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ABSTRACT
A nonlinear harmonic balance method for the simulation of

turbomachinery flows is presented. The method is based on rep-
resenting an unsteady, time periodic flow by a Fourier series
in time and then solving a set of mathematically steady-state
equations to obtain the Fourier coefficients. The steady-state
solutions are stored at discrete time levels distributed through-
out one period of unsteadiness and are coupled via the physical
time derivative and at periodic boundaries. Implicit coupling be-
tween time levels is achieved in a computationally efficient man-
ner through approximate factorization of the linear system that
results from the discretized equations.

Unsteady, rotor-stator interactions are performed to vali-
date the implementation. Results based on the harmonic bal-
ance method are compared against those obtained using a full
unsteady, time-accurate calculation using moving meshes. The
implicitly coupled nonlinear harmonic balance method is shown
to produce a solution of reasonable accuracy compared to the
full unsteady approach but with significantly less computational
cost.

INTRODUCTION
As the use of Computational Fluid Dynamics (CFD) be-

comes a regular part of the design cycle, concerns arise regarding
the computational cost and turn-around time associated with em-
ploying CFD for the simulation and analyses of unsteady flows in

∗Address all correspondence to this author.

turbomachines, especially for multistage machines with unequal
blade counts.

Full unsteady simulations that integrate the governing equa-
tions in time can be performed to model the nonlinear unsteady
disturbances by marching time accurately from one physical time
instant to the next. The flowfields within multiple blade rows are
solved simultaneously and the meshes within adjacent rows are
moved relative to one another with each time step. However,
the computational expense of this approach can be significant.
This is because sub-iterations are required at each time instant,
the time step size is necessarily small to preserve time accuracy,
and many time steps are required to reach a time periodic solu-
tion. Additionally, multiple passages must be meshed to achieve
spatial periodicity, unless so-called phase-lagged boundary con-
ditions [1, 2] are used to reduce the size of the computational
domain to a single blade passage in each blade row.

Alternatively, given the time periodic nature of these flows,
one can model the unsteady flow in turbomachines using nonlin-
ear, harmonic balance techniques. Roughly speaking, the family
of nonlinear harmonic methods expands the unsteady flow field
in a Fourier series in time and solves for the Fourier coefficients.
He [3], He and Ning [4] and Ning and He [5] developed a har-
monic method in which the unsteady harmonics are treated as
perturbations. Hall, Thomas, and Clark [6] developed a full har-
monic balance method, which allows for arbitrarily large distur-
bances and any number of harmonics. The method is computa-
tionally efficient and stores the unsteady nonlinear solutions as
the working variables at several time levels over one period of
unsteadiness, rather than storing the Fourier coefficients them-
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selves. Gopinath and Jameson [7] and others have applied this
approach to turbomachinery applications. McMullen, Jameson,
and Alonso [8] and others have developed a similar approach, but
store as the working variables the Fourier coefficients and con-
vert the solution from the frequency to the time domain in order
to compute the spatial residual. For an excellent recent survey of
Fourier methods applied to turbomachinery applications, see the
survey paper by He [9].

In all these methods, the harmonic balance equations are
solved by introducing a pseudo-time derivative term and then
marching the coupled equations to a steady state in pseudo-time
using an explicit time marching method such as Lax-Wendroff
or Runge-Kutta. Recently, Custer et al [10] implemented the
harmonic balance method in an existing structured grid over-
set Navier-Stokes flow solver and employed point-wise implicit
treatment of the harmonic balance source term to provide nu-
merical stability. Woodgate and Badcock [11] developed an im-
plicit harmonic balance method using approximate Jacobians and
a Krylov-type sparse matrix solver.

In this paper we describe an implicitly coupled, nonlinear
harmonic balance method in which the unsteady flowfield is rep-
resented by a Fourier series in time. The Fourier coefficients
are obtained by simultaneously solving a set of harmonic bal-
ance equations written in terms of the unsteady, nonlinear solu-
tion variables stored at discrete time levels distributed through-
out a single period of unsteadiness. The number of time levels
required is determined by the desired number of harmonics re-
tained in the model. For a single stage (rotor and stator) the fre-
quencies associated with the Fourier series are integer multiples
of the fundamental excitation frequency (e.g. the blade passing
frequency). For three or more blade rows the frequency content
is slightly more complicated, but still remains a function of the
blade counts and rotor speed.

