

Algorithm 5 OpenCL kernel for computing the fluxes looping
over each node’s neighbors.
__kernel void nodeComputations(...)
{
node = get_global_id(0);
data1 = ReadPointData(node);
totalTerm = 0;
for(neigh=0;neigh<neighbors;neigh++)
{
point2 = neighbor(neigh);
data2 = ReadPointData(point2);
term = F(data1,data2);
totalTerm = totalTerm + term;

}
WritePointResult(node,totalTerm)

}

mization we present here two limit cases: the gradient loop and
the flux loop.

Gradient evaluation
When the gradient evaluation of Eq. (4) is programmed ac-

cording to the code presented in Alg. 2, the number of indirect
addressings per edge is 6, two for reading the variables, two for
reading the gradient and two for updating it. However, the num-
ber of operations performed inside the loop is very small, hence
the performance of the loop is completely controlled by the mem-
ory access. One simple way of reducing the number of indirect
memory accesses is presented in Alg. 5. In this case, the loop
is performed over grid nodes, and for each node, an inner loop
over all the edges that surround it is executed. The number of in-
direct addressings per edge in this case has been reduced to one,
for reading the variables of the neighbor node. Since the total
number of edges is now doubled (each edge is processed twice,
once per conforming node), the total number of indirect address-
ings has been divided by three. When the loop is executed as an
OpenCL kernel, the number of work items is the number of grid
nodes. For each node we compute the contributions of the edges
that share it, storing just the final result and not the intermediate
ones as it was done in Alg. 2.

To measure the performance of Alg. 2 and Alg. 5, both
kernels have been implemented using OpenCL and executed in
a Tesla C1060 GPU. The original edge loop of Alg. 1 has also
been run in an Intel Core2 P8600 CPU @ 2.4GHz. Thus, when
the Alg. 2 kernel is executed in the GPU, a speed-up of 4.5 is
obtained with respect to the edge loop executed in the CPU. If
the modified Alg. 5 kernel is executed in the same GPU, the
speed-up is 14. The increase in speed-up is 3.01, which agrees
well with the reduction in the number of indirect addressings.
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Convective and viscous fluxes evaluation
Although the evaluation procedure of the convective and vis-

cous fluxes is conceptually analogous to that of the gradient, the
situation is different because the number of FLOPS per indirect
addressing is much higher. Even though it has been shown that
the number of indirect addressings can be reduced by a factor of
three using the modified loop, it must be noted that each edge
is processed twice, hence the number of FLOPS of the modified
loop is twice as large as that of the original edge loop. This fact
may counter-balance the positive effect of reducing the number
of indirect addressings. Thus, in the case of the fluxes evalua-
tion, if the Alg. 2 kernel is executed in the same GPU as before,
a speed-up of 19 is obtained with respect to the execution time
of the Alg. 1 loop in the CPU. However, if the modified Alg. 5
kernel is used, the speed-up is reduced to 15.

If the kernel total execution time is split in the time spent
accessing and writing the data (tmem) and the time spent doing
operations (top), the total execution time for those kernels written
following Alg. 2 is

tE = tmem + top

while the execution time for those others that have been written
like Alg. 5 is:

tN =
tmem

3
+2top

These relations allow us to quantify both tmem and top. It also
shows that the Alg. 2 kernels will perform better than the Alg. 5
ones as long as tmem ≤ 1.5top.

COMBINED C++/OPENCL PROGRAMMING
There are a number of questions that must be addressed if

the CPU and OpenCL versions of a solver have to be written in
parallel. We will highlight the main obstacles found, which can
be summarized in two main subjects: using of compiler direc-
tives to avoid double writing the OpenCL kernels as C functions
and enabling the integration of OpenCL variables in C++.

