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ABSTRACT 
Two main problems are associated with conventional 

numerical methods for simulating turbulent flows in high-
reaction-type supersonic turbine cascades near the tip of the 
last stage blade in a steam turbine: the large skewness of 
computational grids and treatments of boundary conditions 
when the shock waves hit boundaries. This paper presents a 
numerical method to deal with these issues. 

A grid generation technique which uses five-block 
structured grids has been developed. The orthogonality of the 
grid is good even for highly staggered and low solidity 
cascades. In addition, the grids are completely continuous at the 
boundary between the blocks and at the periodic boundaries. 
Both the gradient of the grid lines and the change rate of the 
grid widths connected smoothly. As a result, shock waves can 
be captured accurately and stably. 

The inflow and outflow boundary conditions based on the 
two-dimensional characteristic theory have been applied and 
diminished the spurious reflections and fluctuations of shock 
waves at both the inlet and outlet boundaries. Therefore the 
non-physical reflection does not affect the flow in the cascades. 

A low Reynolds number k-ε turbulent model has been 
proposed. Distance from a wall is not used as the characteristic 
length of turbulent flows so that the turbulent model can be 
applied to a wake and a separation flow. 

The validity of the numerical method was verified by 
comparisons of the pressure distributions on the blade, the loss 
coefficients, and flow angles with linear cascade experiments 
of transonic compressor cascades. 

 

INTRODUCTION 
An increase of the annulus area of the last stage in steam 

turbines has three main benefits: increased power output, 
improved efficiency, and reduced axial length. When the 
average axial velocity at the outlet of the larger last stage is 
almost the same as that of the original last stage, a larger 
annulus area leads to a larger mass flow rate. The power output 
can be increased by increasing mass flow rate. When the mass 
flow rate is almost the same as that of the original turbine, a 
larger annulus area leads to a smaller average axial velocity at 
the outlet of the last stage. The efficiency can be improved by 
reducing the amount of useless kinetic energy. The number of 
cylinders can be reduced when increment of the annulus area 
compensates for the annulus area of the original blade. 
Therefore the length of the blades determines the annulus area 
and it should be long. 

Some technical issues need to be resolved to increase the 
length of the last blade. One of them is supersonic inflow. 
Conventionally, outflow Mach numbers are supersonic near the 
tip of some long blades. Inflow Mach numbers near the tip also 
become supersonic when the blade is lengthened more. In such 
cases, it is difficult to avoid emergence of shock waves 
upstream from the cascade, even if the supersonic turbine 
aerofoil is applied which has a divergent flow path. The shock 
waves increase kinetic energy loss by themselves and may 
cause boundary layer separation which leads to another kinetic 
energy loss. 

Numerical analysis is useful to evaluate such a complex 
flow, but it has two main issues when applied to the supersonic 
cascade: large skewness of computational grids and treatments 
of boundary conditions when the shock waves hit boundaries. 
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A single H-type structured grid is widely used for flows of 
a cascade; however, the grid skewness becomes large for highly 
staggered and low solidity cascades when this type grid is 
employed. The largely skewed grids destabilize the 
computation and fail to capture shock waves clearly. The flow 
comes from almost the peripheral direction near the tip of the 
lengthened blade in the steam turbine. Therefore stagger angles 
of the aerofoils are high; some of them are more than 70 
degrees. Moreover the solidity is low because the cross-
sectional area of the blade is restricted to reduce the centrifugal 
stresses. 

Youngren and Drela [1] improved the single H-type 
structured grid by using an offset-periodic structure so that the 
grid skewness was reduced. The implementation of both inlet 
and outlet boundary conditions, however, became difficult, 
because the periodicities at the inlet and outlet boundaries 
vanished. 

Shock waves are reflected non-physically at the inlet and 
outlet boundaries as expansion waves when a normal boundary 
condition is applied. Chima [2] proposed extrapolation of the 
one-dimensional Riemann invariant in the main flow direction 
for supersonic inflow. Giles [3] proposed boundary conditions 
based on characteristic theory to prevent spurious reflections of 
waves. However, neither of these authors applied their methods 
to shock waves. 

