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ABSTRACT

This paper presents the numerical models underlying the im-
plementation of a novel harmonic balance compressible Navier-
Stokes solver with low-speed preconditioning for wind turbine
unsteady aerodynamics. The numerical integration of the har-
monic balance equations is based on a multigrid iteration, and,
for the first time, a numerical instability associated with the use
of such an explicit approach in this context is discussed and re-
solved. The harmonic balance solver with low-speed precondi-
tioning is well suited for the analyses of several unsteady peri-
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to the extreme variability of the environmental conditions on
time scales ranging from seconds.dwind gusts) to months
(e.gseasonal wind variations). Modern industrial design still
relies on low-fidelity and/or semi-empirical computational tools
such as blade element momentum theory (BEMT), stall and dy
namic inflow models [1]. The main advantage of these tech:
nigques is their high computational speed. Their main draw-
back is that they heavily rely on the existence and availability
of high-quality airfoil data. Thus, new HAWT configurations
cannot be assessed with confidence by means of these metho

odic low-speed flows, such as those encountered in horizontal Conversely, the use of high-fidelity computational aerodynamic:

axis wind turbines. The computational performance and the ac-

tools such as Navier-Stokes (NS) solvers in an integrated aerom

curacy of the technology being developed are assessed by comchanical analysis and design system has the potential of ove

puting the flow field past two sections of a wind turbine blade in
yawed wind with both the time- and frequency-domain solvers.
Results highlight that the harmonic balance solver can compute
these periodic flows more than 10 times faster than its time-
domain counterpart, and with an accuracy comparable to that
of the time-domain solver.

INTRODUCTION

The aeromechanical design of horizontal axis wind turbines
(HAWT's) is a complex multidisciplinary task that requires con-
sideration of a very large number of operating regimes due

*Address all correspondence to this author.

coming the aforementioned constraint. These solvers enable o
to analyze the unsteady aerodynamic and aeroelastic response
prospective new turbine configurations to challanging off-desigr
conditions. Several outstanding examples of the predictive cap:
bilities of NS solvers for HAWT aerodynamics have been pub-
lished [2—4]. The main drawback of NS solvers is their computa:
tional cost, which is substantially higher than that of low-fidelity
systems even when massive parallel computing is adopted. A
curate time-dependent simulations of HAWT flows may still take
several days, whereas the same engineering problem could
solved within a few hours using BEMT-based systems.

Several fundamental HAWT unsteady aerodynamic prob.
lems can be viewed as periodic. This is the case of stall-induce
vibrations and the yawed wind regime, which occurs when the
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freestream wind velocity is not orthogonal to the turbinerot This paper presents the mathematical and numerical the
The yawed wind problem is one for which the underlying as- ory behind the implementation of a time- and frequency-domait
sumptions of BEMT-based systems are particularly weak, and multigrid (MG) compressible NS solver based on the HB tech-
a more reliable analysis of which would therefore benefit from nology and featuring an optimized LSP method. It also discusse
the use of unsteady NS solvers. A time-resolved time-domain an important numerical stability problem that may be encoun
(TD) NS simulation of this problem requires a long wallclock tered when solving the HB NS equations with explicit solvers
time due to the fact that several rotor revolutions have to be sim- such as the MG iteration based on the Runge-Kutta smoothe
ulated before a periodic state is achieved, and a time-resolved so-and it proposes a robust and elegant solution for suppressing su
lution requires about 1000 physical time steps per revolution [5]. an instability. Then, a simple kinematic model enabling one tc
Fortunately, the wallclock time required by the TD NS predic- determine the two-dimensional (2D) time-dependent freestreat
tion of unsteady periodic flows can be dramatically reduced by conditions observed by the blade sections of a HAWT in yawec
using a frequency-domain (FD) formulation and solution of the wind is presented. Finally, the effectiveness of the HB NS solve
governing unsteady equations. The harmonic balance (HB) NS with LSP is demonstrated by computing the periodic unstead:
technology for the solution of unsteady periodic flows [6] is flow past two sections of a HAWT blade in yawed wind using
one of the most promising FD NS methods. The HB NS tech- both the TD and the HB solvers. The TD and HB results are
nology has been applied to the prediction of the periodic flow compared in terms of accuracy and wallclock time required for
associated with flutter and forced response of turbomachinery their calculation. To the best of the authors’ knowledge, this is
blades [6-8], and various vibratory motion modes of aircraft the first reported development of the NS HB technology with
configurations [9-11]. For this type of application, it has been LSP and its application to wind turbine unsteady aerodynamics
observed that the use of the HB NS approach for the calcula-

tion of periodic flows can lead to a reduction of the wallclock

time varying between one and two orders of magnitude with re-

spect to conventional TD NS analyses. Another successful and GOVERNING EQUATIONS

computationally effective FD approach to the solution of un- Time-domain formulation

steady periodic flows is the nonlinear frequency-domain (NLFD) Internal and external viscous flows can be computed by solv
method [12-14]. The NLFD technology has also been applied to ing the NS equations, which are a systenNgfe nonlinear par-
the simulation of the periodic flow past rotorcraft blades [15]. tial differential equations (PDE’s) obtained by imposing the con-
Several other FD methods have been developed in the past yearsservation of mass, momentum and energy over a control volum
among which a one-harmonic FD technique for the calculation For 2D laminar flowsdNpge = 4 because the momentum equation
of periodic turbomachinery flows [16], which bears some resem- has only two scalar components. Given a control volunweith
blance to the HB approach of hatcla02, but differs from it in that boundaryS, the Arbitrary Lagrangian-Eulerian (ALE) integral
the calculation of the zeroth harmonic (mean state) is decoupled form of the 2D TD NS equation is:

from that of the first harmonic representing the sought unsteady

flow component. Numerous examples of the application of the

HB and NLFD technologies to periodic flows of engineering in- 9 (/ Udc) +% (D, —D,)-dS=0 1)
terest exist, but a thorough review of all existing FD methods and ot \Jeq sy T

their application is beyond the scope of this report.

This paper focuses on the development and application of
the HB NS technology for the analysis of periodic wind turbine
flows, such as that caused by the yawed wind condition. One of
the main differences between HAWT flows and the other aero-
dynamic problems for which the HB NS method has been used
thus far is that the flow speeds observed in wind turbine flows are

typically in the incompressible range (Mach number well below where the superscriptienotes the transpose operator, anal v
0.3), though future large off-shore turbines are likely to oper- ande are respectively the flow density, tke andy—component
ate at the border between the incompressible and compressibleof the flow velocity vector yand the total energy per unit mass.
regimes. A NS solver for HAWT aerodynamics could therefore The definition of the total energy &s= e+ (U2 +v2)/2, wheree

be based either on the incompressible formulation or the com- denotes the internal energy per unit mass. The generalized invi
pressible formulation augmented wikbw-speed precondition- cid flux vector®; is:

ing (LSP) [17,18]. One of the advantages of choosing the com-

pressible formulation with LSP is the capability of this approach

to perform aeroacoustic analyses. ®, =Eii+Fij—v,U (2

The arrayU of conservative flow variables is defined as:

U=I[p pu pv pe|
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whereE; and F; are respectively the— andy—components of
®,, and are given by:

