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ABSTRACT 
 

In recent years, rapid growth in wind energy as a 

substantial source of electricity generation has created greater 

demands on wind turbine system reliability and availability. To 

reduce service costs and maximize return on investment, wind 

farm operators have begun to take a more proactive approach to 

turbine problems by relying on intelligent condition monitoring 

and automated failure detection systems. The challenge is how 

to effectively convert large amounts of data into actionable 

decisions to detect and isolate failures at an early stage. This 

paper describes a unique data analysis and modeling technique 

for online turbine health monitoring and automatic root cause 

assessment. It provides a means to capture failure signatures for 

specific root causes based on historical events as well as 

engineering knowledge. Both continuous and discrete turbine 

condition monitoring data are processed to provide a failure 

probability assessment. First, statistical trend analysis, feature 

extraction and classification methods are developed to analyze a 

continuous sensor data set. Secondly, a pattern recognition 

method is applied to calculate failure indicators from various 

discrete control system events, or fault messages. Then failure 

likelihoods derived from both the continuous and the discrete 

models are combined in a fusion model to increase predictive 

accuracy. A demonstration of the method on bearing failure 

modeling using SCADA data will be provided with promising 

results.                    

NOMENCLATURE 
 

SCADA Supervisory Control and Data Acquisition 

ANN Artificial Neural Network 

GMM Gaussian Mixture Model 

RM&D Remote Monitoring and Diagnostics 

TF-IDF Term frequency-Inverse Document Frequency 

ROC Receiver Operating Characteristic 

BN  Bayesian Network 

  

INTRODUCTION 
 

In recent years, rapid growth in wind energy as a 

substantial source of electricity generation has created greater 

demands on wind turbine system reliability and availability. To 

reduce service costs and maximize return on investment, more 

wind farm operators have begun to take a more proactive 

approach and rely on intelligent condition monitoring and 

automated failure detection systems. Effective monitoring and 

diagnostic systems provide early warning of potential problems, 

thus helping to prevent damage growth or secondary damage, 

and change costly unplanned maintenance to less expensive 

planned and prioritized service work.  

Figure 1 illustrates the major components of a variable 

speed wind turbine from a cross section view of the nacelle. The 

drive train components, including the main bearing, gearbox, 

and generator, have often been identified as the leading failure 

cost items. More advanced sensing systems have been 

introduced in recent years for modern wind turbine condition 

monitoring [1] [2], such as vibration monitoring, acoustic 

emission, oil debris analysis, and generator stator current 

signature analysis, etc. Oil debris analysis is only suitable for 

gearbox monitoring, and it is not able to pinpoint the specific 

failing part. Among the others vibration analysis is the most 

popular for bearing and gear monitoring. Even though 

technology has been continuously advanced further over the 

years, practical reasons are still limiting application of the 

advanced sensing systems. One factor is the high cost of 

installation and the difficulty of retrofitting existing systems. 

Also most advanced sensors require high frequency data 

sampling and storage, which present both technical and 

economical challenges. Due to these factors and concerns, the 
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installed base of turbines in service with advanced sensors is 

still relatively small, especially in older wind farms.  

On the other hand, supervisory control and data acquisition 

(SCADA) system has been widely used in most wind farms. At 

each recording it collects hundreds of data points relating to 

turbine operation and condition measurement; and it provides 

easy data access for both on-site and remote processing. The 

parameters typically collected by SCADA include various 

bearing temperatures, cooling oil temperature, ambient 

conditions (wind speed, temperature), rate of rotation of the 

rotor and generator, and power produced, etc. The conventional 

view of the SCADA data is that the data is not sufficiently 

reliable for turbine condition monitoring and failure detection. 

A failure mode specific data trend is either non-existent or 

occurs too late to detect and diagnose failures. We would argue 

what is really lacking are effective analytical approaches that 

extract and evaluate suitable data features for failure detection 

and diagnostics. Advanced data analysis should be carried out 

to convert raw SCADA data into indicative and noise resistant 

diagnostic features, which will then be incorporated in failure 

signature models to provide turbine health condition assessment 

and service decision support.   

 

Control cabinet
 

Figure 1 Wind Turbine Major Components 

 

Some recent research have applied statistical and machine 

learning techniques to analyze wind turbine SCADA data. 