The purpose of the present paper is to develop a numerical 
method for turbulent flows in high-reaction-type supersonic 
cascades, such as the tip section of the long blade in steam 
turbines. In particular, the paper presents the grid generation 
technique to reduce the grid skewness and the inflow and 
outflow boundary conditions to prevent non-physical reflection 
of shock waves. 

 
GOVERNING EQUATIONS 

The governing equations are based on three conservation 
laws for compressible fluid: mass, momentum and energy. 
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The stress tensor τij consists of the viscous stress μTij and 
turbulent stress Rij. 
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The thermal flux consists of thermal conductivity, work by 
stress, and turbulent thermal diffusion. 
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The two-dimensional equations are modified regarding the 
following two points to take into account an axial variation of 
flow path widths in the blade span direction: 
 1) a pressure term as the fourth term of Eq.(1) and 
 2) hexahedral cells as shown in Fig.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The axial and peripheral coordinates of the vertices, xi,j and 
yi,j, are two-dimensional functions of a number of grids, i and j. 
This means all longitudinal sides, such as P5P1 in Fig.1, are 
parallel to the vertical axis, z. The span coordinate, z, is a 
function of axial coordinate, x, and all z coordinates of lower 
vertices, such as P1, P2, P3, P4, are equal to zero. 

The second and third terms in Eq.(1) are integrated over 
only four side surfaces, Si, Sj, Si-1, and Sj-1 in Fig.1. 

Sij,x is an axial component of the normal vector of the 
upper surface, Sij. The dSx in Eq.(1) for a hexahedral cell 
equals −Sij,x. 
 
TURBULENCE MODEL 

A low-Reynolds number type k-ε turbulent model is 
developed for Reynolds stress and turbulent heat flux based on 
the work of Shimada and Nagano [4]. Distance from a wall is 
not used so that the turbulent model can be applied to a wake 
and a separation flow. 
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Here μT is eddy viscosity and it can be expressed as given 
below.  
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Figure 1. Computational hexahedral cell 
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Rtu is a function of time scale ratios of averaged flow RU and of 
turbulent flow Rt . 
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The governing equations for turbulent quantities are 
written as below. 
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Dkj and Dεj are diffusion terms for the turbulent energy and its 
dissipation rate, respectively, and they are modeled as follows. 

 
t

*
k

j
*
k

T
kj f

2.1,
x
kD =σ

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
μ

+μ=  (22) 

 
t

*

j
*
T

j f
3.1,

x
D =σ

∂
ε∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
μ

+μ= ε
ε

ε   (23) 

  ⎟
⎠

⎞
⎜
⎝

⎛−+=
30
R

exp201f t
t  (24) 

Pk  is production of turbulent energy and it is modeled using 
the velocity gradient tensor and vorticity tensor. 
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Pε, εε and E are production, dissipation and correction terms of 
ε, respectively, and they are modeled as follows. 
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The four constants of the turbulence model are tuned as 
shown in Table 1 to match the experimental results of a 
turbulent boundary layer on a flat plate and flows in linear 
cascades [5]. 

 
 
 
 
 
 

NUMERICAL METHOD 
Equation (1) is solved using a finite volume method based 

on the third-order upwind TVD scheme [5, 6]. A diagonal form 
of the implicit approximate factorization algorithm [7] is 
applied for time integration. 

 
GRID GENERATION 

A grid generation technique using the five-block structured 
grids is developed. A grid configuration is shown in Fig.2. A 
block ① with an offset-periodic structured grid is applied 
around the blades to improve the orthogonality of the generated 
grids. Two blocks, ② and ③, with a structured grid, are 
inserted into the inlet triangular region to make the inlet line of 
computational region parallel to the peripheral direction. The 
last two blocks, ④  and ⑤ , are inserted into an outlet 
triangular region. 

First, block boundaries and periodic boundaries are 
generated and divided into grids. The number of the offset 
value of the grid between suction and pressure surfaces is 
determined as follows. The grid number of the pressure surface, 
ix_throat_ps in Fig.2, is calculated so that the distance from the 
leading edge of the suction surface is minimized. The offset is 
the difference between ix_throat_ps and the grid number at the 
inlet region of the suction surface, ixi, 

offset = ix_throat_ps − ixi. (31) 
Second, the numbers of grids of the inlet blocks ② and 

③ as shown in Fig.3, are determined so that the grids are 
completely continuous at the boundary between the blocks. 
Three conditions, given as Eqs. (32) to (34), should be 
preserved. 