Ei = [pu pu*+p puv puH]', Fi=[pv puv pv>+p pvH]
The vector_y, is the velocity of the boundar$, and the flux
term —v,, U is its contribution to the overall flux balance, which

is nonzero only in the case of unsteady problems with moving
boundaries. The symbgl denotes the static pressure and the

Herel = [t 0 ... 0%, ], h = [hf Ay ... Ay, I, and matrixA is

defined as:
00O0---0
0Jk 00 I = Inggs® | [_01 (ﬂ
A=|00X% -0 (7)
00 0.. =12 N

symbolH denotes the total enthalpy per unit mass, the expression where the symbaok detones the Kronecker tensor produgt,

of which isH = €+ p/p. The generalized viscous flux vectdy
is:

9\/ = Evi_ + Fvi (3)

whereE, andF, are respectively the— andy—components of
®,, and are given by:

0 0

Txx Tx
EV - 9 I:V = y
Txy Tyy

UTxx + VTxy — Ox UTxy + VTyy — Qy

The scalarg), andqgy are the Cartesian components of the heat
flux vectorq = —kOT, wherek is the thermal conductivity, and

T is the static temperature. The scalagg Txy andtyy are the
Cartesian components of the stress tems&uch tensor depends
on the divergence of the flow velocity vector and the strain
tensors= (Ov+Ov')/2. For a Newtonian fluid one has=
2u[s— 1/3(0-v)I], wherep is the dynamic viscosity. -

Harmonic balance formulation

The HB formulation of the NS equations assumes that the
fundamental frequencyo of the sought periodic flow field is
known. Denoting byu andh respectively the volume and sur-
face integral of Eqn. (1), one can approximate both variables by
means of the following truncated Fourier series, in which the re-
tained number of harmonid¢, is a user-given parameter:

NH

u(t) ~ Go+ ZL(OZI—lchth) + Oz sin(lwt)) (4)
1=
NH

h(t) ~ ho+ S (ha-1coglat) +hasin(lat)) (5)

=1

Inserting expansions (4) and (5) into Eqn. (1), and ’balancing’

denotes the identity matrix of siz@\leqs)z, Negs = Npde and
blocksJ have sizg2Npge)?. Writing explicitly the equations of
system (6), one finds that the unknown harmonic components
are coupled by the harmonic residuilswhereas no coupling
occurs through the first term of the equation, since mafrig
block diagonal. As pointed out in [6], however, the computa-
tional cost of the HB system (6) grows cubically with the num-
ber of retained harmoniddy, and the analytical derivation of
the equations becomes extremely complex when dealing with th
turbulence models required for high Reynolds number flows.

To alleviate these problems, it has been noted that an a
ternative formulation of the HB equations is obtained by recon:
structing the Fourier coefficients of the volume integraif the
conservation variables and the surface integraff the fluxes
from the knowledge of the temporal behaviorugf) andh(t) at
2Ny + 1 equally spaced points over one period. Such points ar
defined by:

n 21

maa n=0,1,---,2Ny

(8)

tn:

Let O = [ ... Ty, )" = [u(to)’ u(ta)’...u(tan,)') and h =
[hG By .. Gy, ] = [h(to)’ h(ta)'...h(tan, ')’ In view of these
definitions, expansions (4) and (5) yield:

i=F;'0 and h=F;h

(9)

with Fq = E{ ® Idie and the Fourier matriE,]1 given by:

1 coqwtg) sin(wlp)
1 codqwt;) sin(wty)

cogNywtg)  Sin(Nyotz)
cogNywt;)  sin(Nyotz)

1 COS(QIZNH) sin(thNH) -+ COYNH (*IZNH) Sin(Ny (*IZNH)

Computing the inverse of relationships (9), inserting these lat

or matching harmonics of the same order results in a system of ter into Eqn. (6), and premultiplying Eqn. (6) 6y;* yields the

[Npde x (2Ny + 1)] PDE’s, the matrix-vector form of which is:

WAl+h=0 (6)

system:
wDli+h=0 (10)
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in which

D=F; ARy (11)

Inserting the integral definitions af andh into Eqn. (10) leads
to the so callechigh-dimensional harmonic balance formula-
tion [19] of the NS equations:

wD (/ UHdCH>+j{ (P —Pyy)-dS; =0 (12)
CH(t) S (t) ’

where Un [U(to)/ U(tl)/ .. U(tNH )/]/, cDi/v,H
(@i y(to)" Pip(t1)’ ... Pjp(tny )], and similar expressions hold
for cy andS4. Moving from the time- to the frequency-domain,
the number of PDE’s increases frdgge to [Npde x (2NH + 1)].
Despite the fact that the number of PDE'’s to be solved has
increased, the HB approach allows one to compute unsteady
periodic flows at a substabtially lower computational cost with
respect to the time-domain approach.

CFD SOLVER
Space discretization

The structured multi-block finite volume cell-centered par-
allel CFD codeCOSA[18,20,21] solves the integral form of both
the TD conservation laws (system (1)) and the HB conservation
laws (system (12)) making use of a second order upwind scheme.
The discretization of the convective fluxes is based on Van Leer’s
MU SCLextrapolations and Roe’s flux-difference splitting. De-
noting byn the normal of the face of a grid cell, ad&the area
of such face, the numerical approximation to the continuous con-
vective flux componern®; 1 = (®; - n)dSthrough such face is:

0D 1

U oU

@i ¢ (UL) + P 1 (Ur) — (13)

NI =

* p—
if —

Here the superscript the subscript, and the subscripisandgr
denote numerical approximation, face value, and value extrapo-
lated from the left and from the right, respectively. The numerical
dissipation depends on the generalized flux Jacoédan /oU

and the flow state discontinuity across the cell face, defined by
oU = (Ur—Uy).

The discretization of the viscous fluxes is based on second
order centered finite-differences. The Cartesian derivatives of
the flow velocity components are computed with the chain rule,
using the derivatives of such components with respect to the local
generalized curvilinear coordinates associated with the grid lines,
and the grid metrics.

Integration of time-domain equations

The physical time-derivative of system (1) is discretized
with a second-order backward finite-difference. The set of non
linear algebraic equations resulting from the space- and time
discretization of system (1) is then solved with an explicit ap-
proach based on the use of a fictitiuos time-derivative (Jame
son’s dual-time- stepping [22]). The discretization of the phys-
ical time- derivative of the unknown flow state by means of a
second order backward finite difference, and the introduction o
the derivative with respect to the fictitious timgield the equa-
tion:

n+1
v%—Q +Ry(Q" =0 (14)
T
where
n+1 _ n n—-1
Rg(QM Yy = 3T TAQHQT L g ()