Compiler directives
The use of compiler directives avoids the need to have two

completely separate versions of the same code, one for CPUs and
another for GPUs. Since the single thread loop (Alg. 1) and the
equivalent OpenCL kernel (Alg. 2) share the same core opera-
tions, they could be combined with minimal changes to obtain
a unique code by using compiler directives (Alg 6). The source
code is then automatically changed by the compiler at compila-
tion time. Thus, if the __CPU_MODE__ compiler directive is

Algorithm 6 Combined CPU/OpenCL kernel version of Algo-
rithm (1).
__kernel void edgeComputations(...)
{
#ifdef __CPU_MODE__
for(edge=0;edge<Nedges;edge++)
{

#else
edge = get_global_id(0);

#endif
point1 = edgeNode(1,edge);
point2 = edgeNode(2,edge);
data1 = ReadPointData(point1);
data2 = ReadPointData(point2);
term = F(data1,data2);
WritePointResult(point1,term);
WritePointResult(point2,term);

#ifdef __CPU_MODE__
}

#endif
}

enabled when compiling the solver source code, Alg. 1 is recov-
ered. Otherwise, the OpenCL kernel of Alg. 2 is generated.

The way the C++ code invokes the kernel also changes de-
pending on the execution mode. When the __CPU_MODE__
compiler directive is used, the kernel is called as a conventional
routine. However, when the code is run in OpenCL mode, there
is an OpenCL specific command to execute the kernel [2, sub-
sec. 5.8]. This simple but flexible solution avoids the need to
use code translators to automatically generate the source code
for one platform or another.

Use of OpenCL variables
Variables in OpenCL can be either global if they physically

reside in the GPU memory or local if they are allocated in each
GPU processors’ local memory. In either case, they are generated
as a memory buffer that is reserved by the time the GPU code is
executed. If the same variable with the same name must be used
when the code is executed in a CPU, there must be some means
of by-passing the way OpenCL creates the variables and applying
the normal C allocation instead. This is accomplished by creating
a C++ class that serves as a wrapper for these OpenCL variables.
That class internally uses the same compiler directive presented
above to switch between OpenCL and CPU modes so that the
end user is transparent to that duality.

For the CPU mode to be able to completely re-use the
OpenCL kernel codings there is still one last step: OpenCL de-
fines vector types that pack a number of scalar data types. For
instance, an element of the float8 vector type contains a group
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of eight floats. As it has been mentioned before, these OpenCL
variables are extensively used in our code, since it turns out that
the data transfer between the GPU global memory and the GPU
processor’s memory is produced at a faster rate if these vector
types are used in the indirect addressings. Thus, a set of C++
classes with the same semantics and operations as these of the
vector type has been created; one class for each of the 2, 4, 8 and
16 vector types. Using these classes the use of OpenCL variables
in the core operations of the CPU loops is transparent. Moreover,
the performance of the CPU code is not degraded at all and the
results of the CPU and GPU simulations are exactly the same.

CODE PERFORMANCE
The resulting code, compiled with the 4.5 version of the

GCC compiler [23] runs 5% slower than its Fortran predeces-
sor, compiled with the 10.3 version of the PGI compiler [24].
Different compilers have been used since these are the ones that
provided the best speed results for each case. The performance
of the new solver has been measured with a typical turbomachin-
ery design case consisting of a single row with one million mesh
points. The case has been run in a number of platforms to assess
the versatility of the code on different processor architectures:

1. An Intel Xeon E5620 @ 2.4GHz with four CPU cores. Even
though this chip is not the fastest chip in the market, it allows
the simultaneous execution of eight processes with negligi-
ble loss of performance.

2. A cluster of Intel Xeon X5472@3GHz with an Infiniband
network. Each processor of the cluster allows the simultane-
ous execution of four processes without substantial loss of
performance, and the Infiniband network allows a fast com-
munication between them.

3. A machine with four NVIDIA Quadro Fx3800 GPUs. The
primary use of these GPUs is graphics processing, not com-
puting. Besides, they have modest computing capabilities
compared with the more recent NVIDIA or ATI GPUs.

4. A machine with two NVIDIA Tesla C1060 GPUs. These are
GPUs exclusively dedicated to computing, being far more
powerful than the Quadro GPUs.