3NY2NX1NY +=  (32) 
3NX2NXoffset +=  (33) 

3NY3NX2NY +=  (34) 
Only one parameter is free when offset and NY1 are specified 
because there are four unknowns and three constraints. These 
conditions (32) to (34) lead to the following relation. 

 ( )
offset

2NYr,r1
2

offset
2

1NY2NX gingin ≡−+=  (35) 

The controllable parameter is the ratio rgin between the number 
of inlet grids NY2 and the offset in this study. 

Table 1. Constants of the turbulence model 

Cμ Cε1 Cε2 PrT

0.09 1.45 1.9 0.9



 4 Copyright © 2011 by ASME 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Third, the inlet triangle region is divided into ② and ③. 

The grids are equally divided at the boundary with block ①; 
therefore A1 is determined using the ratio NX2:NY3. The grids 
of the periodic boundaries have already been divided to match 

the corresponding grids of block ① ; therefore A2 is 
determined using the ratio NX2:NX3. A3 is determined as the 
centroid of the inlet triangle. The inlet boundary is equally 
divided by NY2. 

Fourth, the outlet blocks ④ and ⑤ are determined in the 
same way as the inlet blocks ② and ③. 

Finally the smooth inner grids are generated using Poisson 
equations [8]. Both the gradient of grid lines and the change 
rate of grid width connect smoothly at the block boundaries and 
periodic boundaries by formulating the source term of the 
Poisson equations. 

The other advantage of the grid generation method is its 
small number of input parameters. By adding only two 
parameters, rgin and rgout, to the input parameters of single H-
type grids, the five-block structured grids can be generated. 
The developed grid generation method easily replaces a single 
H-type grid generation method, because the same values are 
applied for most of the common input parameters. 

The method is applied to generate grids of cascades with 
stagger angle 76.5 degree. The results are shown in Fig. 4. The 
orthogonality of the grid is good even for highly staggered and 
low solidity cascades. In addition, the grids are completely 
continuous at the boundaries between the blocks and at the 
periodic boundaries. The gradient of grid lines and the change 
rate of grid width connect smoothly. 

Figure 5 compares computational grids between the 
developed five-block structured grids and the widely-used 
single H-type grids. The orthogonality of the grids is improved. 
Figure 6 compares iso-pressure contours of inviscid flow 
calculations. Both results can simulate the same shock wave 
pattern. In the five-block grids, however, shock waves can be 
captured more accurately and they propagate through the block 
and periodic boundaries without the attenuation which may 
occur if there are grid discontinuities. 

 
INFLOW AND OUTFLOW BOUNDARY CONDITIONS 

Inflow and outflow boundary conditions are based on the 
two-dimensional characteristic theory proposed by Giles [3]. 
There are two features to suppress spurious reflections. One is 
that peripheral variations of physical quantities are allowed at 
boundaries. The other is that incoming two-dimensional waves 
of perturbations are set as zero. The ideal gas is assumed for the 
working fluid in this paper to formulate the boundary 
conditions. 

First of all, independent variables of governing equations 
are transformed from conservative variables to one-
dimensional characteristic variables. Two-dimensional Euler 
equations in the Cartesian coordinate system are used in this 
capture, because the grids are orthogonal and both viscosity 
and turbulence are not so important at the inlet and outlet 
boundaries. Two-dimensional Euler equations can be expressed 
in the differential form given below. 

Figure 3. Inlet region grids 
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The conservative variables are transformed to primitive 
variables to simplify the eigenvalue calculation.  
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By using this, Eq. (36) can be written in the non-
conservative form given below 
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The vector of peripheral perturbation is used to define U. 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

ρ−ρ

≡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡ρ

=

pp
vv
uu

p~
v~
u~
~

U  (39) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Here the tilde denotes the peripheral perturbation and the 
overline denotes the peripheral average. Then, Eq. (38) can be 
linearized by neglecting all but the first order linear terms. 
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A vector of the one-dimensional characteristic variables C can 
be calculated from primitive variables using the eigenvalue 
decomposition of Jacobian matrix A.  
 LRA Λ=  (42) 
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Figure 4. Computational grids 
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 (44) 
Here L and R are the matrices consisting of left and right 
eigenvectors L

nw  and R
nw of the Jacobian matrix A, 

respectively. 
 
