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ABSTRACT 
 

The Blade Element Theory (BET) has been used to predict 

performance of wind turbines, and to optimize energy extraction 

from the wind.   A literature search shows that the number of 

parameters that can be varied to attempt optimization within 

BET varies for different authors. However, a repeated 

assumption is that the BE should be operating at the incidence 

angle resulting in maximum lift to drag ratio.    In the present 

work, the incidence angle is one of the parameters varied for 

optimization, along with five others: the two induction factors, 

the chord, and the flow and setting angles. The optimization 

satisfies five equality constraints and three inequality 

constraints.   The optimizer uses Levenberg-Marquardt, 

Conjugate Gradient or Quasi-Newton methods to maximize the 

power extracted.  The equations adopted employ the Prandtl tip 

loss and require specification of the airfoil for the section, the 

radius of the turbine, the wind speed and the radial distribution 

of solidity.   Up to twenty five elements can be specified for 

each turbine.  The influence of airfoils on power coefficients is 

shown, and deviations from the expected maximum lift to drag 

positions noted.  Comparisons to the performance of small wind 

turbines from the commercial and open literature are attempted.  

Whereas such comparisons are difficult in that airfoils and 

solidities are not often specified, they yield a baseline for 

establishing the validity of the optimization procedure. 

 
INTRODUCTION 

 

The central problem of wind energy is to interpose a 

surface that will capture maximum power with acceptable costs 

between the wind and a generator.   A subset of this central 

problem is the optimization of wind energy capture limiting the 

amount of material making the surface up, while postulating 

different radial distributions of the material.   Different 

approaches have been directed at this problem, often invoking 

the Blade Element Theory (BET), which approximates the 

conservation of axial and angular momentum for the BE-fluid 

interaction, while allowing for calculations of power harvested.     

One early exploration is that of Pandey (1989), where BET is 

used to maximize power harvested.  By manipulating the BET 

equations under the assumption of constant lift to drag ratio to 

maximize power extraction, a set of non linear algebraic 

equations is arrived at.  The  system of equations is solved 

numerically, using the Newton-Raphson technique.  Results are 

generated for parametric variations of the tip speed ratio and of 

the drag to lift ratio.  The radial solidity distributions thus 

generated decrease with increasing radii, as also do the relative 

wind angles.  In general, the tip speed ratios seem much more 

important than the drag to lift ratios in determining solidity.  

Increasing the tip speed ratio reduces the solidity and relative 

wind angles.  The peak power coefficients are compatible with 

those found in the literature at the time, although the 

expectation for an optimization technique is for improvements.  

No specific airfoil is adopted for the research, since a constant 

incidence angle (i.e. the one resulting on peak lift to drag ratio) 

is implicitly assumed. 

Morcos (1994) presents an impressive number of 

numerical experiments using BET, and identifies optimal 

operating ranges for three different blade cross sections ensuing 

from a parametric study.  The three sections are: a flat plate, a 

symmetric airfoil and circular arc airfoil.   The first two do not 

seem to offer substantial performance differences.  The power 

coefficients are large: at solidities of 0.1 and tip speed ratios of 

8, power coefficients of 0.58 are projected, and at tip speed 

ratios of 14, the power coefficients reach 0.59.  The circular arc 

reaches approximately the same values.   The drag to lift ratios 

are, once again, constant, and equal to 0.025 for the cases 

quoted.  

A second optimization using BET is proposed by Wortman 

(2004).   In this work, the derivative of the power coefficient 

with respect to wind angle is set to zero, and the equations 

resulting from the BET and this condition are reduced to one 
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single function, not specified in the publication.  The function is 

solved numerically.  As in the work of Pandey (1994), a 

constant drag to lift ratio is specified. The power coefficients 

vs. tip speed are higher (for the same drag to lift ratios) than 

those reported by Pandey (1989).  For lift to drag ratios of 0.02, 

the power coefficients reach 0. 55 for tip speed ratios in the 

range 3-5. The magnitude of the differences vary, but an upper 

limit of 15 % over the values of Pandey can be observed.  A 

radial chord distribution for an optimal three blade design 

shows an increasing chord with radius, peaking at a 

dimensionless radius of 0.28, and decreasing towards the tip.  