We approximate the physical time derivative by a pseudo-
spectral operator such that the resultant fluid dynamic equations
describing each time level are effectively steady-state. However,
the solutions at each time level remain coupled to one another at
the periodic boundaries and through the physical time derivative.
To accommodate implicit solution of the dependent variables at
all time levels, an approximate factorization is used to split the
resultant linearized system to yield two implicit operators. The
first operator, which is decoupled across the time levels, con-
tains a full linearization of the spatially discretized fluxes at a
given time level with respect to the variables at that time level.
The second operator, which couples the time levels at a given
point, contains the linearization of the physical time derivative
with respect to the variables at all levels. Provisional solutions
are obtained by sequentially applying the first operator to each
time level and solving the resultant system by means of a cou-
pled, algebraic multigrid method [12]. Then the second operator
is applied simultaneously to the provisional solutions at all time
levels to obtain the final solution for the iteration.

A cell-centered, polyhedral-based, finite-volume discretiza-
tion of the governing equations is used in conjunction with flux-
difference splitting [13] and a linear reconstruction of variables
[14]. At inter-row boundaries, selected Fourier coefficients are
matched based upon the flowfield kinematics [15]. Unsteady,
non-reflecting boundary conditions [16,17] are applied to the re-
maining set of coefficients, and at the farfield boundaries as well.

Results of unsteady, rotor-stator interactions are presented to
validate our implementation of an implicitly coupled harmonic
balance method. These results are compared against those ob-
tained using a full unsteady, time-accurate calculation performed
on moving meshes. We show that the harmonic balance method
can produce a solution of reasonable accuracy compared to the
full unsteady approach with significantly less computational cost.

GOVERNING EQUATIONS
Consider the Navier-Stokes equations in integral form for a

rigid, arbitrary control volumeV with differential surface area
d ~A in a relative frame of reference rotating steadily with angular
velocityΩ:

∫

V

∂W

∂t
dV +

∮

[

~F − ~G
]

· d ~A =

∫

V

S dV (1)

whereW is the solution vector of conservation variables

W = [ρ, ρu, ρE]
T

~F , ~G andS are the inviscid flux, viscous flux, and source vectors

~F =
[

ρv, ρu ⊗ v + p ¯̄I, ρEv + pu
]T

~G = [0, ¯̄τ , ¯̄τ · v + q]
T

S = [0, ρΩ⊗ u, 0]
T

Here ρ, u, E, and p are the density, absolute velocity, total
enthalpy, and pressure, respectively.v is the relative velocity,
v = u − r ⊗ Ω

Harmonic Balance Equations
Since the solutionW is periodic in time, we can represent

it by the Fourier series:

W (~x, t) =

M
∑

m=−M

Ŵ m(~x) eiωmt (2)
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whereω is the fundamental frequency of the disturbance,M is
the number of harmonics retained in the solution, andŴ m are
the Fourier coefficients. The coefficientŝW m can be uniquely
determined from the discrete Fourier transform:

Ŵ m(~x) =
1

N

N−1
∑

n=0

W ∗

n(~x, tn) e−iωmtn (3)

whereW ∗

n are a set ofN = 2M + 1 solutions at discrete time
levelstn = nT/N distributed throughout one period of unsteadi-
ness,T .