5. A machine with an ATI Radeon HD 5970 GPU. As the
Quadro GPU, this one is also used for graphics processing.
However, it has superior computing capabilities, since it is
a newer product. It must be noted that the potential of this
GPU could not be fully exploited due to hardware restric-
tions when using OpenCL in this platform. Thus, just half
of the theoretical computational power is used.

The CPU model used to host the GPUs is not relevant, since all
the computing is done inside the GPU. When the GPUs are used
in parallel, an equal number of independent CPU processes is
created using MPI. This approach allows each GPU to be man-
aged by a single CPU process, making the CPU/GPU communi-
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Figure 3: Speed-up curve of the CFD solver for a 1 million points
mesh.

1 10 100
N

procs

0.01

0.1

1
t/

t re
f

Intel Xeon E5620@2.4GHz
Intel Xeon X5472@3GHz
NVIDIA Quadro Fx3800
NVIDIA Tesla T1060
ATI Radeon HD 5970
Ideal

Figure 4: Execution times of the CFD solver for a 1 million
points mesh, non-dimensionalized with the execution time of the
single process case run in the Intel Xeon E5620.

cations easier. The domain decomposition for the parallel runs
has been generated using the ParMeTiS partitioning library [25].

The speed-up curve of this case is plotted in Fig. 3. It shows
good scalability for all the cases considered. The comparison of
the execution times in each platform is depicted in Fig. 4 where
two interesting results may be seen. On one side, the CPU ver-
sion of the CFD solver shows good parallel scalability up to 96
processes with a case that has just one million points. On the
other side, the single processor GPU simulations are faster than
their CPU counterparts by a factor of 9 for the Quadro GPUs, 17

8 Copyright c© 2011 by ASME



for the Tesla GPUs and 26 for the ATI GPU. However, the Intel
Xeon E5620 can run up to eight parallel processes with minimal
loss in performance, hence it would be more appropriate to com-
pare the Nprocs = 8 simulation with the single GPU ones. In that
case, the speed-up values are 1.4 for the Quadro GPU, 2.7 for
the Tesla GPU and 4 for the ATI GPU. Analogously, the Intel
Xeon X5472 shows an speed-up of nearly four when running on
its four cores, hence the GPU/CPU execution time comparison
yields a 2.3 speed-up for the Quadro GPU, 4.3 for the Tesla GPU
and 6.6 for the ATI GPU.

If more powerful CPUs, such as the Intel Xeon X5677 @
3.46 GHz, were considered, an additional 1.4 speed-up factor
would have been achieved in the CPU simulations, making the
CPU and GPU execution times even more similar. In that hypo-
thetical case, the speed-ups would be 2 for the Tesla GPU and 3
for the ATI GPU. Thus, even though the simulations run remark-
ably faster in the GPUs, using top-end CPUs is still attractive
in terms of code performance. By keeping the ability to run in
CPUs, all these machines can continue to be used. Besides, the
use of OpenCL as programming language instead of CUDA al-
lows the execution of Mu2s2T in the ATI GPU, which is not an
NVIDIA GPU and therefore cannot execute codes programmed
using CUDA. Moreover, there is no need to modify the source
code to obtain an excellent speed-up value when compared to
the NVIDIA GPUs, therefore the statement that the source code
optimization for the NVIDIA GPU is very different from that of
the ATI GPU does not hold, at least for this case.

RESULTS
Some additional cases have been run in order to validate the

results obtained with the CFD code. Thus, the flow field around
two LPT vane geometries, depicted in Figs. 5 and 6, has been
solved with the present CFD solver running on four NVIDIA
Quadro GPUs. The comparison between the experimental mea-
surements obtained at the CTA high-speed wind tunnel [26] and
the CFD solution is depicted in Figs. 7 and 8. Both the total
pressure coefficient Cpt and the swirl angle α at a measurement
plane located at x/Cax = 1.6 downstream the vane trailing edge
have been compared.

