
ON THE PARALLELIZATION OF A HARMONIC BALANCE COMPRESSIBLE
NAVIER-STOKES SOLVER FOR WIND TURBINE AERODYNAMICS

Adrian Jackson
EPCC

James Clerk Maxwell Building
Mayfield Road

University of Edinburgh
Edinburgh EH9 3JZ, UK

adrian.jackson@ed.ac.uk

M. Sergio Campobasso∗

School of Engineering
James Watt Building South

University Avenue
University of Glasgow

Glasgow G12 8QQ, UK
sergio.campobasso@glasgow.ac.uk

Mohammad H. Baba-Ahmadi
School of Engineering

James Watt Building South
University Avenue

University of Glasgow
Glasgow G12 8QQ, UK

m.baba-ahmadi@aero.gla.ac.uk

ABSTRACT
The paper discusses the parallelization of a novel explicit

harmonic balance Navier-Stokes solver for wind turbine un-
steady aerodynamics. For large three-dimensional problems,
the use of a standard MPI parallelization based on the geomet-
ric domain decomposition of the physical domain may require
an excessive degree of partitioning with respect to that needed
when the same aerodynamic analysis is performed with the time-
domain solver. This occurrence may penalize the parallel effi-
ciency of the harmonic balance solver due to excessive commu-
nication among MPI processes to transfer halo data. In the case
of the harmonic balance analysis, the necessity of further grid
partitioning may arise because the memory requirement of each
block is higher than for the time-domain analysis: it is that of
the time-domain analysis multiplied by a variable proportional
to the number of complex harmonics used to represent the sought
periodic flow field. A hybrid multi-level parallelization paradigm
for explicit harmonic balance Navier-Stokes solvers is presented,
which makes use of both distributed and shared memory paral-
lelization technologies, and removes the need for further domain
decomposition with respect to the case of the time-domain anal-
ysis. The discussed parallelization approaches are tested on the
multigrid harmonic balance solver being developed by the au-
thors, considering various computational configurations for the
CFD analysis of the unsteady flow field past the airfoil of a wind

∗Address all correspondence to this author.

tubine blade in yawed wind.

INTRODUCTION
The aeromechanical design of modern large Horizontal Axis

Wind Turbines (HAWT’s) requires accurate analyses of complex
aerodynamic features. The variability of the environmental con-
ditions on a wide range of time-scales makes the operating condi-
tions of HAWT’s inherently unsteady. Several typical HAWT un-
steady aerodynamic problems can be viewed as periodic. This is
the case of stall-induced vibrations and the yawed wind regime,
which occurs when the freestream wind velocity is not orthog-
onal to the turbine rotor. The use of the Navier-Stokes (NS)
equations to study the unsteady aerodynamics associated with
these operating conditions can improve the predictive accuracy
of these unsteady flows with respect to lower-fidelity models,
but the solution of the unsteady NS equations for complex three-
dimensional 3D problems in the time-domain (TD) requires very
high computational times. Fortunately, the wallclock time re-
quired by the TD NS prediction of unsteady periodic flows can be
dramatically reduced by using a frequency-domain (FD) formu-
lation and solution of the governing unsteady equations. The har-
monic balance (HB) NS technology for the solution of unsteady
periodic flows [1] is one of the most promising FD NS methods.
The HB NS technology has been applied to the prediction of the
periodic flow associated with flutter and forced response of tur-
bomachinery blades [1–3], and various vibratory motion modes

1 Copyright c© 2011 by ASME

Proceedings of ASME Turbo Expo 2011 
GT2011 

June 6-10, 2011, Vancouver, British Columbia, Canada 

GT2011-45306 



of aircraft configurations [4–6]. For this type of application, it
has been observed that the use of the HB NS approach for the cal-
culation of periodic flows can lead to a reduction of the wallclock
time varying between one and two orders of magnitude with re-
spect to conventional TD NS analyses. Another successful and
computationally effective FD approach to the solution of un-
steady periodic flows is the nonlinear frequency-domain (NLFD)
method [7–9]. The NLFD technology has also been applied to
the simulation of the periodic flow past rotorcraft blades [10].
Several other FD methods have been developed in the past years,
among which a one-harmonic FD technique for the calculation
of periodic turbomachinery flows [11], which bears some resem-
blance to the HB approach of hatcla02, but differs from it in that
the calculation of the zeroth harmonic (mean state) is decoupled
from that of the first harmonic representing the sought unsteady
flow component. Numerous examples of the application of the
HB and NLFD technologies to periodic flows of engineering in-
terest exist, but a thorough review of all existing FD methods and
their application is beyond the scope of this report. This paper
presents and analyzes the strategies available for the paralleliza-
tion of a novel HB compressible multi-block NS multigrid solver
with Low-Speed Preconditiong (LSP) [12] for wind turbine un-
steady aerodynamics, the development and application of which
have recently been reported by the authors of this paper in the
article [13].

At the code level, the main alteration one has to introduce
in an existing TD NS solver to develop its HB counterpart is
that an additional dimension has to be added to all arrays of the
code (e.g.current flow solution and residual arrays), namely that
for the harmonic count in the Fourier space. As a consequence,
the memory requirement of the HB code grows linearly with the
number of retained harmonics, and this occurrence leads to se-
vere limitations on how HB NS parallel Message Passing Inter-
face (MPI) solvers can be used. Such limitations are caused by
the fact that in CFD codes, MPI is used in conjunction with do-
main decomposition. The whole computational domain is de-
composed in partitions or blocks, and each core of a computer
cluster node performs the operations required to update the so-
lution of one or more blocks. At prescribed time-points (syn-
chronization steps) all cores have to exchange flow information
regarding the boundaries of the block(s) each core looks after.
When using the HB NS solver, the memory needed by each block
increases linearly with the number of user-requested harmonics
with respect to the memory used to solve the same physical prob-
lem with the TD NS code. The HB simulation clearly requires
more memory than the TD one, but the most severe problem is
that the memory capacity of the computing cores may become
insufficient to handle blocks which are geometrically identical to
those of the TD simulation but require more memory due to the
additional Fourier-space dimension. This circumstance is very
likely to occur in large 3D applications since numbers of har-
monics as small as 5 cause the required memory to increase by

a factor of 10. Using MPI, the only solution to this problem
is to further decompose the computational domain, so that the
smaller geometric partitions can cope with the available memory
of the cores. Each partition is now geometrically smaller, but its
TD-memory requirement has to be multiplied by a factor propor-
tional to the number of requested harmonics. Thus the overall
memory demand of the geometrically smaller partitions can now
cope with the memory capacity of the core. The downside of this
approach is a reduction of the parallel efficiency due to the cre-
ation of additional interfaces across which the partitions have to
exchange boundary informations. Furthermore, additional man-
time is required when the domain-decomposition is performed
manually. This paper presents an effective hybrid parallelization
paradigm for HB NS solvers, which solves this problem by us-
ing a combined distributed and shared parallelization of the HB
solver. This implementation allows one to avoid altering the do-
main decomposition for the HB NS analysis with respect to that
used for the TD analysis.

After recalling the mathematical and numerical theory be-
hind the implementation of the time- and frequency-domain
multigrid (MG) NS solver reported in [13], this paper discusses
several options available for the parallelization of the frequency-
domain solver, and presents an optimal hybrid parallelization
of the HB solver based on both distributed and shared parallel
computing. Finally, the computational performance of the par-
allelization methods tested thus far is assessed by analyzing the
relationship between computational speed and used number of
cores when performing the frequency-domain analyses of the un-
steady periodic flow past a two-dimensional (2D) HAWT blade
section.

