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ABSTRACT
Liner scattering of low frequency waves by an orifice plate

has been studied using Large Eddy Simulation and an acoustic
two-port model. The results have been compared to measure-
ments with good agreement for waves coming from the down-
stream side. For waves coming from the upstream side the reflec-
tion is over-predicted, indicating that not enough of the acous-
tic energy is converted to vorticity at the upstream edge of the
plate. Furthermore, the sensitivity to the amplitude of the acous-
tic waves has been studied, showing difficulties to simultaneously
keep the amplitude low enough for linearity and high enough to
suppress flow noise with the relatively short times series avail-
able in LES.

INTRODUCTION
Constrictions are common elements in turbomachinery duct

systems. These constrictions generate noise and scatter acoustic
waves generated by other components. By reflecting and damp-
ing incoming waves the constrictions modify the resonances in
the system, which may result in high sound levels and under cer-
tain conditions the performance of the machine can be affected.
The noise generated by a constriction can normally be neglected
compared to other sound sources in the system and hence will
not be considered here. However, under certain flow configura-
tions the constriction can cause a high tonal noise (whistle) if it
couples to a resonance in the system, see e.g. [1]. The constric-
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tion studied in this work is a thin orifice plate, i.e. a plate with a
centrally located sharp edged orifice, placed in a circular duct.

When a wave impinges on an orifice plate it is partly re-
flected and partly transmitted through the orifice. At the same
time, for low frequencies, some of the acoustic energy is ab-
sorbed as it is converted to vorticity that is created at the orifice
edges. In the plane wave frequency range, several quasi-steady
models have been proposed for the linear passive acoustic prop-
erties of thin ducted orifice plates. Examples of such theories,
which have shown good agreement with measurements, are the
theory for low Mach numbers described by Åbom et al. [2] and
the theory by Durrieu et al. [3], which also is applicable at higher
jet Mach numbers where flow compressibility effects are present.
These theories predict a frequency independent scattering, where
the reflection increases and the transmission decreases with in-
creasing Mach number.

To improve the understanding of the acoustic properties of
constrictions Direct Noise Computations (DNC) are performed
using compressible Large Eddy Simulation (LES). With this
method the interaction between the flow and incoming waves
can be captured, as well as sound generating mechanisms. To
compute the scattering, i.e. reflection and transmission of incom-
ing waves, an acoustic two-port model is used. To validate the
method the results are compared to the measurements and theory
presented Åbom et al. [2]. Earlier linear 2D simulations have
been performed by Kierkegaard et al. [4] for the same configura-
tion, but at a lower Mach number, showing good agreement with
the measurements.
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Using LES to simulate linear acoustic propagation and scat-
tering is a relatively new research area. Previous it has been
done by Föller et al. [5, 6], who successfully used LES with sec-
ond order accurate numerical methods to compute the scattering
by an area expansion and a t-junction, respectively. They sim-
ulated the entire 2-port in one simulation by using completely
non-reflecting boundary conditions and different broadband ex-
citation signals at all boundaries. The outgoing waves are then
correlated to the different excitation signals and the two port was
obtained with a Wiener-Hopf inversion technique.

COMPUTATIONAL METHODS
The equations governing the flow, including the acoustics,

are the compressible equations for conservation of mass, mo-
mentum and energy, also called the compressible Navier-Stokes
equations, together with an equation of state. A derivation of
the conservation equations on different forms can be found in
e.g. [7]. In conservation form the equations can be written as
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where ρ is the density, vi is the velocity component in i-direction,
e is the internal energy per unit mass, p is the static pressure, σi j
is the viscous stress tensor, fi is a possible external force field
(per unit volume) acting on the fluid (e.g. gravity) and qi is the
heat flux.

In order to close the conservation equations an equation of
state is needed. Assuming that air is an ideal gas, we use:

p = ρRT (4)

where R is the specific gas constant and T is the temperature.
Air is also assumed to be a Newtonian fluid, which means

that the stress due to fluid motion can be assumed to be a linear
function of the strain rate, i.e. the gradients of the flow state
variables. The viscous stress tensor represents the stress due to
fluid motion and is then given by

σi j = 2µ(Si j− 1
3 Skkδi j) (5)

where µ is the dynamic viscosity, which is a function of temper-
ature, and Si j is the rate of strain tensor, which is defined as

Si j =
1
2

(
∂vi

∂x j
+

∂v j

∂xi

)
(6)

The heat flux is assumed to obey with Fourier’s law:

qi =−K
∂T
∂xi

(7)

where T is the temperature and K is the heat conductivity, which
is a function of the temperature.