Fig. 7 shows the comparison between the measurements and
the predicted flow field for the vane depicted in Figs. 5a and 6a,
that has been meshed with a semi-unstructured mesh with 1 mil-
lion points and 95 radial planes. This case has been run in four
Quadro Fx3800 GPUs, and the steady-state solution has been
obtained in 10 minutes. The predicted values are in close agree-
ment with the experimental measurements for both quantities.
The largest differences are presented in the secondary flow zone,
where the solver over-predicts the total pressure, even though the
position of the peaks of losses and angles is well reproduced.

Fig. 8 shows the same comparison, but for the vane geom-
etry of Figs. 5b and 6b, that has been meshed with a finer semi-

(a) (b)

Figure 5: Blade to blade view of the geometry and mesh of two
LPT vanes.

(a) (b)

Figure 6: Meridional view of the geometry and mesh of two LPT
vanes.

unstructured grid with 3 million points and 107 radial planes.
The steady-state solution for this case has been obtained after
having run 35 minutes in four Quadro Fx3800 GPUs. The differ-
ences between the solver results and the experimental measure-
ments are also small, being more noticeable in the tip secondary
flow zone of the total pressure and in the swirl angle distribution.

Even though the results reported for both configurations are
acceptable, it must be noted that dealing with such low Reynolds
number flows would require advanced and sophisticated transi-
tion models capable of predicting the position and shape of the
suction side separation bubble. This model, which has been re-
ported to improve the simulation capabilities of the CPU version
of Mu2s2T [27], has not been implemented yet in this OpenCL
version of the code, hence the ability to predict the variation of
the losses and angle at very low Reynolds number is still limited.
However, the main purpose of these simulations is to show that
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Figure 7: Comparison between the measured and predicted radial
distributions of Cpt (top ) and swirl angle (bottom) at x/Cax = 1.6
for the LPT vane of Figs. 5a and 6a.

realistic configurations, with realistic grids and turbulence mod-
els, may be effectively implemented in a GPU environment using
OpenCL.

CONCLUSIONS
The implementation of an edge-based Navier-Stokes solver

for unstructured grids has been presented. The solver is primarily
written in C++ and it is intended to be executed either on CPUs or
GPUs, hence a strategy for achieving this goal is presented. The
main advantage of this approach is that it avoids double writing
significant parts of the source code. The OpenCL programming
language has been used to write those portions of the code that
must be executed in the GPU. This programming approach al-
lows the resulting code to be executed on a wide range of archi-
tectures with minimal implementation penalty and ensures the
uniqueness of the solution for all platforms.

Details of the implementation of the most time consuming
computations have been presented. Since the code is unstruc-
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Figure 8: Comparison between the measured and predicted radial
distributions of Cpt (top ) and swirl angle (bottom) at x/Cax = 1.6
for the LPT vane of Figs. 5b and 6b.

tured, the access to the data needed to evaluate gradients, fluxes,
etc. is not direct and presents limitations which are more severe
when running on GPUs. On one side, simultaneous access to
the data must be avoided in order to obtain correct results. On
the other, care must be taken to ensure a high performance of
the code in GPUs. The key parameter for achieving high perfor-
mance in such platforms is to maximize the number of FLOPS
per indirect memory access.

The resulting code has been executed in several CPUs and
GPUs, obtaining a good scalability when multiple processes are
run in parallel. The solver runs up to 26 times faster on a mod-
ern GPU when compared to a single process run on a CPU. If
the multi-core capability of modern CPUs is exploited, modern
GPUs continue to be up to 4 times faster than multi-core CPUs,
hence saving computation time and allowing the possibility to
study more complex flow phenomena that were out of the scope
in the standard design loop. Future work will focus on allowing
a wider range of simulations, such as unsteady rotor-stator sim-

10 Copyright c© 2011 by ASME



ulations, and improving or including more fluid modellisation
capabilities to deal with typical turbomachinery flow regimes.
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