Inflow Conditions 

One-dimensional characteristic variables are corrected 
step-by-step until they satisfy the given conditions. A 
conceptual diagram of inflow boundary conditions is shown in 
Fig. 7. Three one-dimensional characteristic variables are 
divided into the peripheral average (overline) and the 
perturbation (tilde) at the boundary to take into account the 
peripheral variations. 

First, the average value should be satisfied with given 
boundary conditions at far-field. Stagnation pressure P0, 
stagnation temperature T0, and inlet flow angle αin are specified 
at far-field. Stagnation entropy and stagnation enthalpy 
calculated by P0 and T0 do not change from far-field to the inlet 
boundary. Therefore corrections of average values can be 
expressed as the following. 
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Here the subscript F means a value at far-field. The corrections 
in Eq. (45) are transformed to one-dimensional characteristic 
variables [9]. 
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 (46) 

Here Mx and My are Mach numbers in axial and peripheral 
directions, respectively. 

Second, the incoming two-dimensional characteristic 
waves of perturbation variables should be zero to suppress non-
physical reflection. To clarify the propagating direction, the 
solutions of Eq. (40) are decomposed into two-dimensional 
characteristic waves. Steady two-dimensional spatial-wave-like 
solutions can be written using wave numbers k and l. 
 ( ) ( )lykxieuy,xU +=  (47) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Substituting this into the linearized steady perturbation 
equations of (40) gives the dispersion relationship. 

 ( ) ( ) 0lBkAdet0ulBkA =+→=+  (48) 
Therefore the wave numbers k and l are not independent of 
each other. 

Waves propagate in the axial direction at the inlet and 
outlet boundaries, because the boundaries are perpendicular to 
the axial direction. Therefore solutions to Eq. (47) are 
decomposed into a sum of two-dimensional waves with the 
axial wave number kn with different peripheral wave number l. 
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Here R
nv  is the right eigenvector of the matrix ( )BAlIk 1

n
−+  

and an is the amplitude. The axial wave number kn (n=1, 2, 3, 4) 
is determined as the nth root of the dispersion relation Eq. (48) 
for the given peripheral wave number l. Therefore, each one of 
four two-dimensional characteristic waves propagating in the 
axial direction can be extracted by multiplying the left 
eigenvectors L

nv  of the matrix ( )BAlIk 1
n

−+ as 
( ) ( )ylxki

n
L
n

neay,xUv +=  due to the orthogonality relation of the 
eigenvectors between R

nv  and L
nv . Three of four waves are 

incoming, because their eigenvalues are positive, when the 
axial velocity is subsonic. Therefore nonreflecting boundary 
conditions that the incoming two-dimensional characteristic 
waves of perturbation variables should be zero can be written 
as given below. 
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β is the parameter depending on the velocity. 
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The β is independent of the peripheral wave number l 
when the velocity is supersonic. Therefore the condition (50) is 
also independent of the peripheral wave number for supersonic 
flows. 

The condition (50) is transformed to the function of the 
one-dimensional characteristics using Eq. (44). 
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Therefore three incoming two-dimensional characteristic waves 
of perturbation variables should be satisfied with the following 
equation which can be obtained by solving Eq. (52) to obtain 
three incoming characteristics as a function of the outgoing 
ones. 
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The outgoing characteristic is given as Eq. (54) from Eq.(43). 
 p~u~ac~4 +ρ−=  (54) 

Therefore the steady-state correction to the local incoming 
characteristic of perturbation variables can be calculated as the 
difference between the correct steady-state value of Eq. (53) 
and the current value of Eq. (43). 
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Then, by using Eq. (53), Eq. (56) is obtained. 
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Further, by using Eq. (43), Eq. (57) is obtained. 
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Third, the total local correction which is the sum of the 
peripherally averaged and perturbative characteristic variable is 
calculated using Eqs. (46) and (55). 
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σ0 is the under-relaxation factor to guarantee the well-
posedness of the mathematical formulation [9]. In this paper, 
the following formula is applied for σ0. 
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Finally, the correction of the fourth characteristic variable 
4cδ  is extrapolated from the calculated region. 