Large Eddy Simulation
The turbulent fluctuations that are present in higher

Reynolds number flows are included in the equations govern-
ing the flow (Eqn. (1 - 3)). So if these equations are solved
exactly, with so called direct numerical simulation (DNS), the
turbulent fluctuations will be captured. To do this all scales of
the turbulent flow have to be resolved and the computational ef-
fort increases as O(Re3). This means that as the Reynolds num-
ber is increased DNS becomes computationally very expensive
and eventually impossible with the computer resources available
today. The turbulence has therefore to be modeled. The most
commonly used turbulence models are Reynolds average Navier
Stokes (RANS) models. In these models the flow variables are
split into a mean and a fluctuating part and equations are solved
for the mean variables. If the mean is computed as an ensemble
average the mean flow may still be time dependent. However, the
range of time-scales in such a case is much smaller than in fully
turbulent flows. Furthermore, RANS models are very dissipative,
which can cause problems with low amplitude acoustic fluctua-
tions. When the geometry is more complex and RANS cannot
capture the dynamics of the flow, Large Eddy Simulation (LES)
is the main alternative. This model is computationally still much
cheaper than DNS (O(Re2) instead of O(Re3)), even though it is
much more expensive than RANS.

The idea of LES is that the large energy containing scales,
which are coupled to the geometry, are resolved in the simula-
tion, while the small dissipative scales are modeled. The tur-
bulent kinetic energy spectra is then cut somewhere in the mid-
dle into a resolved and an unresolved (modeled) part. This is
achieved by filtering the Navier-Stokes Equations (Eqn. (1 - 3))
with a spatial low-pass filter. Several types of explicit filters exist,
but it is more common to let the discretization scheme itself act
as a low-pass filter. As the Navier-Stokes equations are filtered
additional terms are introduced in the equations. In order to solve
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the filtered equations these so called SGS terms have to be mod-
eled. Since the small (unresolved) scales tend to be universal at
high Reynolds numbers it is easier to suggest appropriate SGS
models then RANS models.

An SGS model should account for the effects of the unre-
solved scales on the resolved ones and for the most important
physical properties of the unresolved scales. The main effect at
these scales is dissipation of kinetic energy at these scales, which
is one of the effects that one has to model. Instantaneously there
is also energy transfer from the smaller to the larger scales, a
phenomenon known as backscatter. This effect may be neglected
if the spatial resolution is fine enough (i.e. resolving a portion
of the inertial subrange). Under such conditions the separation
of scales between the energy bearing eddies and the unresolved
scales is large enough to ensure small errors.

An alternative to using an explicit modeling of the sub-grid
scales is to use implicit LES. With this approach the numeri-
cal dissipation present from the discretization is assumed to take
care of the dissipation at small scales and thereby accounting for
the most important role of the SGS terms. The idea of implicit
LES can be described by studying the modified incompressible
momentum equation that is satisfied by the numerical filtered so-
lution, which contains numerical errors (e.g. truncation errors):
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∂ t
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∂x j
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∂ p
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where over-lined variables are filtered and τnum
i j is additional nu-

merical stresses, which represent the numerical error and is of the
order (∆x)p for a p:th order accurate scheme. From Eqn. (8) it
can easily be seen that the dissipation from the SGS stresses and
the numerical discretization are additive. This implies that by us-
ing an appropriate numerical method the numerical scheme can
act as an SGS model and no explicit model is needed. The prob-
lem is that the numerical dissipation is difficult to control, i.e.
the amount of dissipation is not a function of the flow. There-
fore it is often argued that it is more physical to use an explicit
model together with a low dissipation numerical scheme. At the
same time it can be argued that if numerical dissipation already
is present in the LES solver, which is the case in all general CFD
codes where lower order accurate schemes often are used, it is
not desirable to add any additional dissipation in the form of an
explicit SGS model. However, if implicit LES is used it is impor-
tant to be aware of the fact that the result is strongly dependent on
the grid resolution and the numerical scheme if the spatial reso-
lution is not adequate (i.e. not well within the inertial sub-range).
As the grid is refined and the resolved range is extended towards
the Kolmogorov scale, which can be attained nowadays for rel-
atively low Re, LES tends to DNS and thereby the implicit SGS
(as well as most explicit SGS) models are in fact approximations
rather than models in a strict meaning.