20t

The entries of the arra@ are the unknown flow variables at the
Nce cells discretizing the computational domain. The ar@y
can be viewed as made upNf subarrays, each of which stores
theNpqe flow unknowns at a particular physical time. The length
of Q is therefore(Npde X Neeit). The arrayRe stores the cell
residuals, and its structure is the same as thad.ofFor each
cell, the Npqe residuals are obtained by adding the convective
fluxes®;; and the viscous fluxe® ; through all the faces of
the cell. The symboR4 denotes instead a residual vector which
also includes the source terms associated with the discretizatic
of physical time-derivativéU/ot contained in Egn. (1). The
diagonal matrix/ stores the volumes of the grid cells. It can
be viewed as a block-diagonal matrix of sidydj; x Nee) with
each block being the identity matrix of siziégje x Npge) multi-
plied by the volume of the cell the block refers to. Note ttiat

is independent of the physical time-level (denoted by the supel
scriptsn+ 1,n andn — 1) because in this report only rigid-body
grid motion is considered. The symbét indicates the user-
given physical time-step. Equation (14) can thus be viewed as
system of{Npde X Neent) ordinary differential equations (ODE’s)
in which the unknown i1, the flow state at time-level+ 1.
The calculation ofQ"! is performed iteratively by discretiz-
ing the fictitious time-derivativédQ/at)"*! of Eqn. (14) with

a four-stage Runge-Kutta (RK) scheme, and marching the equi
tions in pseudo-time until a steady state is achieved. Such stea
state is the flow solution for the physical time being considered
The convergence rate is then greatly enhanced by means of loc
time-stepping (LTS), variable-coefficient centmalplicit resid-

ual smoothingIRS) and &ull-approximation schemmultigrid
(MG) algorithm.
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This solution procedure may become unstable when the
physical time-stepAt is significantly smaller than the pseudo-
time-stepAt. This instability was reported in [23],and thor-
oughly investigated by Melsoet al. [24]. The latter study el-
egantly solved the stability problem by treating implicitly the
Q™1 term of the physical time-derivative within the RK inte-

gration process. This strategy has also been implemented in

COSA, as summarized below. The residRglis split into the
contribution depending on th@"** term of the physical time-
derivative, and a terrRy equal to the difference dRg and the
aforesaidQ"+1 term:

Rg(Qn+1) _ % anqu_i_g(Qn’anl) +R¢(Qn+l)

whereg(Q",Q"1) = —2Q"+ 0.5Q" 1. This equation can also
be written as:

Ry(Q") = Re(Q™"1) + Q" (16)

Discretising the fictitious time-derivative of Eqn. (14) with a
multi-stage RK scheme, introducing the decompositiorRgf
provided by Eqn. (16), and considering 19&+! term at stagé
rather than at stagéx— 1) yields the following modified RK al-
gorithm:

wo =Q
(I + o B)WK = WO — a ATV ~1Rg (WK-1) (17)
QI+1 = WNS

wherek varies between 1 and the number of RK stad3

ay is the k" RK coefficient, = 1.5At/At, | is the RK cycle
counter, andQ, is shorthand forer‘“. The stability analysis
of [24] shows that the stability of algorithm (17) no longer de-
pends on the ratidt /At. However this formulation is still un-

wherelL rs denotes the IRS operator, afigs is the MG forcing
function, which is nonzero when the smoother (18) is used ol
a coarse level after a restriction step [25]. Note that the matri
multiplying WX at the second line of algorithm (18) is diagonal,
and this implies that for each grid cell thige unknowns can be
updated without an actual matrix inversion.

Integration of harmonic balance equations

At the differential level, the only difference between sys-
tem (1) and system (12) is that the physical time-derivative of the
former system is replaced by a volumetric source term propot
tional tow in the latter. The set of nonlinear algebraic equations
resulting from the space-discretization of system (12) is thus
solved with the same technique used for steady problems [20
namely the four-stage RK smoother accelerated by LTS, IRS an
MG. The introduction of the derivative with respect to the ficti-
tious timert yields the equation:

vy 21

p +RgH (Qu)=0

(19)
where

RgH(QH) = WHDQH +RoH(QH) (20)

The arrayQu is made up of(2Ny + 1) flow states referring
to the physical times defined by Eqgn. (8). Therefore, one ha
Qn =[Q5 Q1 --- Q) = [Q(to) Q(t2)"... Q(tany )]’ and each
subarray ofQy has length(Npge X Neeir).  The arraysRg
andRq¢ 1 have the same structure Q. The subarrayRo)n
(n=0,1,---,2Ny) denotes the grid-residuals associated with the
convective and viscous fluxes at tirpe The subarrayRg), de-
notes instead a residual vector which also includes the sourc
term wWWyDQy. The diagonal matrinygy is given byVy =
long+1®@ V. Matrix D is defined by Eqgn. (11), and the matéx

suitable when IRS and MG are also used, because both accelerappearing hereinis defined by Eqn. (7) whidggs= Npgex Ncel-

ation techniques have to be applied to a residual term that van-
ishes at convergence, and this is not the ca$®jofThe solution

is to introduce the residu&y which does vanish at convergence.
Given that:

ATR4(W) = —BVW + ATRy(W)

the IRS-MG-tailored counterpart of algorithm (17) is:

wo =Q

(I + o B)WK = WO 4 o Wk—1
—akATV71L|RS[Rg(Wk71) =+ fMg]

— WNS

(18)
Qi1

Equation (19) can thus be viewed as a systeniNgfie x
Neell X (2Ny 4+ 1)] ODE's in the unknowrQy. The calculation
of Qn is performed iteratively by discretizing the fictitious time-
derivative(dQy /01) of Egn. (19) with a four-stage RK scheme,
and marching the equations in pseudo-time until a steady state
achieved. The IRS and the MG acceleration techniques are al
used exactly as for steady and TD problems.

Although no rigorous stability analysis has been carried ou
yet, the authors have found that this explicit MG solution proce-
dure of the HB equations may become numerically unstable fo
certain type of aerodynamic problems. More specifically, a nu:
merical instability of the HB MG iteration has been encounterec
in the solution of the transonic flow problems with the COSA
solver reported in [9]. It is the authors’ view that this instability
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is the FD counterpart of the TD one, discussed in the preced- reported in [9] show that the HB analysis can predict the periodic
ing subsection. In the TD framework, the instability may occur body forces acting on a pitching airfoil with extremely small er-
when the physical time-steft is significantly smaller than the  rors with respect to the TD analysis, but requiring a CPU-time
pseudo-time stepat. With transonic flows, for example, this  about one order of magnitude smaller. These HB transonic flov
may occur in the supersonic region upstream of a shock. In analyses failed to converge when the standard rather than the s
the HB context, the equivalent physical time-stggs given by bilized RK algorithm (22) was used.

At = 21/w/(2ny + 1). In order to stabilize the RK-IRS-MG it- It has been observed that the use of an explicit approach t
eration used to solve the HB equations for all flow regimes, a integrate the HB NS equations requires the introduction of ar
stabilization procedure similar to that proposed by [24] has been additional constraint on the size of the local time-step used f
successfully implemented and tested in the COSA solver. To the pseudo-time-march the solution for stability reasons [8]. Sucl
best of the authors’ knowledge, this is the first reported study constraint depends on the fundamental frequenagd the num-
on the use of this method for the solution of the HB Euler and ber of complex harmoniclly, and becomes more stringent as
NS equations. The stability problem is removed by treating im- either parameter increases. In this circumstance, the number

plicitly the source term of Eqn. (20) within the RK integration
process. Discretising the fictitious time-derivative of Eqn. (19)

MG iterations required for convergence would increaséNas
increases. The use of the stabilization presented herein, on tl

with a multi-stage RK scheme, and considering the source term other hand, removes this additional constraint, thus making th

of Eqn. (20) at stagk rather than at stagé& — 1) yields the fol-
lowing modified RK algorithm:

w9, = (Qu)i
(I + akBuD)WE, = WO, — ATV 'Ro i (WED)
(Qr)ita = Wp°S

(21)

wherefy = wAT and the other symbols have been defined in the
preceding subsection. This formulation is still unsuitable when