Results for a NACA 0012 profile (a symmetric profile) show 

that the incidence angle has a strong bearing on the power 

coefficient.  The underlying assumption is one of maximum lift 

to drag ratio over the whole blade. 

The problem of solidity is addressed with several 

methods (including BET) by Duquette and Visser, 2003. Their 

approaches are comprehensive, including wake methods 

(Moriarty and Hansen 2005).  When applied to an actual rotor, 

the wake methods and BET tend to under predict the 

experimental data, except at high tip speed ratios.    

Comparisons to commercial designs validate the approach.  The 

BET optimal solutions of Duquette and Visser suggest high 

blade numbers (6-12), solidity ratios of 10 to 15%, and tip 

speed ratios around 4 to obtain power coefficients in the range 

0.5 to 0.52. 

In summary, optimization procedures for small wind 

turbines yield power coefficients in the range from 0.5 to 0.55 

(Morco's (2004) higher values stem from an exhaustive search, 

not an optimization).  Those values are obtained for setting 

angles that result in the maximum lift to drag ratio.  Solidity 

ratios are either constant or vary with radial location. We 

understand the power coefficient values to exceed those attained 

in practice by either large or small units, but the studies are of 

value in that they join the mathematical logic of optimization 

with the practical aspects of chord and solidity distribution.  

The present work aims at using a larger set of variables for 

optimization, by letting the incidence angle and chord vary as to 

maximize power production.  The radial solidity distribution is 

specified, and shown to largely influence power harvesting.  

The effect of different airfoils, tip speed ratio and number of 

blades on performance is assessed as well. 

 

 

MODEL AND ASSUMED PARAMETERS 
 
Blade element theory 

This theory (Manwell, 2009) is a steady simplification 

of an essentially unsteady flow phenomenon. The wind meets 

the turbine at the disk plane, energy is extracted, and the 

velocity decreases from the original V1 to V4, Fig 1.a. The 

theory assumes that on the average and all along the blade, the 

conservation of linear and angular momentum will be heeded 

for the system air-blade and that the forces acting on a blade 

element can be calculated from lift and drag coefficients 

measured in wind tunnels, this is, not in a rotating blade.   We 

present here a brief derivation of the equations used for 

optimization.   
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The BE is assumed to have a constant cross section, Fig .1.b, 

and moves with a linear velocity U.  The absolute wind velocity 

is the vector V1.  As a consequence of the flow-BE interaction, 

the wind velocity at the plane swept by the blades is assigned a 

value smaller than V1, namely: 

 

1)1(2 VaV                         Eq.1 

 

The velocity V2 is also approximated as the average of 

upstream and downstream velocities, or 

2

41
2

VV
V  

whereby, by virtue of Eq 1, we get 

 

)21(11224 aVVVV                     Eq.2 

 

The plane that contains the rotating blades is where the flow-BE 

interaction takes place.  The flow of momentum equals the 

thrust acting on the BE, namely 

 

)VV(mTr 14ΔΔ   .               Eq.3 

 

The mass flow rate flowing through the annulus swept by the 

BE is given by 

 

rVAVm Δπ22ρΔ2ρΔ                Eq. 4 

Combining Eqs 2, 3 and 4, one gets  

 

rrV)a(aTr Δ11ρπ4Δ 2
                     Eq.5 

 

Before interaction with the blade, the flow direction is assumed 

perpendicular to the rotational plane.  As angular momentum is 

communicated via lift forces to the BE, conservation of angular 

momentum requires a component of angular momentum to arise 

within the flow.  The moment responsible for such angular 

Fig 1. Wind absolute velocities and BE. 
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momentum can then be casted for the flow affected by the BE 

as: 