Kusiak et al. [6] and Yan et al. [7] developed data driven power 

curve models for turbine performance monitoring. Comparing 

turbine power output to referenced power curve will help to 

identify under-performing units. However, power curves alone 

cannot explain problem root cause.  Wiggllinkhuizen et al. [5] 

used a linear correction model to detrend SCADA data, but did 

not demonstrate capability in failure detection due to the lack of 

failure events during their research. Sanz-Bobi et al. [3] and 

Zaher et al. [4] used an artificial neural network to learn the 

normal behavior of gearbox and generator winding temperature, 

and derived measurement vs. model deviation for fault 

detection. They each demonstrated certain failure detection 

capability with varied failure lead-times.  

In this paper, we propose a different technique to analyze 

SCADA data for failure diagnostics and prediction in a turbine 

drive train remote monitoring and diagnostic (RM&D) 

application. Both continuous sensor data and discrete control 

faults are analyzed statistically for failure signature modeling, 

and model fusion is used to produce a joint failure likelihood 

assessment. In the continuous data model, we leverage peer 

comparison at the wind farm level for data normalization and 

anomaly detection, then apply statistical trend analysis and 

feature classification methods for failure assessment. In the 

discrete fault model, a feature selection and ranking method is 

developed to identify key faults associated with each failure 

mode, and then convert fault frequency as well as fault temporal 

association into a failure likelihood assessment. Historical 

failure cases are leveraged to both develop and validate the 

failure signature models. It would be shown that the developed 

modeling technique is able to effectively isolate failing 

components from normal units at low false alarm level.  

The rest of paper is organized as follows: first, data sources 

used in the analysis are described. Next, the formulation and 

demonstration of the continuous data analysis model is 

presented, followed by the introduction of the discrete data 

analysis model. Then a diagnostic model fusion method is 

presented to combine the failure likelihood assessments from 

the two disparate models. Some concluding remarks will be 

provided at the end of the paper. 

DATA SOURCE 
 

Operational Data 

Turbine operation data used in this research is obtained 

from multiple wind farms in the North America region. All units 

are 1.5MW GE wind turbines, which is the most widely used 

wind turbine in the world [8]. Two sources of data are obtained 

from the plant SCADA system: continuous sensor data and 

discrete control system fault messages. 

The continuous sensor data is collected and averaged every 

10 minutes. As our focus is modeling drive-train related 

failures, engineering knowledge is leveraged to select a subset 

of subsystem related sensors, which include various bearing 

temperatures, gearbox cooling oil temperature, ambient 

temperature, wind speed, rotor and generator speed, and power 

output. A sample of the continuous time series data is shown in 

Table 1, where the park name and turbine identifiers have been 

replaced to protect the operator’s identity. 10-minute average is 

a widely adopted industrial standard in dealing with wind 

turbine sensor data. However, due to the low frequency data 

acquisition and averaging, some of the transient information 

may be lost in the process. Also, some of the sensor input 

available to turbine control system may not be recorded in the 

SCADA continuous data stream after all. This information loss 

and information gap may be addressed by leveraging the second 

SCADA source, namely the discrete fault. 

Turbine control systems constantly examine sensor input in 

each control loop and apply control logic to assess turbine 
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condition in real time. Once certain pre-determined conditions 

are met, an event message, or fault will be generated and logged 

in the SCADA system. A sample of the fault sequence collected 

by a SCADA is shown in Table 2. Some of these faults 

messages are benign and only informational, whereas some 

others reflect more serious control logic violation, which may 

lead to abnormal turbine behavior or failure. The fault message 

stream captures transient turbine status based on control logic in 

real time, and is therefore not affected by the low reporting 

frequency of the continuous data source. In addition, the fault 

system provides some additional component information that is 

not available in the continuous data stream, such as some 

calculated system state variables based on the turbine control 

model. In summary, the discrete fault data represents a 

complementary data set to the continuous sensor data with a 

certain level of information redundancy, which provides the 

potential of achieving higher diagnostic accuracy and coverage 

by fusing information from both sources.  