The numerical computations presented in this paper have
been performed with implicit LES. The reason for this is that the
numerical dissipation is large enough and does not require any
further enhancement. We also make sure that the spatial resolu-
tion is such that a proportion of the inertial sub-range is resolved,
see Fig. 5.

Numerical Methods
The simulations have been performed with the general com-

pressible CFD code Edge, which is a node based finite volume
code [8].

For the temporal discretization a low storage, four stage, sec-
ond order accurate Runge-Kutta scheme has been used. This can
be considered low accuracy for acoustic problems, but to ensure
stability one have to fulfill the Courant Friedrichs Lewy (CFL)
condition, which states that the Courant number must be less than
one

CFL =
U∆t
∆x
≤ 1 (9)

where ∆t is the time step, ∆x is the cell size and U = |u|+ c is
the maximum physical propagation speed, where u is the convec-
tion velocity and c is the speed of sound. The interpretation of
this condition is that no physical information is allowed to prop-
agate further than one grid cell at one time step. In the present
simulations the maximum Courant number was around 0.6, due
to code stabilization problems at higher values, ensuring a very
small time-step compared to the spatial discretization size. This
implies that the spatial discretization is the most important pa-
rameter for the total accuracy of the problem.

The spatial discretization uses a formally second order cen-
tral scheme. Central schemes have the advantage of having very
low numerical dissipation, but the disadvantage that they can in-
troduce unphysical dispersion (i.e. a frequency dependent sound
speed) and spurious oscillations, which must be damped numer-
ically to ensure stability. This is achieved by adding a Jameson
type of artificial dissipation, to the inviscid terms [9]. Further-
more, by adding the artificial dissipation the numerical dissipa-
tion becomes large enough to perform implicit LES.

DETERMINING THE ACOUSTIC TWO-PORT
An acoustic two-port gives the linear relation between the

acoustic properties up- and downstream of a duct component as a
function of frequency in the plane wave range. There are several
different formulations of the two-port and here it is convenient
to use the scattering matrix formulation [10]. The scattering ma-
trix (S) relates the amplitudes (p̂+ and p̂−) of the incoming and
outgoing waves (p+ and p−), up- (a) and downstream (b) of the

3 Copyright c© 2011 by ASME



FIGURE 1. DEFINITION OF WAVE PROPAGATION DIREC-
TIONS FOR WAVES IMPINGING ON AN OBJECT. THE WAVES
ARE REFERRED TO A CERTAIN REFERENCE CROSS-SECTION.

component, as shown in Fig. 1. In the general case the scattering
matrix can be written as:

(
p̂a−
p̂b+

)
= S

(
p̂a+
p̂b−

)
+

(
p̂s

a
p̂s

b

)
, S =

(
S11 S12
S21 S22

)
(10)

Where S11 is the upstream reflection coefficient, S22 is the down-
stream reflection coefficient, S21 is the up- to downstream trans-
mission coefficient, S12 is the down- to upstream transmission
coefficient and p̂s

a and p̂s
b is the amplitude of the generated sound

radiated in the up- and downstream directions, respectively. The
elements of the scattering matrix will be complex and contain in-
formation about both the amplitude of the coefficients and a pos-
sible phase shift taking place between the up- and downstream
sampling positions used for the acoustic variables.

To determine the four unknown scattering-matrix elements
it is assumed that the level of the incoming sound is high enough
to neglect the generated sound. Furthermore, two independent
cases, with different incoming waves, are required. In this work
this is achieved by performing two simulations with the acoustic
excitation up- and downstream of the component, respectively.
Using the result from these two cases the scattering-matrix can
be calculated from:

(
S11 S12
S21 S22

)
=

(
p̂1

a− p̂2
a−

p̂1
b+ p̂2

b+

)(
p̂1

a+ p̂2
a+

p̂1
b− p̂2

b−

)−1

(11)

Where 1 denotes the first case and 2 the second case.
When sampling of acoustic variables is performed it usually

has to be done at a distance from the studied object. The rea-
son is that it is desirable to avoid sampling in acoustic near fields
or in regions with high flow fluctuation levels. In acoustic near
fields there can be higher order modes, which rapidly decays fur-
ther away from the object, and this might influence the result.