 

mVurM Δ2Δ  

 

which using Eq 4 becomes 

 

            ArVuVM Δ22ρΔ              Eq.6 

 

The azimuthal velocity component is approximated by 

 

Ω22 rapVu               Eq. 7 

 

Combining Eqs 6 and 7, and expressing the annulus as function 

of the radial interval corresponding to the BE, one has 

 

rrVap)a(M ΔΩ11ρπ4Δ 3
                 Eq.8 

 

Setting aside Eqs 5 and 8 for now, we focus now on 

the forces acting on a blade element, Fig 2.    The lift ΔL is 

perpendicular, whereas the drag ΔD is parallel, to the relative 

wind velocity  W.   With the geometry of Fig 2, we have in the 

direction of rotation u: 
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)sin(L)cos(LLu ΦΔγΔΔ    Eq.9a 

)cos(D)sin(DDu ΦΔγΔΔ  Eq.9b 

In the same fashion, the force components along the thrust 

direction are given by 

 

)cos(L)sin(LLTr ΦΔγΔΔ Eq. 9c 

)sin(D)cos(DDTr ΦΔγΔΔ Eq. 9d. 

 

The key component of BET is now invoked:  the sum 

of forces acting on the airfoil equals the sum of forces acting on 

the flow (with opposite sign).   Then, we equate Eq 5 to the sum 

of Eqs 9a and 9b, to obtain 

 

rrV)a(a

)sin(D)cos(LTr

Δ11ρπ4

ΦΔΦΔΔ

2 Eq.10 

Again, equating the moment of the forces as per Eq 8 and Eqs 

9c and 9d, we have: 

 

rrVap)a(

))cos(D)sin(L(rM

ΔΩ11ρπ4

ΦΔΦΔΔ

3 Eq.11 

 

The lift and drag forces can be given as functions of the lift and 

drag coefficients, of the induction factors and of the relative 

velocity.  We use Fig 3 for guidance.   

(1-a) x V1=V2
W

44°

 Ub+2 x ap x x r=U

 
  Fig 3. Velocity vectors  

 

The magnitude of the wind-BE relative velocity is given by 

 

)sin(

)a(V
W

Φ

11
 

And the element of lift corresponding to the BE under 

consideration becomes: 

r)(ClCh
)(sin

)a(V

r)(ClChWL

Δα
Φ

11
ρ

2

1

Δαρ
2

1
Δ

2

22

2

     Eq. 12 

Similarly, we have for the drag force 

 

r)(CdCh
)(sin

)a(V

r)(CdChWD

Δα
Φ

11
ρ

2

1

Δαρ
2

1
Δ

2

22

2

      Eq.13 

 

For thrust, we combine Eqs. 10, 12 and 13, and after 

some simplifications we obtain the following Eq 14: 

Fig 2. Blade element showing net forces. 
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a
)cos()(Cl)sin()(Cd(Ch

)(sinr
a

ΦαΦα

Φπ8
1

2

    Eq 14 

In similar fashion, we obtain from Eqs 11, 12 and 13: 

 

ap
)cos()(Cd)sin()(Cl(ChV

)(sinr
a

ΦαΦα1

ΦΩπ8
1

22

  Eq 15. 

 

Equations 14 and 15 link the induction factors to the relative 

wind angle, chord and force coefficients for the airfoil.  It is 

upon the kernel furnished by these two equations that we build 

the equations for optimization of energy extraction.    The rate 

of energy extraction is directly linked to the lift and drag 

coefficients as follows.  The power harvested by the BE is given 

by 

 

FuUPΔ   

 

The force acting on the blade element along the U direction 

originates from the lift and it is reduced by the drag, as follows 

(Fig 2 and Eqs 9a and 9b) 

 

)]cos(D)sin(L[UP ΦΔΦΔΔ  

 

Using the first equalities of Eqs 12 and 13, we obtain from the 

above equation 

r)]cos()(Cd)sin()(Cl[

Ch
)(sin

)a(Vr
P

ΔΦαΦα

Φ

1

2

1ρΩ
Δ

2

22

   Eq 16 

 

Solidity ratio, relative wind angle and tip loss 

Two other equations need introduction at this point.  