IRS and MG are also used, because both acceleration technique
have to be applied to aresidual term that vanishes at convergence

and this is not the case &g +. The solution is to introduce the
residualRgH which instead vanishes at convergence. The IRS-
MG-tailored counterpart of algorithm (21) is:

WY = (Qn)i
(I + oakBuD)WEK = W + ayByDWK 2

— ATV tLirsH[RgH (W) + fug ]
(Qu)i+1 =W}®

(22)

where the HB MG forcing function is defined dsgn =
[fMG(tO)/ fMG(tl)/---fMG(tZNH )/]/ with the (2Ny + 1) values of
tn defined by Eqgn. (8), and the HB IRS operatgrsH can
be viewed as d(2Ny + 1) x (2Ny + 1)] block-diagonal ma-
trix, the nonzero blocks of which are tH@Ny + 1) Lirs(tn)
operators. Note that the matrix muItipIyir\A‘kj‘;| at the second
line of algorithm (22) is not diagonal. For each grid cell and
for each PDE the update of tH@Ny + 1) unknowns requires
the inversion of sub-blocks di + axpxD), each of dimension
[(2Ny + 1) x (2Ny + 1)]. Such overhead results in the computa-
tional cost of the HB analysis growing in a moderately superlin-
ear fashion with respect tdy. Despite this feature, however, the
computational cost of the HB analysis remains competitive with

convergence rate more independeniNgf. When using an ex-
plicit integration method, however, the convergence rate of ex
plicit HB solvers may still show a certain degree of dependenct
on Ny for flow problems with significant nonlinearities. This
is because one of the factors on which the convergence ra
of iterative solvers depends is the features of the overall Jacc
bian (.gcondition number, degree of non-normality and diag-
onal dominance) of the HB NS equations, made up of the sur
of the standard flux Jacobian of the steady NS equations and tt
termwVyD. The last term is an antisymmetric matrix, the size

2nd magnitude of which grow witNly and w respectively. Its

main effectis to reduce the diagonal dominance and increase tt
non-normality of the HB Jacobian with respect to that of the Ja:
cobian of the steady equations. A reduction of the diagonal dom
inance impairs the convergence rate of iterative stationary linee
smoothers such as the Gauss-Seidel and the symmetric succ
sive over-relaxation iterations. The effect dfi and w on the
diagonal dominance of the HB Jacobian of the HB equation:
is analyzed in reference [7], which also uses a robust precond
tioned Krylov subspace solver to greatly reduce the dependen
of the computational cost of an implicit HB solver on these two
parameters. A significant level of non-normality of the HB Ja-
cobian may result in numerical transients during which signifi-
cant reductions of the convergence properties of linear smoothe
(including the RK iteration) with respect to the theoretical ex-
pectation are experienced [26]. These observations refer to tt
case in which the standard non-stabilized integration of the HE
equations is used. When the stabilized integration is used, hov
ever, the non-normality characteristics of the linear operator cor
resonding to the iteration (22) may differ from those of the stan-
dard HB Jacobian. This mathematical aspect is still under in
vestigation. For these reasons, it is expected that the conve
gence rate of the presented MG HB solver will be fairly close
to that of the associated steady problem, and independ&it of

that of the TD analysis. As an example, the transonic flow stud- for problems with low level of flow nonlinearity. For problems
ies performed with the COSA solver based on algorithm (22) and with significant nonlinearities, however, the convergence rate o

6 Copyright (© 2011 by ASME



the HB solver may worsen with respect to that of the steadg stat The introduction of preconditioning modifies the artificial
whenNy is increased because of the significant contribution of dissipation term of the numerical flux provided by Eqgn. (13) as
the higher harmonics to the non-normality of the overall HB Ja- follows:

cobian.

When solving the HB equations with an implicit approach,
the HB source term has to be treated implicitly for stability rea- O, — :_L ®; 1 (UL) + i (Ug) — r-1 rcaq’J GU] (24)
sons [10, 11]. This constraint may require substantial code ex- M2 ’ ¢ ou

tensions if the HB solver is built around an existing code. It may

also yield very large memory usage for storing the Jacobian asso-

ciated with all(2Ny + 1) flow states if a Krylov-subspace method ~ For steady problems, the choice of Eqn. (23) vitins = 0 to
with approximate Jacobian-based preconditioning is used for the build I'c and its inverse guarantees both the balance of the nt
solution of the linear systems arising at each step of Newton’s Merical dissipation and an optimal convergence rate. For time
method. One possible solution is to use an iterative stationary dependent problems, however, the use of Eqn. (23) iths
linear block-solver such as block-Jacobi to solve the linear sys- defined as proposed in [17] usually yields a high convergenc
tems, as this allows one to treat separately the Jacobians assotate, but does not guarantee an optimal scaling of the artificie
ciated with each flow snapshot during the integration [10]. An dissipation. This has been observed by the same developers
alternative solution to simplify the development of the HB tech- this preconditioner for time-dependent problems with motion-

nology around an existing implicit solver is the treatment of the €SS grids [31], and more recently confirmed by the authors o
HB source term presented in [27]. this paper for the case of time-dependent problems with movini

grids [18]. The latter article also presentedanaed precondi-
tioning strategy to overcome this problem, and demonstrated it
LOW-SPEED PRECONDITIONING effectiveness with a number of time-dependent problems witt

In the case of low-speed flows, a large disparity be- motionless and moving grids. In essence, mixed preconditionin
tween the convective and acoustic eigenvalues of the flux Jaco- consists of using the steady preconditioning parametethe
biandd; 1 /AU exists. This results in unbalanced amounts of nu- Value of M, obtained from Eqn. (23) after settiftduns=0) to
merical 'dissipation, and this occurrence spoils the accuracy of construct the preconditioner required to calculate the numerics
the solution. When using explicit time-marching methods, the dissipation, and the unsteady preconditioningthe complete
local time-step also depends on the eigenvalues of the flux Ja-formof Eqn. (23)) to construct the preconditioner needed to com
cobian, and a large disparity between convective and acoustic Pute the preconditioned eigenvalues used in the calculation of th
speeds substantially impairs the convergence rate of the solver.ocal time-step. The modified numerical flux is thus:

These problems are circumvented by using low-speed precondi-
tioning [17].