At any location in the flowfield domain we can transform the
time level solutions into Fourier coefficients and vice versa using
a discrete Fourier transform operator E and its corresponding in-
verse E−1 as follows

Ŵ = EW ∗ (4)

W ∗ = E−1 Ŵ (5)

where E and E−1 are square matrices of dimensionN × N , and
the Fourier coefficients and time level solutions have been as-
sembled into the vectorŝW andW ∗, respectively

Ŵ =
[

Ŵ−M , Ŵ−M+1, · · · , Ŵ M−1, Ŵ M

]T

W ∗ =
[

W ∗

0, W
∗

1, · · · , W ∗

N−2, W
∗

N−1

]T

The solutions at each discrete time level are obtained by ap-
plying the governing equations, Eqn. (1), to all theW ∗ simulta-
neously

∫

V

∂W ∗

∂t
dV +

∮

[

~F
∗

− ~G
∗
]

· d ~A =

∫

V

S∗ dV (6)

where the flux and source vectors~F
∗

, ~G
∗

andS∗ are evaluated
using the corresponding time level solution, for example

~F
∗

=
[

~F (W ∗

0),
~F (W ∗

1), · · · , ~F (W ∗

N−2),
~F (W ∗

N−1)
]T

The time derivative in Eqn. (6) is evaluated by differentiating
Eqn. (5) with respect to time and then employing Eqn. (4) as
follows:

∂W ∗

∂t
=

∂E−1

∂t
Ŵ =

∂E−1

∂t
EW ∗

or

∂W ∗

∂t
= D W ∗ (7)

where D is the pseudo-spectral,N × N matrix operator. Sub-
stituting Eqn. (7) for the time derivative in Eqn. (6) yields the
desired harmonic balance equations

∫

V

D W ∗ dV +

∮

[

~F
∗

− ~G
∗
]

· d ~A =

∫

V

S∗ dV (8)

BOUNDARY CONDITIONS
To motivate the presentation of boundary conditions we first

consider the flowfield kinematics of two adjacent blade rows
where the first row hasB1 blades spinning with rotational rate
Ω1 rad/s and the second hasB2 blades spinning with rotational
rateΩ2 rad/s. The flowfield within the stage can be decomposed
into a Fourier series in the rotational direction characterized by a
set ofNm1,m2

nodal diameters

Nm1,m2
= m1B1 + m2B2 (9)

wherem1 andm2 can take on all integer values. In the frame
of reference of the first blade row, the frequency of the unsteady
disturbance associated with any nodal diameter is

ω1,m2
= m2B2(Ω1 − Ω2)

while in the frame of reference of the second row, the frequencies
are

ωm1,2 = m1B1(Ω2 − Ω1)

Note that in either row the unsteady frequency associated with a
given nodal diameter is a function of the blade count and relative
rotation rate of the adjacent row. Furthermore, associated with
each unsteady frequency is an interblade phase angle

σ1,m2
= m2 2π

B2

B1

in the frame of reference of the first blade row, and

σm1,2 = m1 2π
B1

B2
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in the frame of reference of the second row. Clearly the in-
terblade phase angles associated with a given nodal diameter are
a function of the pitch ratios between the two rows. Note that the
pitch in each row is given byG1 = 2π/B1 andG2 = 2π/B2 in
the first and second rows, respectively.

Periodic Boundaries
We apply complex periodicity conditions at the periodic

boundaries in the rotational direction. This allows us to re-
duce the computational domain to a single passage in each row,
thereby decreasing significantly the size and cost of the compu-
tation, particularly in the case of unequal blade counts. Consider
W (r, θ, z, t) andW (r, θ + G, z, t) to represent the solution on
the lower and upper periodic boundaries in cylindrical space and
at timet, whereθ is the rotational direction andG the blade pitch.
Spatial periodicity requires that

W (r, θ + G, z, t) = W (r, θ, z, t + ∆T ) (10)

where∆T is the time lag associated with the interblade phase an-
gle. Considering Eqn. (2), we can express the time shift implied
by Eqn. (10) in terms of the Fourier coefficientŝW as

Ŵ (r, θ + G, z) = Ŵ (r, θ, z) eiσ/ω (11)

where we have used the relation∆T = σ/ω. In our example
of two blade rows, the time lag in each row is given by∆T1 =
σ1,m2

/ω1,m2
= 2π/(B1(Ω1−Ω2)) and∆T2 = σm1,2/ωm1,2 =

2π/(B2(Ω2 − Ω1)) in the first and second rows, respectively.
Hence the procedure of applying the periodic boundary con-

dition to the solution at any given time level involves first com-
puting the temporal Fourier coefficients using all theW ∗ by
means of Eqn. (4) and applying the phase shift to the resultant
Ŵ as given by Eqn. (11). These are then transformed back to
the time domain by means of Eqn. (5) to yield phase-shifted so-
lutions at all time levels. The resultant phase-shifted solution at
the given time level is then used to satisfy Eqn. (10). Thus the so-
lutions at all time levels become coupled to one another through
the periodic boundary conditions.