In regions of high flow fluctuation levels it is difficult to extract
the low amplitude acoustic fluctuations. When the sampling is
performed at a distance from the object, the phase of the scatter-
ing matrix elements contain not only a possible phase shift due
to the object, but also the phase shift from the wave propagation
between the object and the sampling positions. To avoid this, the
scattering matrix can be moved to the object with Eqn. (12) [11].

S′ = T+ST−1
− (12)

Where S′ is the modified scattering matrix that has been
moved to the component, and has a phase that corresponds to
the phase shift added by the object, and T± are:

T+ =

(
eika+x′a 0

0 eikb+x′b

)
, T− =

(
e−ika−x′a 0

0 e−ikb−x′b

)
(13)

Where xa and xb are the distances from the up- and down-
stream measuring positions to the object and k+ and k− are the
wave numbers for waves propagating in the up- respectively
downstream directions at the up- (a) and downstream (b) sides
of the object. The phase of the modified scattering matrix is sen-
sitive to the flow Mach number, meaning that a small error in
the latter can give a significant effect on the scattering matrix, as
shown by Holmberg [12].

Plane Wave Decomposition
To compute the scattering matrix the sampled acoustic pres-

sure (p′) and velocity (u′) fluctuations have to be decomposed
into the up- and downstream propagating waves p+ and p−, re-
spectively. To compute these waves the following plane wave
decomposition method is used:

p+ =
1
2
[p′+ρ0c0u′], p− =

1
2
[p′−ρ0c0u′] (14)

The method is based on the assumptions that the acous-
tic fluctuations can be written as a sum of up- and downstream
propagating waves, Eqn. (15), and that the plane wave relation,
Eqn. (16), is valid. These assumptions are valid in a free field
where there is no dissipation, but the presence of walls where the
velocity is forced to zero can cause deviations from the theory.

p′ = p++ p−, u′ = u+−u− (15)

p± =±ρ0cu± (16)
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Flow Noise Suppression
In turbulent flows the acoustic waves are accompanied by

turbulent fluctuations. In order to get accurate results this so
called flow noise has to be suppressed. The properties that sep-
arates the acoustic fluctuations from the non-acoustic flow fluc-
tuations is that they have a harmonic time dependence and they
propagate with the speed of sound plus / minus the mean flow
velocity in the up- and downstream directions, respectively. Fur-
thermore, at each cross section along the pipe, they can be pro-
jected on specific mode shapes depending on frequency. For low
frequencies only the plane wave mode, where the acoustic vari-
ables are constant at a cross-section, can propagate through the
duct. In the case of externally excited incoming waves, these also
have to be separated from the flow generated sound. To extract
these waves the following methods have been used:

1. The amplitude of the externally excited waves is set
significantly higher than the amplitude of the generated
noise, in order to be able to neglect the latter. At the same
time non-linear effects have to be avoided so the amplitude
cannot be set too high. It has therefore been investigated
how the result is affected by the excitation amplitude.

2. In the plane wave frequency range, which is considered here,
the acoustic pressure and velocity are constant over cross-
sections of the duct. Turbulent fluctuations are therefore re-
duced by using the cross-section average fluctuations:

p′ =
1
A

∫
A

p dA, u′ =
1
A

∫
A

u dA (17)

3. To suppress non-acoustic fluctuations the characteristics
based filtering (CBF) method proposed by Kopitz et al. [13]
has been used. By using the known acoustic propagation
speed (c± u), the acoustic fluctuations are averaged over n
successive cross-sections, according to:

p+(x, t) =
1
n

n

∑
i=1

p+(x+∆xi, t +∆xi/(c+u)i) (18)

p−(x, t) =
1
n

n

∑
i=1

p−(x+∆xi, t−∆xi/(c−u)i) (19)

where ∆x is the distance between the planes. In the results
presented here averaging has been performed with 10 and
19 cross-sections up- and downstream of the constriction,
respectively.

4. The time signals are phase averaged and then Fourier trans-
formed. This is in order to suppress fluctuations at frequen-

FIGURE 2. THE CONSTRICTION SEEN FROM THE SIDE. THE
DASHED LINES INDICATE THAT THE DUCTS ARE LONGER
THAN SHOWN IN THE FIGURE.

cies other than the excitation frequencies and to extract the
amplitude and phase of the latter.