GOVERNING EQUATIONS
HAWT viscous flows can be computed by solving the NS

equations, a system ofNpde nonlinear partial differential equa-
tions (PDE’s) obtained by imposing the conservation of mass,
momentum and energy over a control volume. For 2D laminar
flows Npde = 4 because the momentum equation has only two
scalar components. Given a control volumeC with boundaryS,
the Arbitrary Lagrangian-Eulerian integral form of the 2D TD
NS equation is:

∂
∂t

(

Z

C (t)
UdC

)

+

I

S(t)
(Φi −Φv) ·dS= 0 (1)

The arrayU of conservative flow variables is defined as:

U = [ρ ρu ρv ρε]′

where the superscript′ denotes the transpose operator, andρ, u, v
andε are respectively the flow density, thex− andy−component

2 Copyright c© 2011 by ASME



of the flow velocity vector v, and the total energy per unit mass.
The definition of the total energy isε = e+(u2 +v2)/2, wheree
denotes the internal energy per unit mass. The generalized invis-
cid flux vectorΦi is:

Φi = Ei i + Fi j −vb U (2)

whereEi andFi are respectively thex− andy−components of
Φi , and they are both functions ofU. The vector vb is the velocity
of the boundaryS, and the flux term−vb U is its contribution
to the overall flux balance, which is nonzero only in the case
of unsteady problems with moving boundaries. The generalized
viscous flux vectorΦv is:

Φv = Evi + Fv j (3)

whereEv andFv are respectively thex− andy−components of
Φv, and they are both functions ofU.

The HB formulation of the NS equations assumes that the
fundamental frequencyω of the sought periodic flow field is
known. The unknown periodic flow field is viewed as a truncated
Fourier series in which only the firstNH harmonics are retained,
and the variableNH is a user given parameter. It has been noted
that a simpler implementation of the HB NS method is obtained
by reconstructing the Fourier coefficients of the truncated har-
monic series representing the sought periodic solution from the
knowledge of its temporal behavior at 2NH + 1 equally spaced
points over one period. Such points are defined by:

tn =
n

(2NH +1)

2π
ω

, n = 0,1, · · · ,2NH (4)

Using such TD reconstruction of the solution and the entire sys-
tem of conservation laws, leads to the so calledhigh-dimensional
harmonic balance formulation[14] of the NS equations:

ωDc

(

Z

CH(t)
UH dCH

)

+

I

SH (t)
(Φi,H −Φv,H) ·dSH = 0 (5)

where UH = [U(t0)′ U(t1)′ . . .U(tNH )′]′, Φi/v,H =
[Φi/v(t0)

′ Φi/v(t1)
′ . . .Φi/v(tNH )′]′, and similar expressions

hold for CH and SH . The symbolDc denotes a sparse block-
matrix of dimension[(2NH + 1) × (2NH + 1)], all blocks of
which are squared and have dimension(Npde×Npde). Moving
from the time- to the frequency-domain, the number of PDE’s
increases fromNpde to [Npde× (2NH + 1)]. Despite the fact
that the number of PDE’s to be solved has increased, the HB
approach allows one to compute unsteady periodic flows at

a substantially lower computational cost with respect to the
time-domain approach. More details on the formulation of the
TD NS equations and the complete derivation of the HB NS
equations are reported in [13].

CFD SOLVER
Space discretization

The structured multi-block finite volume cell-centered par-
allel CFD codeCOSA[13,15,16] solves the integral form of both
the TD conservation laws (system (1)) and the HB conservation
laws (system (5)) making use of a second order upwind scheme.
The discretization of the convective fluxes is based on Van Leer’s
MUSCLextrapolations and Roe’s flux-difference splitting. De-
noting byn the normal of the face of a grid cell, anddS the area
of such face, the numerical approximation to the continuous con-
vective flux componentΦi, f = (Φi ·n)dS through such face is:

Φ∗
i, f =

1
2

[

Φi, f (UL)+ Φi, f (UR)−
∂Φi, f

∂U
δU

]

(6)

Here the superscript∗, the subscriptf , and the subscriptsL andR

denote numerical approximation, face value, and value extrapo-
lated from the left and from the right, respectively. The numerical
dissipation depends on the generalized flux Jacobian∂Φi, f /∂U
and the flow state discontinuity across the cell face, defined by
δU = (UR−UL).

The discretization of the viscous fluxes is based on second
order centered finite-differences. The Cartesian derivatives of
the flow velocity components are computed with the chain rule,
using the derivatives of such components with respect to the local
generalized curvilinear coordinates associated with the grid lines,
and the grid metrics.

Integration of time-domain equations
The physical time-derivative of system (1) is discretized

with a second-order backward finite-difference. The set of non-
linear algebraic equations resulting from the space- and time-
discretization of system (1) is then solved with an explicit ap-
proach based on the use of a fictitious time-derivative (Jame-
son’s dual-time- stepping [17]). The discretization of the phys-
ical time- derivative of the unknown flow state by means of a
second order backward finite difference, and the introduction of
the derivative with respect to the fictitious timeτ yield the equa-
tion:

V
∂Q
∂τ

n+1

+ Rg(Qn+1) = 0 (7)

3 Copyright c© 2011 by ASME



where

Rg(Qn+1) =
3Qn+1−4Qn+ Qn−1

2∆t
V + RΦ(Qn+1) (8)

The entries of the arrayQ are the unknown flow variables at the
Ncell cells discretizing the computational domain. The arrayQ
can be viewed as made up ofNcell subarrays, each of which stores
theNpdeflow unknowns at a particular physical time. The length
of Q is therefore(Npde×Ncell). The arrayRΦ stores the cell
residuals, and its structure is the same as that ofQ. For each
cell, theNpde residuals are obtained by adding the convective
fluxesΦ∗

i, f and the viscous fluxesΦ∗
v, f through all the faces of

the cell. The symbolRg denotes instead a residual vector which
also includes the source terms associated with the discretization
of physical time-derivative∂U/∂t contained in Eqn. (1). The
diagonal matrixV stores the volumes of the grid cells. It can be
viewed as a block-diagonal matrix of size (Ncell×Ncell) with each
block being the identity matrix of size (Npde×Npde) multiplied
by the volume of the cell the block refers to. Note thatV is inde-
pendent of the physical time-level (denoted by the superscripts
n+ 1, n andn− 1) because in this report only rigid-body grid
motion is considered. The symbol∆t indicates the user-given
physical time-step. Equation (7) can thus be viewed as a sys-
tem of (Npde×Ncell) ordinary differential equations (ODE’s) in
which the unknown isQn+1, the flow state at time-leveln+ 1.
The calculation ofQn+1 is performed iteratively by discretiz-
ing the fictitious time-derivative(∂Q/∂τ)n+1 of Eqn. (7) with a
multi-stage Runge-Kutta (RK) scheme, and marching the equa-
tions in pseudo-time until a steady state is achieved. Such steady
state is the flow solution for the physical time being considered.
The convergence rate is then greatly enhanced by means of local
time-stepping (LTS), variable-coefficient centralimplicit resid-
ual smoothing(IRS) and afull-approximation schememultigrid
(MG) algorithm. Discretizing the fictitious time-derivative of
Eqn. (7) with a multi-stage RK scheme yields the following iter-
ative scheme used to obtain the solution update at each RK cycle:

W0 = Ql

Wk = W0−αk∆τV−1LIRS[Rg(Wk−1)+ fMG]
Ql+1 = WNS

(9)

wherek varies between 1 and the number of RK stagesNS, αk

is the kth RK coefficient,l is the RK cycle counter, andQl is
shorthand forQn+1

l . The symbolLIRS denotes the IRS operator,
andfMG is the MG forcing function, which is nonzero when the
smoother (9) is used on a coarse level after a restriction step [18].
The integration algorithm (9) takes a slightly different form when
a stabilization method, used to remove the numerical instability
of the MG iteration encountered in the solution of certain time-
dependent problems, is adopted. Further modifications of the

iterative scheme (9) are needed when using low-speed precon-
ditioning, required for the solution of low-speed flows such as
HAWT problems. Both extensions are reported in [13], and they
are omitted here because their consideration does not modify the
structure and the conclusions of the following discussion on the
parallelization of theCOSAsolver.