 

Historical Case Data 

Historical failure cases are collected and used for model 

learning and testing. Failures cases are identified based on 

service records and field engineers’ feedback, which specifies 

the turbine identity, time of a problem occurrence, symptoms, 

and the failure’s root cause. To learn normal turbine behavior 

and evaluate model anomaly detection and separation 

capability, normal operating turbine data are also collected. 

Normal turbine units are selected from a wide selection of wind 

parks, and turbines with known failure records are filtered out. 

Two simulated cases are created for each normal turbine, one in 

the summer and one in the winter to resemble normal turbine 

behavior under environmental variation. A total of about 1000 

normal cases were created in this study. 

Throughout this paper, we will demonstrate the concept of 

an analysis approach using main bearing failure examples. To 

this regard, eighteen main bearing failure cases were collected 

with representative cases for each of several different turbine 

configurations. Both continuous and discrete SCADA data are 

extracted for each case. Data series are downloaded for six 

months prior to the case date. The goal is to identify failure 

signatures as early as possible, in order to leave enough lead 

time for service planning, as well as to prevent damage growth 

causing secondary damage at extra cost.  

Another information source that also proved to be 

instrumental in the modeling process is engineering knowledge. 

This includes both design engineer knowledge about turbine 

component variation and operational characteristics, as well as 

service engineer knowledge about known product defects and 

failure mode understanding through FMEA analysis. All the 

engineering support provides valuable guidance in data 

selection, preparation and interpretation. Compared to an 

entirely data driven information mining process, the engineering 

knowledge guided data modeling method is deemed superior 

since it ensures correct physics of the analysis system and 

minimizes the influence of artifacts in the data.      

Table 1 Continuous SCADA Data Time Series Sample 
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Farm A T1 11/21/2007 0:10 1550 13.38 1438 51 30.83 28

Farm A T1 11/21/2007 0:20 1537 13.13 1437 51 30.58 28

…… ……

Farm A T2 11/21/2007 0:10 1528 13.38 1437 51 30 28

Farm A T2. 11/21/2007 0:20 1525 13.13 1435 50.01 29.06 27.66

…… ……

…
…

 
  

 
Table 2 Fault Message Sequence Sample 

ParkName Turbine ID Timestamp Fault Code Fault Message

Farm A T1 11/26/07 11:14 14 Generator Overspeed

Farm A T1 11/27/07 15:32 144 Blade angle asymmetry

Farm A T2 11/29/07 19:36 27 Secondary bracking time too long

Farm A T2. 12/1/08 19:56 3 Manual Stop

……

 
 

CONTINUOUS DATA MODELING 
 

To monitor the wind turbine bearing health, bearing 

temperature sensor data are collected. These include 

temperatures of the main bearing (TEMP_SHAFT_BEARING), 

high speed gearbox bearing (TRANS_BEARING_TEMP), 

generator bearings at drive end (BEARING_A_TEMP) and 

non-drive end (BEARING_B_TEMP). When a bearing defect 

occurs, such as lack of lubrication, cracks on rollers, pitting or 

spall on bearing race, the bearing temperature will increase due 

to excessive friction of the defective component. However, 

bearing temperature cannot be directly trended for bearing 

health assessment; this is because it is also affected by 

environmental conditions, turbine load and speed, as well as 

component cooling system operation, etc. 

Sanz-Bobi et al. [3] and Zaher et al. [4] separately 

developed an ANN based non-linear normalizer to detrend 

turbine parameters for failure detection. In our research, we 

adopted a simpler and more practical method to detrend the 

temperature data. First instead of monitoring a particular turbine 

at a time, turbines in the same wind park are grouped into 

various fleets, and a fleet may be used as the processing unit for 

on-line health monitoring.  Turbines within the same fleet have 

the same component configuration (such as gearbox type, 

bearing type), subjected to similar ambient conditions, therefore 

they may serve as peers in trend analysis. Secondly, fleet data 

are separated at different loading levels to remove or reduce the 

influence of loading. Typically, at high load when a bearing is 

subjected to maximum stress, the risk of failure is higher, 

therefore the failure detection at high load carries more weight 

than those during a low load period. Here load is assessed using 

power output (KW) and generator speed (GEN_RPM).  
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Figure 2 shows the corresponding fleet data trend of a 