Theoretical Model
The results presented in this paper are compared to the in-

compressible quasi-steady theory presented in [2]. The scattering
matrix is then determined by:

S =
1

2+MCL

(
MCL 2

2 MCL

)
(20)

Where M is the inlet Mach number and CL = ∆p/( 1
2 ρU2) is the

pressure loss coefficient. The latter is analytically determined
as CL = ( 1

σΓ
− 1)2, where σ is the area contraction ratio of the

orifice and Γ is the vena contracta, which is determined from
incompressible theory, giving a pressure loss coefficient of 22.2
for the studied configuration. The vena contracta is the ratio of
the effective flow area through the orifice and the orifice area,
which is smaller than one due to flow separation at the upstream
edge of the orifice.

MODEL SETUP
The geometry of the constriction studied is shown in Fig. 2.

The area contraction ratio of the constriction is 0.28, the duct
diameter is 5.7 cm and the plate thickness is 2 mm. The up- and
downstream ducts are 15.2 respectively 35 duct diameter long.

The geometry is meshed with a structured hexahedral mesh,
using an o-grid. The mesh has 4.9 million nodes. The grid looks
the same at each cross-section of the duct, with finer cells at the
radius of the plate edges. In the axial direction the cell size at
the plate is one tenth of the plate thickness. The cells are then
stretched towards in- and outlet, with a stretching factor of 2.2
%, to a maximum cell length of 6.5 mm.

Boundary Conditions
The walls in the domain are specified as slip and adiabatic,

i.e. the wall normal velocity is forced to zero and there is no heat
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transfer to or from the walls. Physically, slip walls imply neglect-
ing the boundary layer at the wall. To validate that the assump-
tion of slip walls does not influence the scattering, simulations
have been performed also with no-slip wall boundary conditions
at either just the plate or at both the plate and the duct wall. The
result are not presented here, but they showed that the choice of
wall boundary condition does not significantly influence the scat-
tering [14]. The reason for using slip boundary conditions is that
it gives significantly lower dissipation of propagating waves and
it preserves the validity of Eqn. (16) by keeping the theoretical
mode shapes, which are destroyed close to the wall with the no-
slip boundary condition as the acoustic velocity is forced to zero.
The slip boundary condition also decreases the mesh size, since
a coarser mesh can be used next to the duct wall.

At the inlet boundary the normal velocity and density are
specified to give an inlet Mach number of 0.08 and the tangential
velocity components are set to zero. At the outlet boundary a
constant static pressure of 105 Pa has been specified.

Exciting Acoustic Waves
To excite acoustic waves up- or downstream of the constric-

tion time varying in- or outlet boundary conditions are used,
where an oscillating part is added to the mean value. At the inlet
the velocity and density oscillations are in phase and the ampli-
tudes are related with the plane wave relation u′ = (c/ρ0)ρ

′.
Due to the reflective outlet boundary condition it is not de-

sirable to use a broadband excitation signal [15]. At the same
time the computational cost is too high to use a step sine method,
i.e. one simulation per studied frequency. The excitation signal
therefore consists of a sum of sine waves, with a random phase
shift and frequencies that are harmonics of the same base fre-
quency.

Analytical Waves
An evaluation of how the noise in the scattering matrix re-

sults is affected by lowering the excitation amplitude has been
performed by adding fluctuations corresponding to an analytical
wave to the flow fluctuations computed with a LES. The analyt-
ical wave is created as a sum of sine waves for first the case of
an upstream and then a downstream excitation. For each sine
wave the up- and downstream wave components are calculated
at each evaluation cross-section, using a defined excitation am-
plitude and scattering matrix, the sound and flow speeds from
the simulation, the cross-section positions and assuming non-
reflecting in- and outlet boundaries. At each plane the sum of
the fluctuations corresponding to each sound wave is calculated
and used to determine the acoustic pressure and velocity fluc-
tuations using the inverse of Eqn. (14). Finally, these acoustic
fluctuations are added to the flow fluctuations and the evaluation
of the scattering matrix is performed.

FIGURE 3. ZOOM IN ON THE FLOW THROUGH THE ORIFICE
PLATE. THE TOP THREE FIGURES SHOW THE MEAN FIELD
AND THE BOTTOM FIGURE SHOWS THE NORMALIZED IN-
PLANE MEAN VELOCITY VECTORS COLOURED BY MACH
NUMBER.

RESULTS
The flow is computed with an inlet Mach number of 0.08,

giving a Reynolds number of around 120000. The mean flow is
shown in Fig. 3. It can be observed that a jet is formed as the
air is forced through the small opening and a large pressure drop
occurs, with some pressure recovery further downstream. The
density field further shows significant compressibility effects, as
is also reflected in the high Mach number of the jet. The vena
contracta of the jet is clearly visible, as the flow separation at the
upstream edge of the plate reduces the effective flow area.