Integration of harmonic balance equations

At the differential level, the only difference between sys-
tem (1) and system (5) is that the physical time-derivative of the
former system is replaced by a volumetric source term propor-
tional to ω in the latter. The set of nonlinear algebraic equa-
tions resulting from the space-discretization of system (5) is thus
solved with the same technique used for steady problems [15],
namely the multi-stage RK smoother accelerated by LTS, IRS
and MG. The introduction of the derivative with respect to the
fictitious timeτ yields the equation:

VH
∂QH

∂τ
+ Rg,H(QH) = 0 (10)

where

Rg,H(QH) = ωVHDdQH + RΦ,H(QH) (11)

The arrayQH is made up of(2NH + 1) flow states referring
to the physical times defined by Eqn. (4). Therefore, one has
QH = [Q′

0 Q′
1 . . .Q′

2NH
]′ = [Q(t0)′ Q(t1)′ . . .Q(t2NH )′]′, and each

subarray ofQH has length(Npde× Ncell). The arraysRg,H

andRΦ,H have the same structure ofQH . The subarray(RΦ)n

(n = 0,1, · · · ,2NH) denotes the grid-residuals associated with
the convective and viscous fluxes at timetn. The subarray
(Rg)n denotes instead a residual vector which also includes the
source termωVHDQH . The diagonal matrixVH is given by
VH = I2NH+1⊗V. The symbolDd denotes a sparse block-matrix
of dimension[(2NH + 1)× (2NH + 1)], all blocks of which are
square and have dimension[(Npde×Ncell)× (Npde×Ncell)].

Equation (10) can thus be viewed as a system of[Npde×

Ncell × (2NH + 1)] ODE’s in the unknownQH . The calculation
of QH is performed iteratively by discretizing the fictitious time-
derivative(∂QH/∂τ) of Eqn. (10) with a four-stage RK scheme,
and marching the equations in pseudo-time until a steady state
is achieved. The IRS and the MG acceleration techniques are
also used exactly as for steady and TD problems. Discretizing
the fictitious time-derivative of Eqn. (10) with a multi-stage RK
scheme yields the following iterative scheme used to obtain the

4 Copyright c© 2011 by ASME



solution update at each RK cycle:

W0
H = (QH)l

Wk
H = W0

H +−αk∆τV−1
H LIRS,H [Rg,H(Wk−1

H )+ fMG,H ]
(QH)l+1 = WNS

H
(12)

where the HB MG forcing function is defined asfMG,H =
[fMG(t0)′ fMG(t1)′ . . . fMG(t2NH )′]′ with the (2NH + 1) values of
tn defined by Eqn. (4), and the HB IRS operatorLIRS,H can be
viewed as a[(2NH +1)× (2NH +1)] block-diagonal matrix, the
nonzero blocks of which are the(2NH +1) LIRS(tn) operators.

The authors of this article have found that the HB inte-
gration algorithm (12) becomes numerically unstable for some
time-dependent problems. More specifically, such an instability
has been first encounted when trying to use the HB MG itera-
tion (12) to compute the unsteady transonic flow past a pitching
airfoil. Such transonic HB analyses could be performed only
by using the stabilized HB MG iteration presented in the arti-
cle [13], and are reported in the article [4]. In essence, the sta-
bilization method of the HB MG iteration follows the steps of
the stabilization of the TD MG iteration that was first proposed
by Melsonet al. [19] and consists of treating implicitly the HB
source termωVHDdQH within each RK step. The introduction
of this feature into the explicit integration algorithm (12) leads
to a small increment of its computational cost, as the update pro-
cess will now require the inversion of a [(2NH +1)×(2NH +1)]-
matrix for each grid cell. In their experience with this HB MG
solver thus far, the authors of this paper have also found that the
use of the stabilization process is not always essential. As an ex-
ample, all analyses presented in these paper could be performed
without using the aforementioned stabilization, and it was also
found that the residual convergence histories of all calculations
reported herein were the same with and without the stabilizing
procedure. The articles [19] and [20] reported that the instability
of the TD MG iteration may occur when the physical time-step
∆t is significantly smaller than the pseudo-time step∆τ. With
transonic flows, for example, this may occur in the supersonic re-
gion upstream of a shock. However, the condition∆τ >> ∆t does
not occur for all types of fluid dynamics problems, and therefore
the stabilization of the TD MG iteration is not always required.
In the HB context, the equivalent physical time-step∆t is given
by ∆t = 2π/ω/(2nH + 1). Sinilarly to the TD case, numerical
instability of the HB MH iteration is expected to occur when
∆τ >> ∆t, but this cobdition does not occur for all fluid dynam-
ics problems, which could explain why the stabilized TD MG
iteration is not always required. The interested reader is referred
to [13] for the mathematical and numerical aspects of the stabi-
lized HB MG iteration, and for a discussion on the relationship
between the stabilization and the expected trends of the residual
converge history.

Other published studies have reported that, when solving

the HB equations with an implicit approach, it is not possible
to avoid an implicit treatment of the HB source term if the stabil-
ity of the integration process is to be maintained [5,6]. This con-
straint may require substantial code extensions if the HB solver is
built around an existing time-domain code. It may also yield very
large memory usage for storing the Jacobian associated with all
(2NH +1) flow states if a Krylov-subspace method with approx-
imate Jacobian-based preconditioning is used for the solution of
the linear systems arising at each step of Newton’s method. One
possible solution is to use an iterative stationary linear block-
solver such as block-Jacobi to solve the linear systems, as this
allows one to treat separately the Jacobians associated with each
flow snapshot during the integration [5]. An alternative solu-
tion to simplify the development of the HB technology around
an existing implicit solver is the treatment of the HB source term
presented in [21].

Finally. it should be noted that further modifications of the
iterative scheme (12) are needed when using low-speed precondi-
tioning [12,16], required for the solution of low-speed flows such
as HAWT problems. The LSP capability of theCOSAsolver has
been used for all analyses reported in this article, and its formu-
lation in the context of the stabilized HB MG iteration can be
found in reference [13].

PARALLELIZATION
The HBCOSAsolver is a multi-block code, and the structure

of most of its subroutines is:

do ib = 1, Nblock

do ih = 0, 2NH

do jcell = 1, Ncell, j

do icell = 1, Ncell,i

whereNblock is the number of blocks or partitions making up the
computational domain, andNcell,i andNcell, j are respectively the
number of cells in thei and j directions of the current block. In
the TD solver,NH = 0 and therefore there is one less loop. The
operations performed on a particular block are nearly entirely in-
dependent on those performed on all other blocks, and therefore
each block can be processed separately and in parallel. However,
the operations performed within each block, represented by the
loops over harmonics and cells, depend upon other data within
that block. From a parallelization viewpoint, the two innermost
loops in the above description, namely those over the block cells,
can be viewed as a single loop over all the cells of the block. In
the case of 3D problems and data structures, the above scheme
would feature three rather than two cell loops, but the paralleliza-
tion would not be affected. This is because the cell cycles either
loop over all the faces of the block cells (e.g.flux calculation), or
loop directly over the cells of the block (e.g.solution update), and
both functionalities are common to both 2D and 3D problems.

5 Copyright c© 2011 by ASME



There are two main options for the parallelization of this
type of code, shared or distributed memory. Distributed memory
parallelization based on the message passing library MPI [22]
has been the dominant method for parallelizing scientific codes
for the past ten or fifteen years, primarily due to the availabil-
ity of large distributed memory systems and the prohibitive cost
of large shared memory systems. Shared memory paralleliza-
tions, generally undertaken using the OpenMP [23] shared mem-
ory library, have been restricted to a number of specialized high-
performance computer (HPC) systems or to very small numbers
of processors. However, given the current trend for multi-core
processors and the fact that the number of cores in a single pro-
cessor is rapidly increasing, shared memory parallelization is
becoming more viable. Indeed, it is now possible to purchase
systems with 48 cores that all have access to the same memory
(in actual fact a 48-core shared memory system) as entry level
servers, providing relatively large shared memory resources at
little cost. With the processor manufacturers aiming for hundreds
of cores in a single processor in the near future, shared memory
systems with large numbers of cores at a relatively low cost are
likely to be available soon.