Farfield Boundaries
Non-reflecting, farfield boundary conditions are applied at

the inflow and outflow boundaries of the domain. This treatment
prevents spurious unsteady numerical disturbances from reflect-
ing back into the computational domain and corrupting the solu-
tion. It also permits the use of truncated computational domains,
with boundaries positioned near to the leading and trailing edges
of the outermost blade rows, to further reduce the size and cost
of the computation.

The procedure begins by computing the temporal Fourier co-
efficientsŴ at all points along the boundary. These are then
decomposed further by means of the following discrete, spatial
Fourier transform in the rotational, or circumferential, direction

ˆ̂
W (r, z)m1,m2

=
1

G

Np−1
∑

j=0

Ŵ (r, θj , z) e−iNm1,m2
θj dθj (12)

whereNp is the number of discrete points in that direction and
Nm1,m2

is the nodal diameter given by Eqn. (9). Given the ex-
ample of two blade rows, at the inlet to the first row we letm1 be
all the spatial circumferential modes supported by the mesh and
m2 be all the temporal modes retained in the solution in that row,
while at the exit of the second row we letm1 be all the temporal
modes andm2 the maximum number of spatial circumferential
modes allowed by the mesh resolution.

Given the set of Fourier coefficientsˆ̂W m1,m2
we modify

those defining the mean flow, i.e. for whichm1 = m2 = 0,
in a manner similar to that described by Saxer [18] to enforce
conventional steady flow boundary conditions. Total pressure,
total temperature and flow angle of the mean flow are specified
at the inflow boundary and the static pressure of the mean flow
is specified at the outflow boundary. The remaining coefficients
with m1 6= m2 6= 0 are modified to eliminate unwanted reflected
waves. This is accomplished by performing an eigenmode anal-
ysis to determine the direction and speed of propagation of the
eigenvalues associated with each coefficient and then setting to
zero those waves traveling back into the domain [16,17]. Finally,
the modified Fourier coefficients are inversely transformed, both
spatially and temporally, to produce updated solutions at all time
levels on the inflow and outflow boundaries. Like at periodic
boundaries, the time level solutions are coupled to one another
through the non-reflecting farfield boundary conditions as well.

Inter-Row Boundaries
At each iteration of the harmonic balance scheme the solu-

tions at all discrete time levels and in all blade rows are solved,
following which inter-row conditions are applied at the interface
boundaries between rows in order to achieve multistage cou-
pling. This procedure follows closely that described above for
farfield boundaries. First, two sets of Fourier coefficients, one
set corresponding to the solution on each of the two boundaries
composing the interface, are computed by means of Eqn. (12).
Then coefficients from each set with the same nodal diameter
(see Eqn. (9)) are set equal to one another, while the remaining
coefficients are treated by the same non-reflecting procedure em-
ployed at the farfield boundary. Finally, the modified Fourier co-
efficients are transformed back in time and space to yield updated
solutions on the inter-row boundaries. Again, this procedure has
the effect of coupling all the time level solutions.
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SOLUTION PROCEDURE
The harmonic balance equations are discretized using a cell-

centered, polyhedral-based, finite-volume scheme. Second order
spatial accuracy is achieved by means of a multi-dimensional,
linear reconstruction of the solution variables [14]. The convec-
tive fluxes are evaluated by a standard upwind, flux-difference
splitting [13] and the diffusive fluxes by a second-order cen-
tral difference. A pseudo-time derivative of primitive quantities,
∂Q/∂τ , with Q = {p, u, T }, is introduced into Eqn. (8) to facil-
itate solution of the steady harmonic balance equations by means
of a time marching procedure. An Euler implicit discretization
in pseudo-time [19] produces the following linearized system of
equations:

[

∂W

∂Q
+ ∆τ

(

A −
∂S

∂Q
+ D

∂W

∂Q

)]

∆Q∗ = −∆τR∗ (13)

whereR∗ is the discrete residual of Eqn. (8), and∆Q∗ are the
resultant primitive variable corrections across one pseudo-time
step,∆τ . Operator A is the Jacobian of the discrete inviscid
and viscous flux vectors with respect to primitive variablesQ

and introduces both center coefficients as well as off-diagonals
arising from the linearization of the spatially discretized fluxes.