turbine with main bearing failure. Note that only two 

representative variables, main shaft bearing temperature (a) and 

ambient temperature (b), are selected and shown here for 

clarity. Data are further aggregated into daily averages. Each 

blue data trace corresponds to one out of sixty or so turbines 

within this fleet, and the red-cross shows the trend of the failing 

turbine. It is obvious both ambient and bearing temperature 

show seasonal variation. The amount of variation makes direct 

trending of the temperature variables unusable for anomaly 

detection. However, except for certain outliers, the variations 

caused by seasonal conditions are closely correlated among the 

normal turbines within the fleet. Such correlation indicates that 

a cohort analysis may provide indicative features to separate 

abnormal individuals from the rest of the fleet. From Figure 2 

we can find that the target turbine initially operated well within 

the fleet boundary presumably before damage occurred, but 

bearing temperature started shifting hotter about two months 

before the final failure date. 

 

 

 

 

(a)      (b) 

Figure 2 Main Bearing Failure Example - Fleet Daily Average Trend 

 

 

(a)      (b) 

Figure 3  Main Bearing Failure Example - Normalized Trend and Shift Evaluation 

 

Sensor data is then normalized by subtracting the fleet 

median from each sensor value. Figure 3 shows the normalized 

data trend (blue cross symbol) for the failed turbine in the 

above case. It can be found that seasonal or ambient variation 

has been dramatically removed from the normalized trend, 

whereas the bearing temperature trend drift caused by the 

degrading main bearing is retained. The normalized data trends 

need to be further analyzed to extract statistical features for 

automatic failure detection and diagnosis using software. Here 

we adopted a multi-variable shift detection algorithm developed 

by Yu et al. [9] to automatically extract trend features of shift 

and current level for each normalized parameters. The 

algorithm uses piecewise linear regressions to detect the latest 

and most significant shift within a time series data set. Two 

sample data sets are selected near the end and start of the 

identified shifted region, shown as red cycle and cyan cycle 

respectively in Figure 3, and two-sample t-test is then used to 

assess the confidence interval of the parameter level and shift.  

Other than the two variables shown in the figure, a few 

other temperature sensors are also used in the main bearing 
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failure analysis, including gearbox bearing temperature, 

gearbox cooling oil temperature, and nacelle temperature. Some 

of these variables relate to gearbox health. The rational is that 

most wind turbine design have the main shaft and gearbox in 

the same assembly, and failure of the main bearing may cause 

the gearbox to slide axially causing stress in the gearbox unit. 

With five sensor variables, and two trend features for each 

parameter, shift and current level, respectively, a total of ten 

independent data features are obtained for each case for main 

bearing health assessment. 

To simplify failure signature extraction, PCA (principal 

component analysis) is used to reduce case features into a lower 

dimension. Feature clustering is then performed in the principal 

component (PC) space. A three-component Gaussian mixture 

model (GMM) is automatically learnt using the first two PCs of 

normal turbines based on a modified expectation maximization 

algorithm developed by Figueiredo et al. [10]. As shown in 

Figure 4, each grey dot shows the PC values of a single normal 

turbine case, whereas the solid line circles show the bivariate 

Gaussian density contours for each mixture component. 

 

 

Figure 4 Normal Turbine Three-Component GMM 

  

PC features of each of the eighteen main bearing failure 

cases are then evaluated using the learnt GMM model to assess 

probability that the case feature fall in the cluster of each 

Gaussian component. The PC features of both normal cases and 

cases with main bearing failure are visualized in Figure 5. As 

shown in the figure legend, MBi, i=1, 2 or 3, indicates which 

mixture component a main bearing failure case has the highest 

probability. A probability threshold is then specified and 

compared to the outcome of each case. If the case probability to 

normal is below the threshold, an anomaly flag is raised. In 

Figure 5, the red dots correspond to normal turbines with an 

anomaly flag raised; they therefore are considered as false 

positive alerts, which represent about 2.5% of the normal cases. 

Eleven blue dots, corresponding to main bearing failure cases 

detected using the same probability measure, represent true 

failure detection rate of about 61%.  