In the case of time-dependent problems, the pseudo-time Oy =
derivative of Eqn. (14) is premultiplied by a preconditioning ma- '
trix (I'¢)~. This results in a rescaling of the eigenvalues of the
flux Jacobian which restores the correct levels of numerical dis- ) )
sipation and allows one to maintain high convergence rates evenhere the subscriptg andqy respectively denote the use of the
with low-speed problems. The preconditiofigrused by COSA steady and unsteady preconditioning parameters to build the pr
is that proposed in [17], where its expression can be found. The conditionerc.
matrix "¢ depends on a parametdp. The choiceM, = 1 yields The general form of the standard TD RK-IRS-MG iteration
no preconditioning. For low-speed flows, the parambtgis: featuring LSP, obtained by premultiplying the fictitious time-
derivative of Eqn.(14) by 51, and discretizing this derivative
with the multistage RK of choice, is:

o0d;
Mes—2t

1,1 (UL) + Pif (Ur) — T | Tes—5 5

NI =

5u] (25)

Mp = min(max(M, Mpg, Myis, Muns, €) , 1) (23)
whereM is the actual local Mach numbeévlyg is a cut-off value wWo =qQ
based on the local pressure gradient [28, 28] is a cut-off Wk =wo 26
value based on the cell Reynolds number (also called Peclet num- —akArV*lesrcu[Rg(Wk*l) +fumg) (26)
ber) [30],Munsis a cut-off value based on the physical time-step Q41 = WNS
At and the characteristic lengths of the domain [17], arsl a
small cut-off parameter that prevents the preconditioner from be-
coming singular at stagnation points. The use of the stabilization process of the RK cycle discussed i
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the previous subsections yields the following stabilizedation: TWO-DIMENSIONAL YAWED WIND MODELING
In order to define boundary data and motion parameters fc
the 2D TD and FD analyses presented in the result section, tt

wo =Q unsteady flow regime experienced by the airfoils of a HAWT
(I + o Brk; Hwk = WO 4 Bk, twk-1 blade in yawed wind has to be defined as a function of the
— o ATV LRI R (WKL) 4+ fyg) freestream wind speéd;,, the turbine rotational spead, the
Qi1 = WNS angle  betweerV ;, and the normal to the rotor plangaw an-
(27) gle), the chordc of the airfoil and its distanc® from the rota-
The matrix premultiplying//¥ is block-diagonal, but its blocks  tional axis. The left and right plots of Fig. 1 respectively depict
are not diagonal because of the preconditidngrwhich is not the top and front views of a HAWT in yawed wind, and high-

a diagonal operator. Therefore the update process requires thdight some of the aforementioned parameters. The circumferer
inversion of an(Npde x Npde)-matrix for each cell of the com- tial position of a blade is defined by the an@lewhich is taken

putational domain. The interested reader is referred to [18] for to be zero when the blade is vertical and descending (positio
further details on the LSP implementation of the COSA solver.  A). The four plots of Fig. 2 report the velocity triangles asso-

In the case of frequency-domain problems, the pseudo-
time derivative of Egn. (19) is premultiplied by[2Ny + 1) x

(2Ny + 1))-block-matrixT"_};, and the nonzero blockg;} with z A
n=0,1---,2Ny are simply instantiations of the precondition-

ing matrix ¢ discussed above at the times defined by Eqn. (8). 0

In all the HB analyses reported in the remainder of this paper, q-) B D

the steady preconditioner set upe@ value ofMp obtained by

Y
settingMuns = 0 in Egn. (23)) has been used for the calculation Xl \/o:) Y
of both the numerical dissipation and the local time-step. The % Vis

general form of the standard HB RK-IRS-MG iteration featuring C
LSPis:
WP = (Qn)
Wﬁ = Wa TTTTITTT
-1 k-1 (28)
— ATV "LirsH I cH [RgH (W) +fuc H]
(Qn)i41 = WHS Figure 1. SCHEMATIC VIEWS OF HAWT IN YAWED WIND. LEFT

PLOT: TOP VIEW; RIGHT PLOT: FRONT VIEW.

The use of the stabilization process of the RK cycle discussed in

the previous subsections yields the following stabilized iteration: ciated with a blade airfoil for the positions labelado D in the
right plot of Fig. 1. The modulus of the axial velocity component
is [V ;5| cog(8), and is the same for all radial and circumferential

W = (Qm)i positions. The modulus of the entraining velogity< R varies
(I + kBT E D)WY = WP + awBrl§ DWW — agdtvy linearly with|R|, and is therefore the same in all four triangles of
LirsH I"égl[RgH(W,‘f,’l) +fmeH] Fig. 2. The velocitywV; and the angley; (i = A, B,C, D) denote
(Qn)i+1 = WHS respectively the freestream velocity amflow angleobserved
(29) by the blade section at radiis and both parameters vary with
The matrix premultiplyingN‘ﬁ| is block-diagonal, but its blocks  the circumferential positio® = wt. Each velocity triangle is
are not diagonal because both the preconditidnheand the contained in the plane tangent to the cylinder of radiusen-
matrix D are not diagonal. Each of thedde; blocks has tered on the rotational axis, and therefore it neglects any radi

size [(2Ny + 1) x die]z, and the update process of the whole (i.ealong the blade axis) velocity component. The magnitude o
solution requires the inversion of all such blocks. Due to this the discarded radial component varies withno component is
feature, the computational cost of HB analyses is moderately su- discarded when the blade is vertical (positignandC), as the
perlinear with respect thly. All numerical analyses carried out  entire vectol ;sis contained in the tangent plane; the entire ra-
thus far, however, show that the computational speed of the HB dial componen¥ ;.sin(d) is instead neglected when the blade is
analysis remains significantly higher than that of the TD despite horizontal (positiond andD), as the radial component df;

the abovesaid overhead. is orthogonal to the tangent plane. Within the limits of these ap
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A: 8=0° B: 6=90° dynamic characteristics of HWAT airfoils in yawed wind. A typi-
u u cal HAWT airfoil twisted by an anglgis depicted in the left plot
Og \\ 5 a of Fig. 3 along with an indication of the harmonic motion. The
5\Vis iy Vis, W, right plot provides a representation of Eqn. 34, and the four posi
oe ' - tionsAto D correspond to those labeled with the same symbol:
in Figures 1 and 2.
C: 6=180 ° D: 6=270 °
U u
a Vi a h{e) .
5 Vf e} / B\
Yfs WD y WA h / \\
Oﬁ’A ¢
g 90 18\(\) 270 17,60 )
Y \
Figure 2. VELOCITY TRIANGLES OF HAWT BLADE SECTION FOR 4 \D/

POSITIONS LABELED ATO D IN FIG. 1.

proximations, the axial and circumferential components of the Figure 3. HARMONIC MOTION OF HAWT BLADE SECTION CORRE-
freestream velocity perceived by each blade section are respec-SPONDING TO YAWED INFLOW.
tively:

Wy = Viscogd) (30)
Wp = wWR— VisSin(d) coq wt) (32) VALIDATION
The second order accuracy of the time-discretization for vis:
The 2D simulation of the Unsteady flow paSt the blade airfoil of cous ﬂOWS has been Veriﬁed by Computing the unsteady |amine
the HAWT in yawed wind could be performed by using a motion-  yortex shedding behind a cylinder. Several simulations have bee
less domain and enforcing the time-dependent freestream veloc-performed, each of which has used a physical time-step obtaine
ity defined by conditions (30) and (31). Alternatively, one could by halving that of the preceding simulation. The lift and drag
also use a moving-domain simulation with steady farfield condi- forces obtained at a chosen time from each simulation have bec
tions and suitably defined grid motion. The moduhg and the used to perform Richardson’s extrapolations, which have con
orientationo s of the uniform freestream are obtained by remov-  firmed the second order accuracy of the time-discretization [32]
ing the time-dependent term of Eqn. (31), and their expressions The second order accuracy of the convective flux discretizatio
are respectively: has been verified by computing the solution of a 2D inviscid tes
case for which the analytical solution has been determined. Th

problem has been solved using several grids, which become su

Wrs = \/(st0056)2+ (wR)? (32) cessively finer by a factor of two in both directions. Analysis

ats = arctar](Viscosd) / (wR)] (33) of the RMS of the error between the analytical solution and the
computed solutions obtained by using these grids have confirme