Figure 4 shows a snapshot of the instantaneous flow field.
Here it can be observed that the flow is highly unsteady, with
vortex shedding at the plate edges. Figure 5, of the centreline ax-
ial velocity spectra downstream of the plate, shows that at around
one duct diameter (5.7 cm) downstream of the plate the spectra
resemble a Kolmogorov spectrum, with a -5/3 slope of the veloc-
ity fluctuations. This indicates that part of the inertial sub-range
in the turbulent kinetic energy spectrum is resolved. Further up-
stream the spectra has a different character due to the fluctuations
in the jet core and breakdown not being those of homogeneous,
isentropic turbulence that the -5/3 slope represents.
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FIGURE 4. ZOOM IN ON THE INSTANTANEOUS FLOW
THROUGH THE ORIFICE PLATE. THE TOP FIGURE SHOWS THE
MACH NUMBER AND THE BOTTOM FIGURE SHOWS VORTEX
CORES.
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FIGURE 5. POWER SPECTRAL DENSITY OF THE AXIAL VE-
LOCITY FLUCTUATIONS IN FIVE POINTS AT THE CENTRELINE
DOWNSTREAM OF THE PLATE.

Excitation Amplitude
As mentioned above the excitation amplitude cannot be set

arbitrarily high, since it will lead to non-linear effects, at the
same time as it has to be high enough to drown the flow noise.

The theoretical lower limit for the excitation amplitude has
been tested with the analytical waves described above. As ex-
pected the random error in the computed scattering increases
when the amplitude is decreased. The largest influence on the
result is observed for the amplitude of the up- to downstream
transmission, which is shown in Fig. 6.

To check for non-linear effects the scattering matrix was
simulated with three different total excitation amplitudes. Fig-
ure 7 shows the result for the amplitude of the upstream reflec-
tion, which by the analytical waves was shown to be insensi-
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FIGURE 6. AMPLITUDE DEPENDENCE OF THE UP- TO
DOWNSTREAM TRANSMISSION COMPUTED WITH THE AN-
ALYTICAL WAVES. THE AMPLITUDES ARE GIVEN PER FRE-
QUENCY COMPONENT.
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FIGURE 7. AMPLITUDE DEPENDENCE OF THE UPSTREAM
REFLECTION.

tive to lowering the amplitude. It can be observed that the result
depends on the excitation amplitude, indicating the presence of
non-linear effects. The noise introduced as the amplitude is in-
creased is due to energy being transferred between different har-
monics and all excited frequencies are harmonics of the lowest
frequency. As the amplitude is reduced the non-linear effects
are reduced and since the present non-linearities do not seem to
significantly influence the average level of the elements, it is as-
sumed that the lowest excitation level can be considered linear.

A measure for non-linear effects can be expressed in terms
of the amplitude of the velocity fluctuations relative to the mean
velocity in the orifice. Without externally excited waves the ve-
locity fluctuations are below 1.5 % of the mean velocity. For
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the simulations presented above the maximum velocity fluctu-
ations are around 12 %, 6 % and 3 % of the mean velocity,
respectively. These results indicate that non-linear effects start
to appear when the amplitude of the acoustic velocity fluctua-
tions becomes higher than around 1 % of the mean velocity. This
can be compared with the low Mach number measurements per-
formed by Testud et al. [1], for which non-linear effects did not
appear until the acoustic fluctuations increase to around 10 % of
the mean velocity.

Comparison With Measurements
The computed scattering has been compared to measure-

ments and theory presented in Åbom et al. [2]. The amplitude
and the phase of the scattering matrix are shown in Fig. 8 and
Fig. 9, respectively. The simulations show reasonable agreement
with the measurements for the amplitude of the scattering matrix
elements and for the phase of some of the elements.

The discrepancy observed for the phase in Fig. 9 is likely due
to errors when moving the measured scattering matrix elements
from the measuring position to the object. This procedure has
been shown to be sensitive to the Mach number [12], which is
easier to retrieve from a simulation than from a measurement,
and an error could result in the observed frequency dependence.
For example, a 20 % error in the Mach number at either side of
the object could result in a phaser error of the order of 1.4 for
the transmission coefficients and this could be the case due to the
velocity being measured only at one point.