For the reasons discussed above, both a shared and a dis-
tributed memory parallelization of theCOSAcode have been
considered. The code parallelization is required because, al-
though the runtime of the HB solver for any realistic 3D turbu-
lent simulation is expected to be at least one order of magnitude
smaller than that required by the TD solver, the serial execution
of this type of HB analysis is still likely to require several days of
computing. This is a serious limitation for the deployment of the
HB technology in industrial HAWT analysis and design systems.
The reduction of these runtimes necessitates the use of parallel
computers. With any parallel implementation there is a trade-off
between the cost of the parallelization (both in terms of the effort
required to construct the parallel code and in terms of the extra
runtime required for the operation of the parallel parts of the code
including communications) and the performance improvements
achieved by using many more processors to execute the program.
For a parallel implementation to perform well, one needs to en-
sure that there is sufficient work for the parallel parts of the com-
putation to do to mitigate the cost of the parallelization. From a
computational viewpoint, the more work each parallel part of the
program has to do the more efficient the parallelization is likely
to be.

The following three subsections outline the approach to par-
allelizing the code using OpenMP, MPI, and a hybrid model us-
ing both OpenMP and MPI. The benefits and drawbacks of each
approach are also discussed.

OpenMP parallelization
There are a number of options on how the shared memory

parallelization can be undertaken. OpenMP generally exploits

loop parallelization, taking independent iterations of loops and
distributing them to a group of threads that perform these sets of
independent operations in parallel. Since each of the threads can
access shared data, it is generally straightforward to parallelize
any loop, and no structural change to the program is required.
However, this model of parallelization does impose an overhead
for each loop that is parallelized: each parallelized loop requires
some operations to set up the threads that will be undertaking
the parallelization and the data structures they need to operate
with. The performance of these operations has a detrimental ef-
fect on the runtime. However, this overhead is generally small as
long as the loops that are parallelized are large and contain suf-
ficient computational work. In this circumstance, such overhead
is negligible with respect to the improved performance obtained
by parallelizing the code. One additional observation is that for
an OpenMP parallelization to be efficient, the number of times
this overhead is incurred needs to be minimized. Therefore, in
an attempt to reduce parallel efficiency losses, the computation-
ally less intensive loops of theCOSAsolver have not been paral-
lelized.

Given the general structure of a routine of theCOSAcode
outlined in the introduction to this section, there are three options
for the OpenMP parallelization:a) over the block loop,b) over
the harmonic loop, andc) over the cell loop. As an overhead is
incurred each time a loop is parallelized, the higher the level of
the loop the parallelization is applied at, the lower the overheads
will be, as discussed in [24]. Therefore, the ideal loop for an
OpenMP parallelization in the typicalCOSAis the block loop.

Beside the aforementioned overheads, another major factor
that can affect the performance of an OpenMP parallelization is
the amount of work to be parallelized. The parallel loop should
have enough iterations to enable one to use concurrently a rea-
sonably large number of processors. If the parallel loop has a
small number of steps, one can only use a small number of pro-
cessors, thus restricting the potential benefits of the paralleliza-
tion. Therefore, while parallelizing over the block loop is poten-
tially the most efficient way to use OpenMP for this code, this
will only be effective if there are enough blocks in the simulation
to use all the available processors. This type of parallelization
is efficient for complex geometries, where many blocks are re-
quired to handle the topological complexity. For the HB analysis
of the flow field past simple geometries, where only a small num-
ber or even just one block is used, a block level OpenMP paral-
lelization will provide little or no benefit to the overall runtime.
In this circumstance, an OpenMP parallelization of the harmonic
loop is used, and this enables one to reduce computational times
even for geometrically simpler problems. While the harmonic
level OpenMP parallelization is an acceptable option for simula-
tions which use the harmonic balance method, there still remains
the problem of how to use the shared memory parallelization for
TD analyses of aerodynamic flows of geometrically simple do-
mains discretized by means of a small number of blocks. In this

6 Copyright c© 2011 by ASME



case,NH = 0 and thus the harmonic parallelization cannot be ex-
ploited. Furthermore, for HB simulations with small numbers of
blocks and using small numbers of harmonics, parallelization is
also restricted. For these situations, where both the block level
and the harmonic level parallelization are not appropriate, the
parallelization is performed at the lowest level, namely at that of
the loop over the block cells. Although this parallelization at a
low loop level is not optimal, this cell parallelization is the only
place where the OpenMP parallelization is applicable in situa-
tions where both the block and harmonic loops have small in-
dices. Though not optimal, this parallel set-up will still reduce
the overall runtime of the simulation.

All three OpenMP parallelizations have been implemented
and each one can be selected when the code is compiled. The
relative performance of the three parallelizations for a number of
simulations is discussed in the results section of this paper.

MPI parallelization
Given the general code structure outlined in the introduc-

tion to this section, the only feasible target for an MPI-based
distributed memory parallelization is to distribute the blocks to
individual cores, with each core working on one or more blocks.
The interdependence of calculations on the data within a single
block makes it difficult to distribute parts of a single block across
cores without having large amounts of communication to transfer
the data required for the calculations among those cores. There is
a long history of parallel implementations of NS solvers [25–27]
using the method of distributing blocks to cores to work upon.

The MPI parallelization necessitates altering the code,
adding functionality to perform parallel I/O and communicate
data between blocks, that is passing changes in the data on the
edge of blocks to neighboring blocks (halo communications).
The MPI parallelization is more involved than the OpenMP par-
allelization, as the former requires code changes to explicitly
distribute the simulation data, and perform the halo data com-
munications. Distributing simulation blocks ensures that only
a minimal amount of data needs to be communicated to under-
take the calculations, but communication is nevertheless costly
in terms of computational time. The benefit of the MPI over the
OpenMP parallelization is that once the MPI parallel program
has been set up, there are no overheads to the parallelization ex-
cept for the explicit communications that have been added to the
program. This is in contrast to OpenMP codes, where each paral-
lel loop of the program has a small amount of overhead creating
that parallelization. Additionally, all aspects of MPI programs
are generally run in parallel, whereas only the parts of the pro-
gram that the user/developer has parallelized are run in paral-
lel in OpenMP programs. Therefore, one would expect the MPI
version ofCOSAto achieve a better computational performance
compared to its block OpenMP counterpart. The actual perfor-
mance achieved is discussed in the results section.

The MPI parallelization is explicitly linked to the number of
blocks in the simulation, so it cannot provide any benefit for sim-
ulations with small numbers of blocks. If the number of available
processors is larger than the number of blocks, the given compu-
tational mesh could be subdivided into a larger number of blocks,
so that all available processors can be used. Another important
scenario in which further grid partitioning may be mandatory
is that of large 3D simulations using a relatively large number
of blocks to accomodate the geometric complexity of the prob-
lem and running an MPI CFD solver. If the multi-block grid has
been generated to run a steady and/or TD analysis using all the
available memory of the cluster nodes, one cannot use the same
grid to perform a HB analysis on the same computer, because
the blocks of this grid would have a memory requirement that
is about 2NH + 1 times that used by the steady and TD solvers.
Hence the existing multi-block grid needs further partitioning be-
fore the HB analysis can be performed.