When using steady farfield boundary conditions, the variability e seécond order of the space-discretization [20]. The second o

of the inflow state associated with the case of motionless domain d€r @ccuracy of the time- and space-discretization of the solve
is equivalent to and can be replaced by a horizontal sinusoidal USiNg LSP has also been demonstrated by considering an u

motion of the grid. The expression of such motion is: steady test case resulting from the superposition of a uniforr
low-speed flow and a steady vortex. The analytical solution o

) this problem has been used to verify the second order accura
h(t) = hosin(at) (34) of COSA for this type of problem [18].
ho = Vissing/w To validate the implementation of the moving grid capabil-
ities of the COSA solver, the unsteady flow field past a pitching
The moving domain model has been adopted for the analysesflat plate has been considered. The time-dependent angular p
presented in the result section, and it could also be used to per-sition of the flat plate varies accordind A8, sin(wt), with A8,
form 2D experimental measurements aimed at studying the aero-positive in the clockwise direction. For the case in which the flat
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plate is aligned with a uniform stream when it takes its mean po
sition (sinwt) = 0), an analytical solution of this problem has
been provided by Theodorsen [33]. The input parameters of the
analysis aré\8;, the position of the hinge, the freestream veloc-
ity Wss, and the reduced frequenkydefined as:
A = wc/Wis (35)
In the selected configuratiod8, = 1°, the hinge is at 25 %
chord from the leading edge, the freestream velocity corresponds
to a Mach number of @01, and\ = 0.1. The TD analysis has
been carried out using a 6-block grid with 129 points on each
side of the flat plate, 97 points before the leading edge and af-
ter the trailing edge and 97 points in the normal direction. The

freestream boundaries are placed at about 5 chords from the flat

plate, and the minimum distance of the first grid points off the
plate surface from the plate itself is50% of the chord. The pe-
riod has been discretized with 32 intervals, and the simulation
has been run for 2 periods. Figure 4 provides the theoretical pre-
diction of the amplitude of the first harmonic of the differential
static pressure coefficieng across the flat plate. The static pres-
sure coefficient is defined &g = (p— pfs)/O.Spfstzs, and the
variable on theg-axis is the modulus afcp = cpy — Cp L, Where

the subscriptg and, denote upper and lower side respectively.
The x-axis reports the position along the chord. Figure 4 also
shows the profiles diAc,| computed by COSA with and without
LSP. A very good agreement between the numerical result ob-
tained with LSP and the theoretical prediction is observed. The
bad agreement between theory and numerical prediction without
LSP highlights the necessity of using LSP with low-speed flows
to preserve numerical accuracy.

RESULTS

The 2D laminar flow field past two airfoils of a rotating
HAWT blade in yawed wind is considered in this section. The
blade height is 45 m, its rotational speed is 17.5 RPM, the
freestream wind velocityss is 14m/s, and a yaw anglé of 30°

0.2 0.4 0.6

x/c

0.8

Figure 4. AMPLITUDE OF THE FIRST HARMONIC OF THE DIF-
FERENTIAL STATIC PRESSURE COEFFICIENT ACROSS A PITCH-
ING FLAT PLATE: COMPARISON OF THEORETICAL RESULT AND NU-
MERICAL PREDICTIONS OBTAINED WITH AND WITHOUT LSP.

Table 1. INPUT PARAMETERS FOR THE 2D UNSTEADY MOVING-
GRID CFD ANALYSES OF TWO SECTIONS OF HAWT BLADE
section| Mgs | ats (°) | @rs (°) | ho/c| A
90% ||0.22] 9.1 | 5.4 |1.21/0.076
30% ||0.08] 25.8 | 6.7 | 0.4|0.622

97 points in the grid cut, and 129 points in the normal-likedir
tion. The farfield boundary is placed at about 20 chords from the
airfoil, and the distance of the first grid points off the airfoil sur-
face from the the surface itself is aboud % of the chord. The
airfoil and the whole grid are inclined by the twist angl@n

the horizontal direction. In the unsteady simulation, the whole
grid undergoes a sinusoidal motion defined by Eqn. (34). All
TD simulations have been performed using 128 time-interval:

is assumed. The sections at 90 and 30 percent blade height arger period, and running the simulations for 3 periods. The HE

considered. The former has a chardf 3.16 mand a twisty of

3.7°; the chord and the twist of the latter ar&t® m and 191°
respectively. Using the rotational spe@dthe chord and the rel-
ative freestream velocity defined by Eqn. (32), one can calculate
the reduced frequendyby means of Eqn. (35). The relative an-
gle of attack (AoA)gss is obtained by subtracting the twigto

the inflow anglen ts defined by Eqgn. (33). Choosing a reference
temperature of 28&, one can calculate the Mach numibéfs
corresponding tdV;s. The set of input data used for the 2D un-
steady moving-grid simulations of the 2 sections is reported in
Table 1. The airfoil selected for both sections is the NACA0012
airfoil, and the Reynolds number has been set to 1000. The C-
grid adopted for all simulations has 321 points along the airfoil,

10

analyses for both sections have been performed\forarying
between 1 and 5. The CFL number has been set to 3 for all sirr
ulations reported herein. Note that the choice of a relatively thir
airfoil with respect to those typically used in HAWT's, and the
lack of turbulence modeling, result in the unsteady flows ana
lyzed in the next two subsections not being fully corresponden
to those of real HAWT yawed conditions. The main objectives
of the following analyses, however, areapassess the accuracy
and the computational performance of the HB technology bein
developed against those of the conventional TD technology, an
thusb) demonstrate the suitability of the HB technology with
LSP for unsteady periodic flows with the same kinematic pat-
terns of yawed HAWT flows.
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Section at 90 % blade height

The lift coefficientc, over one rotor revolution computed
by the TD analysis and five HB analysis willy; = 1,...5 is
depicted in Fig. 5, the abscissa of which reports the percentage
time of a period. The selected period of the TD simulation is the
third one. These curves show that an accurate predictionbyf
means of the HB analysis is achieved with > 2. The plot also
provides the value of the Ao&ss over the period, and it high-
lights thatc) increases agrs decreases and viceversa. This hap-
pens because the flow on the upper side of the airfoil is separated
at all times, and the reduction of the separation extent induced by
a reduction ofp;s causeg; to increase. The hysteresis cycles of
the lift coefficient, the drag coefficieny and the moment coeffi-
cientcy, are depicted in the three plots of Fig. 6, which confirms
that the HB analyses with > 2 lead to an excellent agreement
with the TD result.

0.29

———— Timé Domain
—  HB-1 Mode

HB - 2 Modes
HB - 3 Modes .

0.27

0.25

0.23

0.15

4.5

ok
o
o
ok

6.5

0.13

HB - 4 Modes -

N oo - 7 e
0.27+ Nt EEA 5 Modes , _
/

01135 5 55 3 65

YT : -0.012 T T T

Figure 5. LIFT COEFFICIENT OF 90 % BLADE SECTION OVER ONE
REVOLUTION COMPUTED WITH TD AND FIVE HB ANALYSES.