The amplitudes of the scattering matrix elements for the
downstream coefficients (downstream reflection and down- to
upstream transmission) in Fig. 8 are in good agreement with
the measurements. The upstream coefficients (upstream reflec-
tion and up- to downstream transmission) are however slightly
higher in the simulations. Studying the theory it is observed
to agree well with the measured upstream coefficients, while it
proposes slightly higher values for the downstream coefficients.
This discrepancy could be due to compressibility effects that are
neglected in the theory, but clearly are present in the flow due to
the high jet Mach number.

According to the theory the reflection and transmission co-
efficients are the same from both directions and depend on the
parameter MCL. The Mach number is clearly the same in both
the simulations and the theory, but the pressure loss coefficient
turned out to be somewhat different; 26.7 in the simulations com-
pared to the theoretical value of 22.2. This does however af-
fect the theoretical scattering matrix less than the discrepancy
observed in Fig. 8. Furthermore, the trend from changing this
parameter, which was also observed in the measurements, indi-
cate that reducing it will reduce the upstream reflection, but it
will at the same time increase the up- to downstream transmis-
sion, which is not desirable.

Another fact that is important to consider is that Kierkegaard

et al. [4] have performed linear 2D simulations of the scattering
by the same geometry (using the mean flow from another simu-
lation) with very good results compared to the measurements at
a lower Mach number (M = 0.054). The difference in the scat-
tering matrix could then come from differences in the mean flow,
but they should be smaller than the differences due to slip or no-
slip walls that have been shown not to be of importance [14]. The
fact that the linear 2D simulations by Kierkegaard et al. [4] gave
good results then indicates that the discrepancy has to do with
the interaction between the wave and the orifice plate.

The fact that both the reflection and the transmission of
waves coming from the upstream direction become too high in-
dicates that less of the acoustic energy is converted to vortic-
ity in the simulations and/or that there is less dissipation. The
dissipation in the duct should however be small at least for the
lowest frequencies. Furthermore, the conversion of acoustic en-
ergy is better captured for waves coming from the downstream
direction. This dependency on propagation direction could be
explained by the acoustic wave seeing the geometry differently
from the two directions due to the flow field. A wave coming
from the upstream side clearly impinges on the upstream edge
of the orifice, while the jet, with the vena contracta effect, partly
hides the downstream edge from downstream excited waves. Er-
rors in the prediction of the interaction between the wave and the
sharp edge could therefore give a larger effect for waves coming
from the upstream direction. An insufficient grid resolution at
the plate could give such effect, but a grid refinement of this area
did not significantly change the result.

CONCLUSIONS
The linear low frequency scattering of plane waves by a con-

striction has been studied through LES. The effect of the excita-
tion amplitude has been investigated, showing that there is a fine
line between keeping it low enough to avoid non-linear effects,
but at the same time high enough to avoid errors from flow noise.
The performed simulations indicate that non-linear effects start
to appear when the amplitude of the acoustic velocity fluctua-
tions becomes higher than around 1 % of the mean velocity in
the orifice.

The simulated scattering matrix has been compared to mea-
surements and theory for an inlet Mach number of 0.08. The
result for the downstream reflection and the down- to upstream
transmission show good agreement with the measurements. At
the same time the amplitude of the upstream reflection and partly
also the up- to downstream transmission become slightly too
large compared to the measurements and the theory. However,
it should be noted that the trend of a frequency independent scat-
tering is present in both the simulations and the measurements.
Since both the reflection and the transmission of waves coming
from the upstream direction are too high, it is likely that not
enough of the acoustic energy is converted to vorticity at the plate
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FIGURE 8. THE AMPLITUDE OF THE SCATTERING MATRIX
COMPARED TO MEASUREMENTS AND THEORY.
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edges in the simulations. The fact that the linear 2D simulations
performed by Kierkegaard et al. [4], at a lower Mach number
(M = 0.054), gave good results as compared to the measurements
further indicates that the discrepancy is related to the interaction
between the wave and the orifice plate.
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[2] Åbom, M., Allam, S., and Boij, S., 2006. “Aero-Acoustics
of Flow Duct Singularities at Low Mach Numbers”. In 12th
AIAA/CEAS Aeroacoustics conference, Cambridge, Mas-
sachusetts, USA. AIAA paper 2006-1287.

[3] Durrieu, P., Hofmans, G., Ajello, G., Boot, R., Aurégan, Y.,
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