The coupled system given by Eqn. (13) contains equations
from all time levels linked at every point in the domain by the
pseudo-spectral operator D. The result is is a large system, and
solving it all at once would be rather intractable. However,
we can exploit the point coupled nature of the system and em-
ploy approximate factorization to produce the following two step
scheme:

[

∂W

∂Q
+ ∆τ

(

A −
∂S

∂Q

)]

∆Q̃
∗

= −∆τR∗ (14)

[

¯̄I + ∆τ
∂W

∂Q

−1

D
∂W

∂Q

]

∆Q∗ = ∆Q̃
∗

(15)

where∆Q̃
∗

represents provisional corrections to the solution.
In the first step, Eqn. (14), the time levels are no longer cou-

pled and we can solve for the∆Q̃
∗

one time level at a time.
With the exception of the physical time derivative appearing in
Eqn. (8), the evaluation of fluxes, accumulation of the residual,
and the process of assembling and solving Eqn. (14) at each time
level proceeds exactly as for a single, steady-state solution in the
time domain. Here we employ an algebraic multigrid (AMG)
method to solve the linear system (Eqn. (14)) and obtain the pro-
visional∆Q̃

∗

. In the second step the complete corrections∆Q∗

for the current iteration are obtained by inverting Eqn. (15) at
each point in the domain given all the∆Q̃

∗

computed in step
one.

FIGURE 1. COMPUTATIONAL MESH FOR TWO-
DIMENSIONAL COMPRESSOR STAGE.

RESULTS
In this section we compare results obtained from the im-

plicitly coupled, non-linear harmonic balance method described
above with solutions from a full, unsteady simulation based on
the standard dual time-stepping approach. The test case consists
of a model two-dimensional compressor stage; specifically, the
first stator and second rotor rows of the five row, “Configuration
D” described by Ekici and Hall [20]. A representative computa-
tional mesh for this problem is shown in Fig. 1. There are three
stator blades to every four rotor blades. The two blade rows are
separated by an axial gap equal to 0.25 times the aerodynamic
chord of the rotor. The Mach number at the inlet to the stator
is 0.68 and the relative Mach number entering the rotor is 0.71.
The static-to-total pressure ratio across the stage is 1.2.

Three separate Euler calculations are made using the non-
linear harmonic balance method in which one, two and three
harmonics, respectively, are retained for the blade passing fre-
quencies in both the stator and rotor. Contours of instantaneous
pressure, representative of the flow field within the compressor
stage and computed using three harmonics in each blade row,
are shown in Fig. 2. Note that computations are performed on
just the center blade passage outlined in each row. The solutions
shown in the passages above and below are phase-shifted recon-
structions included for clarity. The convergence history for the
case with three harmonics (seven time levels) is shown in Fig. 3
which shows the L2-norm ofR∗, the discrete residual of Eqn. (8)
assembled over all time levels, plotted vs. iteration. The con-
vergence rate shown is typical of each of the three calculations.
Convergence is achieved in about 4000 iterations. On a Linux
workstation (IntelR© XeonR© CPU X5570@2.93GHz (x8664))
these calculations took 1200, 2320, and 3320 seconds of CPU
time for the one, two and three harmonic cases, respectively.