 
Outflow Conditions 

The fourth characteristic variable is only the incoming 
wave at the outlet boundary because its eigenvalue is negative. 
It is divided into the peripheral average and the perturbation. 

First, the average should satisfy the given static pressure at 
far-field. 

Second, the perturbation should satisfy the condition 
where the incoming two-dimensional characteristic wave 
vanishes. The condition can be expressed similarly to Eq. (50) 
as the condition (60) 
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It is transformed to the function of the one-dimensional 
characteristics using Eq. (44). 
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Therefore the fourth incoming two-dimensional characteristic 
waves of perturbation variables should be satisfied with the 
following expression. 
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The definitions of Eq. (63) are gotten from Eq.(43). 
The other three characteristic variables are extrapolated 

from the calculated region. 
 

Computational Results 
Three types of boundary conditions are compared. 1) 

Normal: extrapolate the axial velocity at the inlet and the 
density, axial and peripheral momentums at the outlet; 2) 1D 
Riemann: extrapolate the one-dimensional Riemann invariant at 
the inlet as proposed by Chima [2]; and 3) 2D characteristic: 
use the aforementioned method. The combinations of boundary 
conditions are shown in Table 2. 

 
 
 
 
 
 
 
 
 
 
 
 
Axial positions in Table 2 are distances normalized by the 

axial chord length from the inlet boundary to the leading edge 
of the blade for the inlet and from the outlet boundary to the 
trailing edge for the outlet. 

The inflow Mach number is 1.3 and the outflow isentropic 
Mach number is 2.1. The iso-pressure contours are compared in 
Fig.8. The oblique shocks non-physically reflect as expansion 
waves which affect the flow in the cascade in cases 1 and 2. 
The spurious reflections are slight and do not affect the flow in 
the cascade in case 3. The non-physical fluctuation occurs at 
the outlet boundary due to the interactions with oblique shocks 
in cases 1 and 2. However it does not occur in case 3. As a 
result, the developed boundary conditions are validated. 

The effect of the computational region is also studied. The 
inlet and outlet region are reduced by half for cases 4 and 5 as 
shown in Table 2. The iso-pressure contours are shown in Fig. 
9 where the shortened cases are at the mid flow paths. The 
spurious reflections at the inlet boundary become stronger but 
they still do not affect the flow in the cascade in case 5. 
However the non-physical fluctuation occurs at the outlet 
boundary even in case 5. This means that the outlet boundary 
cannot be reduced from that of case 3. 

 

VALIDATIONS 
The developed numerical technique is validated by 

comparisons with linear cascade experiments. Experimental 
data obtained by DFVRL are used including two types of 
transonic compressor cascades, DFVRL [10] and ARL-SL19 
[11], because there are no experimental data for supersonic 
turbine cascades. Working fluid is air. Thermal boundary 
conditions are shown in Table 3. AVDR is an acronym standing 
for Axial Velocity Density Ratio, which is defined as (64). 
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outout

u
uAVDR

ρ
ρ

=  (64) 

The calculated contours of Mach number are shown in Fig. 
10. Shock waves are captured accurately and do not reflect 
non-physically at the inlet boundary. The supersonic flows 
come into the DFVLR compressor cascades and detached 
shock waves emerge in front of the leading edge. After the 
shock waves the velocity becomes subsonic. 

 
 
 
 
 
 
 
 
 
 
The higher supersonic flows come into the ARL-SL19 

compressor cascades and generate oblique shock waves in the 
flow path of cascades. The flow does not decelerate to subsonic 
after the shock waves; therefore rather it accelerates again in 
the divergent flow path. The normal shock waves emerge at the 
trailing edges and interact with the boundary layer on the 
pressure surface. The interaction causes local separation of the 
boundary layer which leads to the oscillation of the shock 
waves. As a result, the flow becomes unsteady especially in the 
subsonic region after the normal shock waves. 