The use of further grid partitioning has several drawbacks.
One is that the overall number of halo cells would increase, and
this would have a negative impact on the efficiency of the MPI
code due to the increased computational burden associated with
the communication of halo data among MPI processes. Ad-
ditionally, further partitioning of a balanced multi-block grid
(i.e.a grid where all the blocks have a similar number of cells)
may result in difficulties encountered when simultaneously try-
ing to keep the number of halo nodes within acceptable limits
(e.g.by not increasing excessively the overall number of blocks),
and keeping the multi-block grid balanced. This property has a
strong impact on the efficiency of the MPI code, as a balanced
grid results in a balanced load distribution of all MPI processes,
and thus avoids any MPI process waiting in an idle state at a
synchronization point until all other processes have completed
their work. An additional inconvenience of further grid trans-
formations is that these operations would require additional user
time. This user time overhead could only be avoided by devel-
oping additional software, namely by coding up in a preproces-
sor or directly in the CFD solver the process of transforming a
given structured multi-block grid into one with more and smaller
blocks.

It should be emphasized that the aforementioned reduction
of the computational performance associated with a high level of
grid partitioning refers to explicit integration approaches, such as
the multigrid iteration presented in this paper. This reduction is
caused primarily by the overhead of the MPI process communi-
cations, and no significant effect of further domain decomposi-
tion on the convergence rate of the solver is experienced. In the
case of many implicit solvers, an excessive degree of domain de-
composition also reduces the overall computational performance
of the integration. However, this happens because the precondi-
tioner used to solve the linear systems associated with the lin-
earizations of the NS equations becomes increasingly less effec-
tive as the block size decreases. Hence, the convergence rate

7 Copyright c© 2011 by ASME



of the preconditioned linear solver decreases as the number of
partitions increases. The interested reader is referred to the arti-
cle [28] and the references therein for a review on the problem of
the non-scalability of these preconditioners for the implicit solu-
tion of the NS equations.

The issues associated with excessive grid partitioning can be
circumvented by using ahybrid parallelization method, as dis-
cussed below.

Hybrid parallelization
Given that there are simulation scenarios in which it may

be more convenient, simpler, and efficient to keep the number of
blocks within certain bounds, and these blocks can be large and
therefore entail a large amount of computational work, the ideal
parallelization would be able to distribute both the blocks and
the work inside the blocks across processors to provide optimal
performance. If simulations have fewer large blocks, however,
they may struggle to fit such blocks into the memory available
to a single processor. Noting that the majority of modern high-
performance parallel computers are made up of a large number of
individual nodes which are themselves shared-memory systems
connected together, an effective solution meeting the demands of
this type of large simulation would be to provide a paralleliza-
tion of the program that combines parts of both the MPI and
OpenMP parallelization, namely ahybrid parallelization. This
strategy aims to combine the flexibility of the OpenMP solu-
tions with the expected performance of the MPI solution. As the
MPI parallelization distributes work over blocks, the choice of
the OpenMP block parallelization is excluded for the hybrid sys-
tem. So this latter uses MPI for the block distribution and either
the harmonic loop or the cell loop parallelization of OpenMP.

As an example, consider the case of a HB analysis with a 10-
block mesh and 10 harmonics. If further grid partitioning is to be
avoided, a pure MPI simulation could use 10 cores at most. The
OpenMP simulation could ideally use 10 cores if selecting the
block or harmonics level loop parallelizations, and potentially
more cores for the cell level parallelization. If a HPC system
composed of 64 8-core nodes (giving a total of 512 cores which
can be used for a MPI program) is available, the pure OpenMP
parallelizations could actually use the 8 cores of a single node at
most, and the pure MPI parallelization could use 10 cores from
two nodes at most. A hybrid parallelization could instead use 10
nodes for the MPI parallelization and the 8 cores of each node for
the OpenMP harmonic parallelization. Provided that the individ-
ual blocks require sufficient computational work to justify using
8 cores, then this method of parallelization allows for the con-
current use of 80 cores. Furthermore, each block would have
access to the whole memory of the node, rather than just the
memory available to one core. Therefore, the hybrid simula-
tion allows access to almost 10 times the memory of the other
types of parallelizations. This would allow for simulations with

very large blocks to be undertaken without having to split those
blocks down into smaller blocks to match the memory and com-
putational resources of a particular high-performance computer.

RESULTS
The efficiency of the three OpenMP, the MPI and the hybrid

MPI/OpenMP parallelizations has been assessed by computing
the laminar unteady flow field past the blade section of a HAWT
in yawed wind. The blade height is 45.7 m, its rotational speedω
is 17.5 RPM, the freestream wind velocityVf s is 14 m/s, and
a yaw angleδ of 30o is assumed. The considered blade section
is the airfoil at 90 percent blade height, which has a chordc of
3.16 m and a twistγ of 3.7o. A kinematic model establishing
the relationship between the flow conditions experienced by the
section of a HAWT blade in yawed wind and the 2D harmonic
motion of the airfoil in the circumferential direction has been
presented in the article [13]. This model allows one to calculate
the periodic flow field past the airfoil by means of a 2D simula-
tion with harmonically moving grid, and to determine both the
farfield data and the motion amplitude required by this simula-
tion. The angular frequency of the motion equals the rotational
speed of the turbine, and the reduced frequencyλ can be defined
asλ = ωc/Wf s, whereWf s is the modulus of the equivalent 2D
freestream velocity, namely the relative velocity vector associ-
ated with the component of the absolute farfield velocity orthog-
onal to the rotor plane. The relative 2D angle of attackφ f s is
obtained by subtracting the twistγ to the in f low angleα f s, the
inclination of the equivalent 2D freestream velocity on the rotor
plane. Choosing a reference temperature of 288K, one can cal-
culate the Mach numberM f s corresponding toWf s. The set of
input data used for the 2D unsteady moving-grid simulations of
the blade sections is reported in Table 1. The airfoil selected

Table 1. INPUT PARAMETERS FOR THE 2D UNSTEADY MOVING-

GRID CFD ANALYSES OF THE SECTIONS AT 90 PERCENT BLADE

HEIGHT

M f s α f s (o) φ f s (o) h0/c λ

0.22 9.1 5.4 1.21 0.076

for the blade section is the NACA0012 airfoil, and the Reynolds
number has been set to 1000. The computational mesh used for
all TD and HB aerodynamic analyses is depicted in Fig. 1. This
C-grid has 577 points along the airfoil, 97 points in the grid cut,
and 97 points in the normal-like direction. The farfield boundary
is placed at about 20 chords from the airfoil, and the distance of
the first grid points off the airfoil surface from the surface itself is
about 0.01 % of the chord. All TD and HB analyses reported in

8 Copyright c© 2011 by ASME



Figure 1. COMPUTATIONAL MESH.

this paper have been performed using the multigrid solver with 3
grid levels and a CFL number of 3.

The airfoil and the whole grid are inclined by the twist an-
gle γ on the horizontal direction, and the whole grid undergoes a
horizontal sinusoidal motion defined byh0sinωt. The TD sim-
ulation has been performed using 128 time-intervals per period,
and running the simulations for 3 periods. All HB aerodynamic
analyses have been performed forNH varying between 1 and 5.
Note that the choice of a relatively thin airfoil with respect to
those typically used in HAWT’s, and the lack of turbulence mod-
eling, result in this unsteady flow not being fully correspondent
to those of real HAWT yawed conditions. The main objective of
the following analyses, however, is to assess the efficiency of the
various parallelization strategies of the HB solver rather than per-
forming a detailed aerodynamic analysis of a particular HAWT
problem. More detailed aerodynamic analyses performed with
both the TD and HB solvers, and a cross comparison of the ac-
curacy and computational performance of both methods are re-
ported in the article [13], which highlights the suitability of the
HB NS with LSP for periodic HAWT flow analyses. This is due
to the fact that a relatively small number of harmonics allows one
to maintain a high level of temporal accuracy, and reduce compu-
tational times by more than one order of magnitude with respect
to the TD approach.