-0.014} -

The real and imaginary part of the pressure coefficignt £
computed by the TD analysis and the 5 HB analyses are plotted in
Figures 7-a and 7-b respectively. In both casesxtaeis reports
the position along the axial chomdy = ccosy. These figures -001675 5.5
also confirm that 2 harmonics are sufficient to resolve the flow 9:0)
unsteadiness with the HB analysis. The real and imaginary part ©)
of the absolute value of the skin-friction coefficieatcomputed
by the TD analysis and the 5 HB analyses are instead plotted
in Figures 8-a and 8-b respectively. In this case, one sees that
an adequate HB resolution of the imaginary parfoef requires
Ny > 3. Note that the sudden slope veering of both the real and
imaginary parts ofct| starting at about 60 % axial chord is due
to the oscillation of the point where separation on the upper side
of the airfoil occurs. and the variablg on they-axis is the logarithm in base 10 of the
The convergence histories of the five HB analyses and that of 2-norm of the RMS of all cell-residuals for allpqe equations.
the TD solver for a particular physical time are reported in Fig. 9. The HB analyses have been run uftikK 1.d — 12; the iterative
The variable on the-axis is the number of multigrid iterations,  solution process of each physical time-step of the TD analysi

ok
ok

6.5

Figure 6. HYSTERIS FORCE LOOPS OF 90 % BLADE SECTION
COMPUTED WITH TD AND FIVE HB ANALYSES (LINE LEGEND AS IN
FIG. 10): a) LIFT COEFFICIENT, b) DRAG COEFFICIENT, c) PITCHING
MOMENT COEFFICIENT.
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Figure 7. PRESSURE COEFFICIENT OF 90 % BLADE SECTION
COMPUTED WITH TD AND FIVE HB ANALYSES: a) REAL PART, b)
IMAGINARY PART.

has been stopped either whien< 1.d — 12 or after 3000 MG

-0.02

-0.03

0.001 T T T T

Im{lc)
(=]

-0.001 ' ' 5

Figure 8. SKIN FRICTION COEFFICIENT OF 90 % BLADE SECTION
COMPUTED WITH TD AND FIVE HB ANALYSES (LINE LEGEND AS IN
FIG. 12-a): a) REAL PART, b) IMAGINARY PART.

speed upparameter, defined as the ratio of the wallclock time

iterations if at this stage this convergence tolerance had not beenrequired to calculate three periods with the TD solver and a sin
achieved. For most physical time-steps, however, the prescribedgle period with the HB solver for each of the adopted five values

residual tolerance of.tl — 12 has been achieved well before the
limit of 3000 MG iterations. An interesting feature is that the

convergence histories of all HB analyses are practically superim-

posed, and thus independenipf. Figure 9 also reports the con-
vergence history for the steady problem, which differs very little

of Ny is reported in Table 2. The first row of speed up parame-
ters refers to results computed using the aforementioned residu
tolerancd, of 1.d — 12, and it shows that the accurate HB solu-
tion obtained withNy = 3 can be obtained 17 times faster than
with the TD analysis reported herein. The blade forces, howeve

from that of the HB analyses. These convergence data point to may achieve an acceptable level of convergence with less strir

the fact that the flow nonlinearity for this problem is fairly small,

and therefore neither the contribution of the first harmonic to the
HB source term nor that of the higher harmonics are sufficient
to significantly affect the spectrum of the linearized operator as-
sociated with the integration of the HB equations with respect

to that associated with the integration of the steady equations.

All these analyses could be performed without the RK stabiliza-
tion previously discussed, namely using algorithm (28) for the
solution update. Therefore the cost of a single HB MG iteration
is with good approximation proportional tdNg + 1. The HB

12

gent residual tolerances. Indeed, comparing the results of the T
simulation withl, = 1.d — 12 and that witH; = 1.d — 09 reveals
that the maximum difference of the lift and drag coefficients
with respect to their averages over the third period computel
with I, =1.d — 12 is smaller than.td — 01%. Similarly, compar-
ing the results of the HB simulations with=1.d — 12 and that
with I; = 1.d — 09 reveals that the maximum difference of the lift
and drag coefficients with respect to their averages over the thir
period computed with, = 1.d — 12 is of order 1d — 04%. The
second row of speed up parameters of table 2 refers to resul
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computed using residual tolerangeof 1.d — 09, and it shows
that the HB solution obtained witNy = 3 can be obtained 8

times faster than with the TD analysis.
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-4 Modes A
- 5 Modes

Steady

-12

5000 7500

MG its.

0 2500 70000

Figure 9. CONVERGENCE HISTORIES OF TD, HB AND STEADY
ANALYSES FOR 90 % BLADE SECTION

Table 2. ACCELERATION FACTORS OF HB ANALYSES WITH RE-
SPECT TO TIME-DOMAIN ANALYSIS FOR THE 90 % BLADE SECTION

I Ny 112 ]3| 4|5
1.d-12|| speed UHJ40.8 24.3(17.4{13.5/11.0
1.d-09|| speed u¢19.3 11.4/8.2|6.3|5.2

Section at 30 % blade height
The flow regime associated with this section is more com-

Fig. 11, the inspection of which confirms that the HB analyses
with Ny > 3 lead to an excellent agreement with the TD result.

0.6 T T T T 30
——e—— Time Domain
——— HB- 1 Mode
————— HB - 2 Modes
——— HB -3 Modes -
———— HB -4 Modes
04K - ---- HB - 5 Modes 20
o %
=
0.2 10

Figure 10. LIFT COEFFICIENT OF 30 % BLADE SECTION OVER ONE
REVOLUTION COMPUTED WITH TD AND FIVE HB ANALYSES.

The real and imaginary part of computed by the TD anal-
ysis and the five HB analyses are plotted in Figures 12-a and 12-
respectively. These figures may lead one to believe that 2 ha
monics are sufficient to resolve the flow unsteadiness with th
HB analysis, particularly if one considers the real partcgf
These plots, however, show only the first harmonic of the un
steady flow. The fact that the hysteresis force loops highligh
that 2 harmonics are not sufficient to fully resolve the periodic
unsteady flow highlights that a non-negligible contribution of the
second harmonic is present. Since one of the main output fun
tionals of the yawed wind analysis is the time-dependent force ¢
the attachment of the blade root to the rotor hub, the contributio
of the higher order harmonics cannot be neglected in practice
applications, as doing so may result in the inaccurate estimat
of the time-dependent structural stress at the blade attachmel
The real and imaginary part of the absolute valuecpoftom-

plex than that of the 90 % section, because the reduced frequencyputed by the TD analysis and the 5 HB analyses are provided i

of the former is nearly 10 times that of the latter. The lift coef-
ficientc over one rotor revolution computed by the TD analysis
and five HB analysis witiNy = 1,...5 is depicted in Fig. 10.
These curves show that an accurate prediction by means of
the HB analysis is achieved witky > 3. More precisely, the
HB solution obtained wittNy = 3 still presents some discrepan-
cies with respect to the TD solution, whereas the HB solutions
for Ny = 4 andNy = 5 are practically superimposed on the TD
solution. The plot also highlights that, unlike in the case of the
90 % sectiong; increases agss increases and viceversa. This

Figures 13-a and 13-b respectively. The plot of the imaginary
part shows more clearly that at least 3 harmonics are required |
order to fully capture the viscous unsteady characteristics of thi
problem.