By way of comparison, the unsteady, dual time-stepping
solver is run on a domain consisting of three stator passages and
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FIGURE 2. INSTANTANEOUS PRESSURE DISTRIBUTION
WITHIN THE COMPRESSOR STAGE COMPUTED USING
NONLINEAR HARMONIC BALANCE METHOD.

four rotor passages in order to satisfy the spatial periodicity re-
quirement. The physical time step size is set such that the ro-
tor advances across one grid cell on the stator outlet boundary
per time step. This produces 36 and 48 time steps per period in
the stator and rotor, respectively. Twenty iterations are run per
time step. The unsteady simulation is continued for about 100
rotor periods (4800 time steps) until time-periodic behavior is
achieved. The CPU time required is 0.73 seconds per iteration
or about 15 seconds per time step, for a total of approximately
20 hours. This is compared to less than one hour of CPU time
for the harmonic balance calculation retaining three harmonics
(seven time levels). Once a time-periodic, unsteady solution is
obtained a discrete Fourier transform (DFT) is applied to the final
36 and 48 time step solutions in the stator and rotor, respectively,
and the resultant Fourier coefficients are compared with those
obtained by means of the nonlinear harmonic balance method.

The predicted mean pressure loadings on the stator and ro-
tor from the three harmonic balance simulations are compared
against the time averaged solution from the unsteady run and
a steady solution based on a mixing-plane approach in Figs. 4
and 5, respectively. That is, we use the present harmonic bal-
ance solver, but with zero harmonics, to compute the steady flow
through the two blade rows. These results show nearly the same
time mean solution is predicted in all instances, but with small

FIGURE 3. RESIDUAL HISTORY FOR COMPRESSOR STAGE
CALCULATION USING NONLINEAR HARMONIC BALANCE
METHOD.

FIGURE 4. MEAN PRESSURE DISTRIBUTION ON THE STA-
TOR.

differences seen between the steady mixing plane (zero harmon-
ics) solution. These small differences are likely due to nonlinear
effects, which for this example are small.

In Fig. 6 we compare the magnitude of the first mode of
the unsteady pressure on the stator as predicted by the three har-
monic balance runs against that given by the DFT of the unsteady
simulation. Similar comparison of the phase of the first mode of
the unsteady pressure on the stator is shown in Fig. 7. These re-
sults show very reasonable agreement between the harmonic bal-
ance and time domain solutions. Note that the magnitude of the
unsteady pressure is about 10% of the mean value and the spread
between the harmonic balance results obtained when retaining
one, two, or three harmonics is only about 2% of the mean. This
suggests that reasonable results can be obtained given just a few
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FIGURE 5. MEAN PRESSURE DISTRIBUTION ON THE ROTOR.

FIGURE 6. MAGNITUDE OF THE 1st MODE OF UNSTEADY
PRESSURE ON THE STATOR.

harmonics of the fundamental frequencies.
Figures 8 and 9 show comparisons of the magnitude and

phase, respectively, of the first mode of the unsteady pressure on
the rotor. Again, the harmonic balance shows reasonable agree-
ment with the time domain. However, here in the rotor we do
see more variation amongst the predictions, particularly near the
trailing edge.

SUMMARY
In this paper we have presented the development of an im-

plicitly coupled nonlinear harmonic balance method for the solu-
tion of time periodic flows in turbomachines. The advantage of
the current method is that it is based on solving a set of steady-
state equations in the time-domain which allows for the reuse of
existing steady-state implementations. Furthermore, the implicit

FIGURE 7. PHASE OF THE 1st MODE OF UNSTEADY PRES-
SURE ON THE STATOR.

FIGURE 8. MAGNITUDE OF THE 1st MODE OF UNSTEADY
PRESSURE ON THE ROTOR.

coupling maintained between time levels results in an efficient
and stable algorithm.

The harmonic balance method described was applied to
a test case consisting of a model two-dimensional compressor
stage. Results were obtained for runs retaining one, two and three
harmonics of the blade passing frequencies in both the stator and
rotor. Three results compared reasonably with those obtained by
means of a full unsteady, time-accurate calculation performed on
moving meshes, in terms of both mean flow predictions as well
as predicted magnitude and phase of the first mode of the un-
steady pressure. It was also shown that reasonable accuracy can
be achieved by retaining as few as two or three harmonics of the
fundamental frequency.
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FIGURE 9. PHASE OF THE 1st MODE OF UNSTEADY PRES-
SURE ON THE ROTOR.
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