 

 
Figure 5 Main Bearing Failures vs. Normal Case Clusters 

 

DISCRETE DATA MODELING 
 

As the example shown in Table 2, various fault messages 

may be generated during turbine operation. Faults are created 

by the turbine control system to alert operators of abnormal 

conditions and protect the turbine from serious damage. 

Sometimes faults are generated due to random noise or transient 

operating states, and the turbine will automatically recover to a 

normal condition so the fault is reset either automatically or 

manually without need for further investigation. If a fault occurs 

frequently and persistently, the chance that it is caused by 

underlying health problems is higher. The challenge is how to 

process the fault data to filter out nonsense faults, and 

leveraging fault information to create predictors of incipient 

turbine failure.   

The approach we adopted is similar to the continuous data 

analysis, in the sense that for each failure mode we analyze 

features extracted from historical data to maximize separation 

between failure cases versus normally operating turbines. The 

fault feature space is the frequency count of each of the selected 

fault items. It is also hypothesized that besides individual fault 

occurrences, temporal correlation among faults should also be 

considered as an indicator for failure identification. To model 

such temporal correlation between faults, a combo-fault is 

created if two different fault items occur within a short time 

interval. Essentially a combo-fault adds extra dimensions in the 

feature space by taking into account the temporally associated 

faults. Combo-faults are generated at the preprocessing step, 

and ranked together with the raw single fault in the next step: 

feature selection. 

Figure 6 shows fault existence comparisons between the 

normal turbine cases and main bearing failure cases. Two 

groups of fault existence measures are calculated, where the 
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solid blue bars represent cases with main bearing failure, and 

the light green bars for normal cases. The horizontal axis is a 

list of fault items (only those that occurred at least once in main 

bearing failures), and the vertical axis is the percentage of cases 

where each fault occurs within the respective group. The fault 

items have been sorted in order of decreasing percentage 

difference between the failure and normal group. As shown in 

the arrow in Figure 6, further left fault items occur more often 

in main bearing failure cases, and less often in normal turbines, 

and therefore, have higher failure separation capability than the 

further right items. The fault codes of the top eight fault items 

have been listed in the text box of Figure 6, where the fault 

code with three or less digits are the original fault code, and the 

six-digit fault code for combo-fault is created by combining 

fault code of two temporal associated faults.   
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Figure 6 Normalized Fault Frequency Comparison  
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Figure 7 Fault Ranked and Pruned Using TF-IDF Index 

 

Another way of ranking the importance of faults for the 

failure detection model is term frequency and inverse document 

frequency (TF-IDF) index, borrowed from text mining 

methodology. Given a specific document within a large 

document pool, the task is to rank all the terms in the target 

document based on their weight or importance for uniquely 

characterizing the document content. The idea is that if a term 

occurs evenly in all documents, then its power for identifying 

the specific document is low, versus a term that occurs more 

frequently in the target document and rare in other documents, 

where the identification power is high. By the same token, if a 

fault occurs frequently in failure cases and less frequently in 

normal cases, it is a stronger indicator of failure detection. The 

TF-IDF index is defined as 

{ }
Ki

dfd

D

N

n
IDFTF

i

i
i L,2,1,

:1
log_ =

∈+
=  

where ni is the number of failure cases with fault i, N is the total 

failure cases, D is the total normal cases, and { }dfd i ∈: is 

the number of normal cases with fault i. Fault TF-IDF ranking 

for main bearing failure against normal cases is shown in Figure 

7. Comparing Figure 7 to Figure 6, it can be seen that the top 

ranked faults between the two methods are similar, even though 

the specific ranking order differs. Also shown in Figure 7 is 

fault pruning, i.e., a single fault is removed from consideration 

if it has been included in a higher-ranked combo-fault. For 

example, Fault “77” is removed since Fault “015077” is 

selected with higher rank. Eliminated faults are those with zero 

TF-IDF indexes shown as filled-in circles in Figure 7.  