The hysteresis cycles of the lift coefficient computed by the
TD simulation and the 5 HB simulations are depicted in Fig. 2,
which shows that the HB analyses withNH ≥ 2 lead to an ex-
cellent agreement with the TD result. The convergence histories
of the five HB analyses and that of the TD solver for a partic-
ular physical time are reported in Fig. 3. The variable on the
x-axis is the number of multigrid iterations, and the variablelr

on they-axis is the logarithm in base 10 of the 2-norm of the
RMS of all cell-residuals for allNpde equations. The HB anal-
yses have been run untillr ≤ 1.d− 12; the iterative solution
process of each physical time-step of the TD analysis has been
stopped either whenlr ≤ 1.d−12 or after 3000 MG iterations if
at this stage this convergence tolerance had not been achieved.
For most physical time-steps, however, the prescribed residual
tolerance of 1.d−12 has been achieved well before the limit of
3000 MG iterations. An interesting feature is that the conver-
gence histories of all HB analyses are practically superimposed,
and thus independent ofNH . Since all HB analyses reported
herein did not require the use of the stabilized integration pre-
sented in [13], the cost of a single HB MG iteration is with good
approximation proportional to 2NH + 1. The HBspeed-uppa-
rameter, defined as the ratio of the wallclock time required to
calculate three periods with the TD solver and a single period
with the HB solver for each of the adopted five values ofNH is
reported in Table 2. The first row of speed-up parameters refers
to results computed using the aforementioned residual tolerance
lr of 1.d− 12, and it shows that the accurate HB solution ob-
tained withNH = 3 can be obtained 15 times faster than with
the TD analysis reported herein. The blade forces, however, may
achieve an acceptable level of convergence with less stringent
residual tolerances. Indeed, comparing the results of the TD sim-
ulation with lr = 1.d− 12 and that withlr = 1.d− 09 reveals
that the maximum difference of the lift and drag coefficients
with respect to their averages over the third period computed
with lr = 1.d−12 is smaller than 1.d−01%. Similarly, compar-
ing the results of the HB simulations withlr = 1.d−12 and that
with lr = 1.d−09 reveals that the maximum difference of the lift
and drag coefficients with respect to their averages over the third
period computed withlr = 1.d−12 is of order 1.d−02%. The
second row of speed-up parameters of table 2 refers to results
computed using residual tolerancelr of 1.d− 09, and it shows
that the HB solution obtained withNH = 3 can be obtained 8
times faster than with the TD analysis.

Table 2. ACCELERATION FACTORS OF HB ANALYSES WITH RE-

SPECT TO TIME-DOMAIN ANALYSIS FOR THE 90 % BLADE SECTION

lr NH 1 2 3 4 5

1.d-12 speed-up34.6 20.7 14.8 11.5 9.4

1.d-09 speed-up19.0 11.2 8.1 6.2 5.2

The Mach number contours for the position in which the
airfoil has maximum speed and moves to the right (cosωt = 1)
are presented in Fig. 4. For the same position and velocity,
Fig. 5 depicts the percentage differenceE of local Mach num-

9 Copyright c© 2011 by ASME



Figure 2. LIFT COEFFICIENT HYSTERIS LOOPS OF 90 % BLADE

SECTION COMPUTED WITH TD AND FIVE HB ANALYSES.

Figure 3. CONVERGENCE HISTORIES OF TD AND HB ANALYSES

FOR 90 % BLADE SECTION

ber betwee the result of the TD simulation and that of the HB
simulation withNH = 3. The definition of this variable isE =
[(MTD−MHB3)/M f s]×100, and Fig. 5 highlights that the local
errorE of the HB simulation with 3 harmonics relative to the TD
result is everywhere smaller than 0.06 percent.

The parallel efficiency of the OpenMP block, harmonic and
cell parallelizations, and the MPI parallelization have been as-
sessed on three different clusters. The nodes of the first clus-
ter (MATRIX) have 8 cores and are 2-way quad-core Opteron
2.1GHz with 32 GB of RAM. The second cluster is a Cray XT6
with 24-core nodes, each made up of 2-way 12-core Opteron
2.1GHz Magny Cours processors with 32GB of memory. The
third cluster is a Bull machine with 8-core nodes, each consist-
ing of 2-way quad-core Intel Xeon X5570 (Nehalem-EP) 2.93
GHz processors with 24 GB of memory. Two 1-block meshes
have been used to assess the parallel efficiency of the OpenMP

Figure 4. MACH CONTOURS FOR MAXIMUM AIRFOIL SPEED

(cosωt = 1).

Figure 5. CONTOURS OF MACH NUMBER ERROR OF HB 3 WITH

RESPECT TO TD RESULT FOR MAXIMUM AIRFOIL SPEED (cosωt =
1).

harmonic and cell parallelizations. One is the (769×97) grid de-
scribed earlier in this section; the other is a (2305×289) C-grid
with 1729 points along the airfoil, 289 points in the grid cut, and
289 points in the normal-like direction. The farfield boundary
is placed at about 20 chords from the airfoil, and the distance
of the first grid points off the airfoil surface from the surface it-
self is about 0.007 % of the chord. In the rest of this section,
the former grid is referred to as ’coarse grid’, and the latter one

10 Copyright c© 2011 by ASME



as ’fine grid’. Multi-block grids are required for testing theef-
ficiency of the OpenMP and MPI block parallelizations. To this
end, both the coarse and the fine 1-block grids have been trans-
formed into 32-block counterparts. Both multi-block grids have
been obtained by defining 16 blocks in the circumferential di-
rection and 2 blocks in the normal-like direction. All blocks of
the coarse multi-block grid have the same size, namely 49 points
in the circumferential direction and 49 points in the normal-like
direction. All blocks of the fine multi-block grid also have the
same size, namely 144 points in the circumferential direction and
144 points in the normal-like direction. This partitioning pattern
made up of ’square blocks’ results in a minimal number of halo
cells. This feature contributes to the reduction of the overhead
of the MPI code, as it minimizes the amount of halo data to be
exchanged among MPI processes.

In order to measure the parallel efficiency of the OpenMP
block, harmonic and cell parallelizations, a speed-up factor de-
fined as the ratio of the wallclock time taken by the HB analy-
sis using one thread and the wallclock time taken by the same
HB analysis using a given number of threads has been used. All
OpenMP HB analyses use 8 harmonics. The coarse-grid calcu-
lations are run for 500 multigrid cycles, and the fine-grid calcu-
lations are run for 50 multigrid cycles. The low-speed precon-
ditioner is used for all calculations reported in this paper. The
parallel efficiency of the OpenMP harmonic and cell paralleliza-
tions as functions of the number of threads is reported in Fig-
ures 6 and 7 respectively. Both the coarse and fine 1-block grids
have been used for these simulations, and the same calculations
have been performed on all three available computer clusters.
The first part of each entry of the legends provides the number of
cores and the type of the processor of the nodes of the cluster the
analyses have been run on. The second part of the entry identifies
the refinement of the adopted grid: the symbols ’cs-g’ and ’fn-g’
denote coarse and fine grid respectively. As expected, the speed-
up grows in a sublinear fashion with the number of threads in all
cases, giving values of about 2.5 for calculations using 8 threads.
The efficiency of the harmonic and cell parallelization appears
to be quite similar, in contrast to the predictions made in the
preceding sections. One of the possible reasons for this could
be that the strucure of a few routines does not conform to the
general scheme provided in the section ’parallelization’, as the
harmonic and cell loops are swapped. Such an inversion results
in a penalization on the parallel efficiency of the solver based on
the harmonic parallelization. It should also be noted that some
of the routines have deliberately not been parallelized, and this
has been made in the attempt to reduce the OpenMP paralleliza-
tion overheads previously discussed. Further investigations are
presently underway to verify whether the parallelization of part
of the remaining serial routines may lead to an overall positive
effect on the parallel efficiency of the OpenMP parallelizations.

The parallel efficiency of the OpenMP block, harmonic, and
cell parallelizations for the coarse and fine 32-block analyses

Figure 6. SPEED-UP FACTORS OF HB8 ANALYSIS USING 1-BLOCK

COARSE AND FINE GRIDS ACHIEVED WITH OPENMP HARMONIC

PARALLELIZATION.