Comparisons of pressure coefficient distributions on the 
blade surface, which are defined as (65), are shown in Fig. 11 
for the DFVLR cascades. The agreements are good including 
the impingement positions of shock waves on the suction 
surfaces. 

 
inin0

in0
p pP

pPC
−
−

=  (65) 

The comparison of isentropic Mach number distributions 
on the blade surface is shown in Fig.12. The averaged result is 
used for the computational result and again, it agrees well with 
the experimental. However there are two differences between 
the computation and the experiment. One is that the 
experimental flow accelerates again after the impingement of 
the oblique shock waves on the suction surface; while on the 
other hand, the isentropic Mach number of the computation is 
almost constant from the shock wave impingement to the 
trailing edge due to the separation of the boundary layer. 

Table 2. Inflow and outflow boundary conditions 

Case inflow outflow inlet outlet
1 normal normal 9.6 9.6
2 1D Riemann normal 9.6 9.6
3 2D characteristic 2D characteristic 9.6 9.6
4 normal normal 4.8 4.8
5 2D characteristic 2D characteristic 4.8 4.8

Boundary conditions Axial positions

Table 3. Thermal boundary conditions 
Parameters Unit Case 6 Case 7 Case 8
Blade type - DFVLR DFVLR ARL-SL19

Inlet Mach number - 1.03 1.10 1.58
Inlet flow angle deg 148.5 148.5 147.5

Static pressure ratio - 1.47 1.57 2.12
AVDR - 1.14 1.15 0.99
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The other is that the deceleration of the computation on the 
pressure surface caused by the impingement of the normal 
shock waves is steeper than that of the experiment. These 
differences may be caused by the inadequacy of the turbulence 
model in dealing with the strong interaction between a shock 
wave and a boundary layer. 

Comparison of total pressure loss coefficient, which is 
defined by (66) and outlet flow angle is shown in Table 4 for 
three calculation cases. 

 
inin0

out0in0

pP
PP

−
−

=ω  (66) 

The computational total loss coefficients are less than the 
computational ones by about 2% in cases 6 and 7. The average 
total loss coefficient agrees with the experimental one in case 8.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The agreement of the outlet flow angles of the computation 
with those of the experiment can be confirmed. 

 
 
 
 
 
 
 
 
 
 
In conclusion, the validity of the developed numerical 

method is verified.

Figure 9. Comparison of iso-pressure contours of different computational regions
(a) Cases 1 and 4 (b) Cases 3 and 5 

Parameters Unit Case 6 Case 7 Case 8
CFD 4.3 6.5 14.6
Exp 6.1 8.4 14.4
CFD 135.7 135.2 153.0
Exp 136 136 151.2

%

Outlet flow angle deg

Loss coefficient

Table 4. Comparison of loss coefficient and 
outlet flow angle 

Figure 8. Comparison of iso-pressure contours of different boundary conditions 
(a) Case 1 (b) Case 2 (c) Case 3 



 10 Copyright © 2011 by ASME 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

0.0

0.4

0.8

1.2

1.6

0.0 0.2 0.4 0.6 0.8 1.0

Bl
ad

e 
pr

es
su

re
 co

ef
fic

ie
nt

Relative blade chord

(a) Case 6 (DFVLR Min=1.03) 

Figure 11. Pressure coefficient 
distributions on the blade surface 

(b) Case 7 (DFVLR Min=1.1) 

0.0

0.4

0.8

1.2

1.6

0.0 0.2 0.4 0.6 0.8 1.0

Bl
ad

e 
pr

es
su

re
 c

oe
ffi

ci
en

t

Relative blade chord

Calculation

Experiment

Figure 12. Isentropic Mach number 
distributions on the blade surface 

Case 8 (ARL-SL19 Min=1.58) 

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.2 0.4 0.6 0.8 1.0

Is
en

tro
pi

c M
ac

h 
nu

m
be

r, 
 M

is

Dimensionless axial blade chord

Calculation

Experiment

Figure 10. lso Mach number contours 
(increments 0.05) 

(a) Case 6 (DFVLR Min=1.03) 

(b) Case 7 (DFVLR Min=1.10) 

(c) Case 8 (ARL-SL19 Min=1.58) 

1.0 

1.05 

1.0 

1.2 

0.8 
0.9 

0.7 

0.65 

1.2 

1.1 

1.2 

1.2 

1.1 

1.1 

1.3 

0.8 
0.8 

0.7 

0.65

0.650.6

1.55 

1.55 

1.5 
1.55 

1.5 

1.3 
1.4 

1.5 

0.85 

0.9 

0.9

1.0 
1.1 



 11 Copyright © 2011 by ASME 

 
CONCLUSIONS 

The numerical methods for treating turbulent flows in 
high-reaction-type supersonic cascades were developed. 