The convergence histories of the five HB analyses and the
of the TD solver for a particular physical time are reported in
Fig. 14. As for the section at 90 % blade height, the HB analyse
have been run untll <1.d —12; the iterative solution process
of each physical time-step of the TD analysis has been stoppe
either when, < 1.d — 12 or after 3000 MG iterations if at this

happens because the flow does not separate, possibly due to thetage this convergence tolerance had not been achieved. For mi

high value ofA, and therefore the airfoil response is closer to the

physical time-steps, the prescribed residual tolerancedof 12

steady ascending branch of a standard lift/AoA curve. The hys- has been achieved using all 3000 MG iterations. Unlike the cas

teresis cycles of;, ¢y andcy, are depicted in the three plots of

13

of the 90 % blade section, one now sees that the convergen
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Figure 11. HYSTERIS FORCE LOOPS OF 30 % BLADE SECTION
COMPUTED WITH TD AND FIVE HB ANALYSES (LINE LEGEND AS IN
FIG. 10): a) LIFT COEFFICIENT, b) DRAG COEFFICIENT, c) PITCHING
MOMENT COEFFICIENT.
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Figure 12. PRESSURE COEFFICIENT OF 30 % BLADE SECTION
COMPUTED WITH TD AND FIVE HB ANALYSES: a) REAL PART, b)
IMAGINARY PART.

the required level of convergence using fewer iterations than a
HB analyses. A closer inspection of this figure reveals that the
asymptotic convergence ratiee(the constant slope of the resid-

ual curves after the initial numerical transient) of the steady ant
the HB solver is about the smae. As discussed in the sectio
on the integration of the HB equations, these patterns may b
due to a significant nonlinearity of the unsteady flow, which re-
sults in a large contribution of the HB source terms to the overal
HB Jacobian. Such contribution may increase the non-normalit
of the HB Jacobian with respect to that of the steady equation:
resulting in an initially slower decay of the HB residuals. The
analysis of the sectional forces has highlighted that not only th
first but also the higher order harmonics contribute to this un:
steady flow. Therefore, the non-normality of the HB Jacobiar
is likely to increase wittNy, which may explain the increasing

histories of the 5 HB analyses are not superimposed, and thereduction of the initial convergence ratels is increased. The

convergence rate of the HB analyses appears to decre&e as

higher nonlinearity of the flow field of the 30 percent section

increases. Figure 14 also reports the convergence history for thewith respect to that of the 90 percent section is caused primal
steady problem, which shows that the steady solver converges toily by the higher reduced frequency of the motion of the former
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Figure 13. SKIN FRICTION COEFFICIENT OF 30 % BLADE SECTION
COMPUTED WITH TD AND FIVE HB ANALYSES (LINE LEGEND AS IN
FIG. 12-a): a) REAL PART, b) IMAGINARY PART.

section. It is the authors’ experience that the abovesaid depen-
dence of the HB convergence rate ldnq always increases with
the flow nonlinearities. As with the 90 percent blade section,
these HB analyses could be performed without the RK stabiliza-
tion previously discussed, namely using algorithm (28) for the
solution update. It has also been verified that the use of the stabi-
lized integration (29) results in negligible changes of the conver-
gence history of the 5 HB analyses with respect to the curves of
Fig. 14. The HB speed up parameter is reported in Table 3. One
sees that the accurate HB solution obtained With= 4 can be
obtained more than 10 times faster than with the TD analysis
reported herein. Similarly to what done in the case of the 90 per-

ulations withl, = 1.d — 12 and that witH, = 1.d — 09 reveals
that the maximum difference of the lift and drag coefficients
with respect to their averages over the third period computel
with I, = 1.d — 12 is of order 1d — 01%. The second row of
speed up parameters of table 3 refers to results computed usi
residual toleranck of 1.d — 09, and it shows that the HB solu-
tion obtained withNy = 4 can be obtained 8 times faster than
with the TD analysis.
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Figure 14. CONVERGENCE HISTORIES OF TD, HB AND STEADY
ANALYSES FOR 30 % BLADE SECTION

Table 3. ACCELERATION FACTORS OF HB ANALYSES WITH RE-
SPECT TO TIME-DOMAIN ANALYSIS FOR THE 30 % BLADE SECTION

Iy Ny 1 2 3 4 5
1.d-12|| speed UH)48.1 22.4/16.0{12.4/10.2
1.d-09| speed u4)30.7 15.3/10.6| 8.1 | 6.2

The quantitative effects of LSP on the estimate of the sec
tional lift force are assessed in the plot of Fig. 15, the abscisse
of which report time as a fraction of a period. The left ordinates
report the lift coefficient computed using LSP, and the right or-

cent blade section, the speed up parameters corresponding to the&linates report the absolute value of the percentage error betwe

analyses performed with=1.d — 09 have also been considered.
Comparing the results of the TD simulation with=1.d — 12
and that withl, = 1.d — 09 reveals that the maximum differ-
ence of the lift and drag coefficients with respect to their aver-
ages over the third period computed wlith=1.d — 12 is smaller
than 1d — 01%. Similarly, comparing the results of the HB sim-
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the lift coefficient computed with LSP and that computed with-
out. One sees that the maximum error is above 4 %. The inac
curacy of the prediction without LSP grows as the Mach numbe
decreases. In the case of turbulent conditions the inaccuraci
arising to the lack of LSP become even larger, and they may lea
to significantly different stall characteristics of the section [34].

Copyright (© 2011 by ASME



Figure 15. LIFT COEFFICIENT OF 30 % BLADE SECTION COM-
PUTED BY TD ANALYSIS WITH AND WITHOUT LOW-SPEED PRE-
CONDITIONING

CONCLUSIONS

The numerical models underlying the implementation of a
novel harmonic balance compressible Navier-Stokes solver with
low-speed preconditioning for wind turbine unsteady aerody-
namics have been presented. The integration of both the har-
monic balance and the time-domain equations is based on a
multigrid iteration using a multi-stage Runge-Kutta smoother,
and including local time-stepping and implicit residual smooth-
ing for further convergence acceleration. In the framework of
the dual-time stepping method used for solving the time-domain
problem, the explicit multigrid integration can present a numer-
ical instability when the local pseudo-time-step is much larger
than the physical time-step. Previous experience of the authors
with the harmonic balance solver described in this paper lead one
to believe that a numerical instability of similar origin can also
arise when using the same multigrid approach for the solution of
the harmonic balance equations. Therefore, a novel stabilization
procedure for the multigrid integration of the HB NS equations

has been designed and presented herein. The harmonic balance

solver with low-speed preconditioning is well suited for the anal-
yses of periodic wind turbine flows. The computational perfor-

mance and the accuracy of the technology being developed have

been assessed by computing the flow field past two sections of
a horizontal axis wind turbine blade in yawed wind with both
the time- and frequency-domain solvers. Results highlight that

the harmonic balance solver features accuracies comparable to

those of its time-domain counterpart, and yields a reduction of
computational costs of about one order of magnitude with re-
spect to the time-domain solver. The aerodynamic analyses pre-
sented herein are laminar and two-dimensional. A substantially
larger reduction of computational times is expected for the case
of periodic turbulent three-dimensional flows. The time-domain
analysis of these problems, in fact, is likely to require a higher
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time-resolution per period and possibly a larger number of cy
cles before a periodic state is achieved. In these circumstanc
the benefits of using the harmonic balance technology will be
even higher than those reported in this paper.
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