Figure 7. SPEED-UP FACTORS OF HB8 ANALYSIS USING 1-BLOCK

COARSE AND FINE GRIDS ACHIEVED WITH OPENMP CELL PARAL-

LELIZATION.

with NH = 8 are reported in Figures 8, 9 and 10 respectively.
The same calculations have been performed on all three avail-
able clusters. Also in this case, the speed-up of all three OpenMP
parallelizations varies in a sublinear fashion. but the parallel ef-
ficiency of the higher-level block parallelization is higher than
that of the lower-level harmonic and cell parallelizations. In fact,
the efficiency of the harmonic and cell parallelization using 8
threads is about 2.5, whereas that of the block parallelization

11 Copyright c© 2011 by ASME



using the same number of threads is about 4. An interesting
phenomenon is clearly highlighted by the data referring to the
Cray cluster featuring the 24-core Opteron for calculations with
more than 8 threads. Figures 9 and 10 show that the efficiency of
the OpenMP harmonic and loop parallelizations is always higher
when using the fine rather than the coarse grid, and the differ-
ence between the two efficiencies rapidly grows as the number
of threads goes to 24. In the case of the OpenMP harmonic par-
allelization, this happens because the number of parallel loops is
the same in the coarse and fine grid calculations, but the amount
of work of each step of such parallel loops is bigger when using
the fine grid. Therefore, a comparable parallel overhead asso-
ciated with setting up the parallel loops has a smaller impact in
the case of the fine grid calculation. The same mechanism takes
place in the case of the OpenMP loop analyses, though in this
case one also has more parallel loops with both the coarse- and
fine-grid calculations, and this effect tends to lower the parallel
efficiency of both sets of calculations. Nevertheless, the effect
associated with the greater amount of work at each step of the
parallel loops when using the fine grid prevails, and therefore
the parallel efficiency of the fine-grid calculations remains sig-
nificantly higher than that of their coarse-grid counterpats when
using the OpenMP loop parallelization. The results presented
thus far also show that the performance of the harmonic and
lopp parallelizations is worse in the case of the multi-block grids.
This is due to the fact that, when using either parallelization with
a multi-block grid, the number of parallel loops is higher and
the amount of work of each parallel loop is smaller than with
a single-block grid. Both occurrences significantly reduce the
parallel efficiency of the multi-block with respect to that of the
single-block grid analysis.

In the case of the MPI parallelization, the definition of the
speed-up parameter is the same as for the OpenMP case, except
for the fact that threads are replaced by processes. One struc-
tural difference between the MPI and the OpenMP block par-
allelization is that an MPI process can handle more than one
block, whereas an OpenMP thread always looks after the op-
erations associated with a single block. The HB analyses with
8 harmonics using the coarse and fine 32-block grids have been
run on all three available clusters. The coarse grid amalysis has
used 1000 MG cycles and the fine grid analysis has used 100
MG cycles. The speed-up factors of the MPI HB analyses are
reported in Fig. 11. Also in the case of the MPI parallelization,
the speed-up grows in a sublinear fashion with the number of
processes. As expected, however, the efficiency of the MPI par-
allelization is substantially higher than that associated with the
OpenMP parallelizations. The highest speed-up is obtained on
the MATRIX cluster, where the speed-up observed when using
32 cores is about 24 with both the coarse- and the fine-grid anal-
ysis.

The parallel efficiency of the hybrid MPI/OpenMP HB
solver has been assessed by using the 32-block fine grid, choos-

Figure 8. SPEED-UP FACTORS OF HB8 ANALYSIS USING 32-BLOCK

COARSE AND FINE GRIDS ACHIEVED WITH OPENMP BLOCK PAR-

ALLELIZATION.

Figure 9. SPEED-UP FACTORS OF HB8 ANALYSIS USING 32-BLOCK

COARSE AND FINE GRIDS ACHIEVED WITH OPENMP HARMONIC

PARALLELIZATION.

ing 8 harmonics to represent the sought periodic flow field and
performing 100 MG iterations. The speed-up factor has been de-
fined as the ratio of the wallclock time taken by the HB analysis
using one cluster node and the wallclock time taken by the same
HB analysis using a given number of nodes. The performance as-
sessment of the hybrid code has been performed on the Cray and
Bull clusters. In the case of the 8-core processor, one MPI pro-
cess per node and eight OpenMP threads per process (handling

12 Copyright c© 2011 by ASME



Figure 10. SPEED-UP FACTORS OF HB8 ANALYSIS USING 32-

BLOCK COARSE AND FINE GRIDS ACHIEVED WITH OPENMP CELL

PARALLELIZATION.

Figure 11. SPEED-UP FACTORS OF HB8 ANALYSIS USING 32-

BLOCK COARSE AND FINE GRIDS ACHIEVED WITH MPI PARAL-

LELIZATION.

the computational work associated with the flow harmonics of
their MPI process) are used for all calculations. In the case of the
24-core processor, four MPI processes per node and six OpenMP
threads per process (handling the computational work associated
with the flow harmonics of their MPI process) are used for all
calculations. The parallel efficiency of the hybrid MPI/OpenMP
parallelizations as functions of the number of nodes is reported
in Figures 12. The first part of each entry of the legends provides

the number of cores and the type of the processor of the nodes of
the cluster the analyses have been run on. The second part of the
entry identifies the type of the adopted OpenMP parallelization:
the symbols ’hyb-lp’ and ’hyb-nh’ denote loop and harmonic par-
allelization respectively. These results highlight a generally good
scalability of the hybrid parallelizations of the HB code. The best
efficiency is observed on the Bull cluster, where the parallel effi-
ciency of the 32-node analyses varies between 28 and 30.

Figure 12. SPEED-UP FACTORS OF HB8 ANALYSIS USING 32-

BLOCK FINE GRID ACHIEVED WITH HYBRID MPI/OPENMP PARAL-

LELIZATION.

CONCLUSIONS
The analysis of HAWT periodic flows by means of a har-

monic balance Navier-Stokes solver enhanced with low-speed
preconditioning can reduce runtimes by more than one order of
magnitude with respect to the corresponding time-domain analy-
sis. Despite such reduction, wallclock times required for the HB
aerodynamic analysis of 3D turbulent HAWT flows will remain
high. For this reason, one fundamental means of accelerating the
diffusion of this emerging technology is to use advanced parallel
computing strategies. The fact that the memory requirement of
the HB solver increases linearly with (2NH + 1) with respect to
the memory requirement of the conventional time-domain solver,
with NH being the number of retained complex harmonics, yields
substantially higher memory demands of the HB code with re-
spect to its TD counterpart. Given the usual structure of modern
parallel machines, consisting of interlinked computational nodes,
each of which is essentially a multi-core distributed memory unit,
the aforementioned enhanced memory requirement of the HB

13 Copyright c© 2011 by ASME



solver poses grid partitioning constraints for its use in parallel.
This paper has discussed and demonstrated a hybrid distributed
(MPI)/ shared (OpenMP) parallelization strategy for the paral-
lelization of explicit multigrid HB solvers which will allow an
optimal exploitation of modern parallel computers for HB NS
HAWT aerodynamic analyses, thus boosting the deployment of
this CFD technology in present and future design practice.

The underlying MPI and OpenMP parallelizations have also
been discussed and their performance analyzed. Though not
thoroughly reported in this paper, the tests conducted with the
prototype versions of the presented parallelizations of the HB
COSA solver have highlighted that the parallel efficiency of the
underlying MPI and OpenMP parallelizations can vary signifi-
cantly depending on the chosen compiler, the processor type, and
the hardware/software used to connect the cluster nodes. These
issues are beyond the scope of this paper, and will be reported
in forthcoming publications along with the optimization of the
individual MPI and OpenMP parallelizations.