The five-block structured grid generation technique could 
generate grids with better orthogonality even for highly 
staggered and low solidity cascades. It was able to capture the 
shock waves accurately and stably. The grids were completely 
continuous at the boundaries between blocks and the periodic 
boundaries by using the offset-periodic technique. In addition, 
the Poisson equations were used to generate smooth grids in the 
blocks and their source terms are formulated so that the 
gradient of the grid lines and the change rate of the grid widths 
connect smoothly. Therefore shock waves did not attenuate at 
the boundaries. 

Nonreflecting boundary conditions based on two-
dimensional characteristic theory were applied for supersonic 
inflow and outflow. The physical quantities were separated into 
the circumferential average and the perturbation at the 
boundaries. The average quantities were decided by given 
values at a hypothetical far-field. The amplitude of incoming 
two-dimensional characteristic waves of the perturbations is set 
to zero to suppress nonphysical reflections of waves. In this 
way the computations avoid spurious reflections of shock 
waves at the inlet and outlet boundaries. 

The equations of conservation laws for compressible fluid 
were used in consideration of an axial variation of span width 
of the flow path to take into account quasi-three-dimensional 
effects. The equations are solved by using a finite volume 
method based on an approximate Riemann solver. A low 
Reynolds number k-ε turbulent model was proposed for flows 
of 105-106 order Reynolds number. 

The flows of two types of transonic compressor cascades 
were calculated and the results were compared with those of 
linear cascade experiments. The computational pressure 
distributions and positions of shock waves on the blade agreed 
well with the experiments. The prediction accuracy of outlet 
flow angles was good. The estimated total pressure losses in the 
transonic cascade with a convex suction surface were about 2% 
smaller compared with the experimental results. However the 
computation accurately predicted the total pressure loss in the 
transonic cascade with a concave suction surface. The validity 
of the numerical method was verified from the above findings. 

It was confirmed that the developed numerical method was 
sufficiently accurate for applications to design of supersonic 
turbine cascades, such as the tip section of the long blade in 
steam turbines. 

 
 

 
NOMENCLATURE 

A Jacobian matrix with respect to x, Eq. (41) 
a sound velocity 
B Jacobian matrix with respect to y, Eq. (41) 
C one-dimensional characteristic variables vector 

Cp pressure coefficient on the blade surface 
cp specific heat capacity at constant pressure 
e total energy per unit volume 
h specific enthalpy 
k turbulent energy per unit volume 
k wave number of x direction 
L matrix consisting of left eigenvector of matrix A 
l wave number of y direction 
M Mach number 
nxj normal vector relative to the grid surface 
P0 stagnation pressure 
p static pressure 
Pr Prandtl number 
PrT turbulent Prandtl number 
Q conservative variables 
R matrix consisting of right eigenvector of matrix A 
Rij Reynolds stress tensor 
S surface area of computational cells 
S magnitude of velocity gradient tensor, Eq. (18) 
Sij velocity gradient tensor, Eq. (19) 
T0 stagnation temperature 
U peripheral perturbation vector of primitive variables 
u, v axial and peripheral velocities 
V volume of computational cells 
vL

n left eigenvector of matrix ( )BAlIk 1
n

−+  
vR

n right eigenvector of matrix ( )BAlIk 1
n

−+  
wL

n left eigenvector of matrix A 
wR

n right eigenvector of matrix A 
x axial direction 
y peripheral direction 
 
Greek symbols 
ε dissipation rate of turbulent energy per unit volume 
ε̂  specific internal heat 
γ specific heat rate 
λ thermal conductivity 
λT turbulent thermal conductivity 
μ dynamic viscosity 
μT eddy viscosity 
ρ density 
τij stress tensor  
Ω magnitude of vorticity tensor, Eq. (25) 
Ω ij vorticity tensor, Eq. (26) 
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