Using the ranked and pruned fault items, an iterative 

process is run to optimize the model performance where 

different numbers of top ranked faults are selected to form the 

discrete failure model. For each iteration,, the selected faults are 

used to fit a logistic regression model that converts fault 

patterns to case failure probabilities. The fault feature used here 

is fault occurrence frequency, i.e., the occurrence count of a 

particular fault within the case duration, for each selected fault 

items. Models learned with different number of selected faults, 

K, are then evaluated based on the standard criteria of 

maximizing the ROC area. For the main bearing analysis, 

maximum ROC area is obtained when K=3, and the 

corresponding ROC curve is shown in Figure 8.  It is shown that 

a fairly low false positive rate, about 1%, is obtained from the 

discrete failure model, whereas the failure detection rate is 

about 42%. 
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Figure 8  ROC Curve for Main Bearing Fault Model 

DIAGNOSTIC MODEL FUSION  
 

The continuous data model and discrete data model 

independently assess the failure likelihood based on two 

disparate sets of features. As mentioned earlier, there is both 

complementary and overlapping information between the two 
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models; therefore, a diagnostic fusion model is needed to fuse 

the assessment from the two models and to optimize the overall 

accuracy of failure diagnosis.  

Since both models have created a mapping from the feature 

space to the problem space as failure likelihood scores, there 

are many options for fusing the two diagnostic results. It could 

be a straightforward logic operation or averaging. The method 

we are in favor is a Bayesian Network decision fusion model as 

described by Yu et al. [11]. Bayesian Network (BN) is a 

graphical probabilistic reasoning model that contains nodes and 

edges. A node represents a variable or system state, and an edge 

connects two nodes and defines the causal relationship between 

the nodes. A BN fusion model for the main bearing failure is 

shown in Figure 9, where the node “MB Failure” is the to-be 

derived fused failure assessment, and the “Continuous Model” 

and “Discrete Model” represents the failure assessment from the 

two models described in the previous two sections. Accuracy 

performance of each individual model is used to specify the 

conditional probabilities between the decision fusion node and 

model assessment nodes. An example of probability 

propagation is shown in Figure 9: when evidence of failure is 

inserted into the network with probability 1.0 based on 

assessment of the continuous model, the fused posterior failure 

probability is obtained as 99%. Depending on the agreement or 

disagreement from the discrete model, this failure probability 

will be readjusted by the BN inference engine. Using the BN 

fusion model, main bearing failure detection accuracy is 

improved to about 75%, while maintains a fairly low false 

positive rate at about 5%.  

 

 
Figure 9 BN Decision Fusion Model for Main Bearing Failure 

    
For each different failure mode, separate pairs of 

continuous data model and discrete model will be trained. Their 

assessment of failure likelihood will be independent from the 

model assessments for other failure modes, since in a real 

application, multiple failure modes may exist simultaneously. 

However, the different failure mode assessment is fused in the 

same fusion model. That is, if there is no interaction between 

two failure modes, two disjoint groups of fusion nodes will be 

captured. However, if there is hierarchical interaction between 

two failure components, they can be modeled easily as 

connected network nodes, with a connection edge 

corresponding to the system hierarchy. Evidence derived from 

one failure component may affect the likelihood of other 

connected ones, and the probability update is performed 

automatically through message passing by the Bayesian 

inference engine.            
 

 

CONCLUSIONS  
 

This paper has presented a set of analytical methods that 

systematically process wind farm historical data to derive 

failure detection and diagnostic signature models. The 

diagnostic models are derived offline based on patterns 

extracted from historical RM&D data and turbine failure data. 

Once validated and deployed, the diagnostic models are then 

used on-line to analyze remote monitored data and provide real-

time turbine health assessment.  

It is demonstrated that both continuous data modeling and 

discrete fault modeling provide indicative and often 

complementary information regarding likelihood of different 

failure modes. By leveraging both information sources in a BN-

based fusion model, we are able to optimize the diagnostic 

model performance both in terms of accuracy and failure 

coverage.   

The method developed here is described using SCADA 

variables due to its wide accessibility. However, the 

applicability of the method itself is not limited to a specific data 

source. The same analysis methodology could be carried out for 

more advanced condition monitoring systems as well, such as 

vibration indicators or oil debris counts. The advantage gained 

by adopting this method is that it provides automatic trend 

analysis to help derive failure signatures, and it also has good 

potential to reduce false positive alerts of existing systems by 

leveraging sensor fusion and decision fusion. 
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