ACKNOWLEDGMENT
This work has been supported by the Engineering and Phys-

ical Sciences Research Council under grant EP/F038542/1. Part
of the simulations reported herein were performed on the MA-
TRIX cluster at the Consorzio Interuniversitario per le Appli-
cazioni di Supercalcolo di Universita’ e Ricerca (CASPUR),
which is hereby acknowledged. EPCC is also kindly acknowl-
edged for its support on parallel computing matters.

REFERENCES
[1] Hall, K., Thomas, J., and Clark, W., 2002. “Computations

of unsteady nonlinear flows in cascades using a harmonic
balance technique”.AIAA Journal, 40(5), May, pp. 879–
886.

[2] Su, X., and Yuan, X., 2010. “Implicit Solution of Time-
Spectral Method for Periodic Unsteady Flows”.Interna-
tional Journal for Numerical Methods in Fluids,63(7),
pp. 860–876.

[3] van der Weide, E., Gopinath, A., and Jameson, A.,
2005. TurbomachineryApplications with the Time Spectral
Method. AIAA paper 2005-4905, June. 17th AIAA Com-
putational Fluid Dynamics Conference, Torontp, Ontario,
Canada.

[4] Da Ronch, A., Choreyshi, M., Badcock, K., Goertz, S.,
Widhalm, M., Dwight, R., and Campobasso, M., 2010. Lin-
ear Frequency Domain and Harmonic Balance Predictions
of Dynamic Derivatives. AIAA paper 2010-4699, July.
28th AIAA Applied Aerodynamics Conference, Chicago,
Illinois.

[5] Sicot, F., Puigt, G., and Montagnac, M., 2008. “Block-

Jacobi Implicit Algorithms for the Time Spectral Method”.
AIAA Journal, 46(12), December, pp. 3080–3089.

[6] Woodgate, M. A., and Badcock, K. J., 2009. “Implicit
Harmonic Balance Solver for Transonic Flows with Forced
Motions”. AIAA Journal, 47(4), April, pp. 893–901.

[7] McMullen, M., and Jameson, A., 2006. “The computa-
tional efficiency of non-linear frequency domain methods”.
Journal of Computational Physics,212(2), pp. 637–661.

[8] McMullen, M., Jameson, A., and Alonso, J., 2002. Appli-
cation of a Non-linear Frequency-domain Solver to the Eu-
ler and Navier-Stokes Equations. AIAA paper 2002-0120,
January. 40th AIAA Aerospace Sciences Meeting and Ex-
hibit, Reno, Nevada.

[9] McMullen, M., Jameson, A., and Alonso, J., 2001. Accel-
eration of convergence to a periodic steady state in turbo-
machinery flows. AIAA paper 2001-0152, January. 39th
AIAA Aerospace Sciences Meeting and Exhibit, Reno,
Nevada.

[10] Kumar, M., and Murthy, V., 2006. Rotor Blade Response
Based on CFD in the Frequency Domain. AIAA paper
2006-438, January. 44th AIAA Aerospace Sciences Meet-
ing and Exhibit, Reno, Nevada.

[11] He, L., 2008. “Harmonic Solution of Unsteady Flow
Around Blades with Separation”.AIAA Journal, 46(6),
June, pp. 1299–1307.

[12] Venkateswaran, S., and Merkle, C., 1999. “Analysis of
preconditioning methods for the Euler and Navier-Stokes
equations”. 30th VKI Lecture Series on Computational
Fluid Dynamics.

[13] Campobasso, M., and Baba-Ahmadi, M., 2011. Analy-
sis of Unsteady Flows Past Horizontal Axis Wind Turbine
Airfoils Based on Harmonic Balance Compressible Navier-
Stokes Equations with Low-Speed Preconditioning. ASME
paper GT2011-45303.

[14] Liu, L., Thomas, J., Dowell, E., Attar, P., and Hall, K.,
2006. “A comparison of classical and high dimensional har-
monic balance approaches for a Duffing oscillator”.Jour-
nal of Computational Physics,215(1), pp. 298–320.

[15] Campobasso, M., and Baba-Ahmadi, M., 2010. “Ad-hoc
Boundary Conditions for CFD Analyses of Turbomachin-
ery Problems with Strong Radial Flow Gradients at Farfield
Boundaries”.ASME paper GT2010-22176, to appear in the
Journal of Turbomachinery.

[16] Campobasso, M., Bonfiglioli, A., and Baba-Ahmadi, M.,
2009. “Development of Efficient and Accurate CFD Tech-
nologies for Wind Turbine Unsteady Aerodynamics”. In
Proceedings of the Conference on Modeling Fluid Flow,
J. Vad, ed., Vol.2 of 14th Event of International Confer-
ence Series on Fluid Flow Technologies held in Budapest,
Department of Fluid Mechanics, Budapest University of
Technology and Economics, pp. 879–886.

[17] Jameson, A., 1991. Time Dependent Calculations Using

14 Copyright c© 2011 by ASME



Multigrid, with Applications to Unsteady Flows Past Air-
foils and Wings. AIAA paper 91-1596.

[18] Briggs, W., Henson, V., and McCormick, S., 2000.A Multi-
grid Tutorial, Second edition. SIAM, Philadelphia, USA.

[19] Melson, N., Sanetrik, D., and Atkins, H., 1993. “Time-
accurate Navier-Stokes calculations with multigrid acceler-
ation”.Proc.6th Copper mountain Conference on Multigrid
Methods, pp. II423–II437.

[20] Arnone, A., Liou, M.-S., and Povinelli, L., 1993. Multigrid
Time-Accurate Integration of Navier-Stokes Equations.
Technical Memorandum NASA TM 106373, ICOMP-93-
37, Lewis Research Center, Cleveland, OH, USA, Novem-
ber.

[21] Thomas, J., Duster, C., Dowell, E., and Hall, K., 2009.
Unsteady Flow Computation Using a Harmonic Balance
Approach Implemented About the OVERFLOW 2 Flow
Solver. AIAA paper 2009-4270, June. 19th AIAA Compu-
tational Fluid Dynamics Conference, San Antonio, Texas.

[22] Forum, M. MPI: A message-passing interface standard.
available at:http://www.mpi-forum.org.

[23] Forum, M. Openmp architecture review board. openmp for-
tran application program interface, version 1.1. available
from: http://www.openmp.org.

[24] Johnson, S., Leggett, P., Ierotheou, C., Spiegel, A., an Mey,
D., and Hoerschler, I., 2008. “Nested parallelization of the
flow solver TFS using the ParaWise parallelization environ-
ment”. InOpenMP Shared Memory Parallel Programming,
M. Mueller, B. Chapman, B. de Supinski, A. Malony, and
M. Voss, eds., Vol. 4315 ofLecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg, pp. 217–229.

[25] Mulas, M., Beeri, Z., Golby, D., Surridge, M., and Talice,
M., 1997. “A parallel Navier-Stokes code for large indus-
trial flow simulations”. InFifteenth International Confer-
ence on Numerical Methods in Fluid Dynamics, P. Kutler,
J. Flores, and J.-J. Chattot, eds., Vol. 490 ofLecture Notes
in Physics. Springer Berlin / Heidelberg, pp. 450–455.

[26] Issman, E., Degrez, G., and De Keyser, J., 1994. “A par-
allel multiblock Euler/Navier-Stokes solver on a cluster of
workstations using pvm”. InHigh-Performance Computing
and Networking, W. Gentzsch and U. Harms, eds., Vol. 796
of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, pp. 157–162.

[27] Elman, H., Howle, V. E., Shadid, J., and Tuminaro, R.,
2003. “A parallel block multi-level preconditioner for the
3D incompressible Navier-Stokes equations”.J. Comput.
Phys, 187, pp. 504–523.

[28] Benzi, M., 2002. “Preconditioning Techniques for Large
Linear Systems: A Survey”.Journal of Computational
Physics,182, pp. 418–477.

15 Copyright c© 2011 by ASME