The first one concerns the solidity of the turbine.  We define 

this in a slightly different form as customary in the literature, in 

order not to impose a limit on the chord while still limiting the 

projections on the disk.  The solidity is then defined as 

 

r

)cos(nBCh

π2

θ
σ            Eq.17 

 

Solidity is defined as the circumferential fraction occupied by 

the frontal projection of the elements located at r.  The second 

equation is commonly used by the BET, and can be understood 

considering Fig 3 and the tip velocity ratio, given as 

 

1

Ω
λ

V

R
                           Eq. 18. 

 

 The tangent of the relative wind angle is (Fig 3):  

  

1

Ω2

111
Φ

V

rapUb

)a(

U

)a(V
)tan(

 

 

Combining the equation above with Eq. 18, one gets, for  

 

rUb Ω  

 

)ap(
R

r

)a(
)tan(

21λ

1
Φ   Eq. 19 

 

There is a tip loss associated with airfoils placed on the tip of 

the blade.  It can be shown that the tip loss extends to all the 

elements of the blade (Shen et al., 2005).  The Prandtl tip loss 

(Moriarity, 2005) can be conveniently applied to the kernel Eqs 

14 and 15, and has the form 

 

)sin(r

)rR(nB
expcosaF

Φ2π

2
  Eq.20. 

 

 

OPTIMIZATION APPROACH 
 
Since maximum power is the target, the objective function, 

derived from Eq 16, is 

)]cos()(Cd)sin()(Cl[

Ch
)(sin

)a(
),Ch,,a(MAX

ΦαΦα

Φ

1
αΦ

2

2

    Eq 21. 

Two other variables that do not appear in the objective function 

are the angular induction factor ap and the setting angle θ.   For 

compliance with the physical model of the BE, the following 

constraints involving all the variables in Eq 21 plus ap and θ are 

invoked in the following forms 

 

)ap(
R

r

)a(
tana

21λ

1
Φ     Eq 19 

 

Combining Eqs 14 and 15, we obtain 

 

a
r

V

)cos()(Cl)sin()(Cd(

)cos()(Cd)sin()(Cl(
ap

Ω

1

ΦαΦα

ΦαΦα
    Eq 22 
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In similar fashion, we obtain from Eqs 11, 12 and 13, and 

incorporating the Prandtl tip loss (Eq. 20): 

)sin(r

)rR(nB
expcosa

)cos(Cd)sin(Cl(VCh

)(sinr
a

Φ2π

2

ΦΦ1

ΦΩπ8
1

22

      Eq 23 

 

The setting angle provides another constraint 
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Machine
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40°
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Fig 4. Setting, flow and incidence angles  

 

    Eq. 24 

 

Equation 17 was used in the form given above.  The following 

obvious inequality constraints were applied 

 

deg15deg0            deg90deg0             

deg90deg0    Eq 25. 

 

The routine used to find the maximum of Eq 21 

(MathCad 14) automatically selects a method based on the 

rapidity of convergence to a solution.  Three methods are 

available for non-linear problems: Levenberg-Marquardt, 

Quasi-Newton and Conjugate Gradient.  Whereas the first two 

methods pursue convergence to an extreme via determination of 

curvature at the point under consideration in order to determine 

the direction to proceed,  the conjugate gradient is conceptually 

different.  Because this method is invariably chosen by the 

optimizer, a geometrical analog is offered here.  Consider a 

surface in 3-D, with two independent variables, and many 

relative maximums and a clear “maximum maximorum”.   

Starting with the point defined by a set of initial guesses, the 

gradient (calculated numerically) points in the direction of 

steepest ascend.  The next point in the search is taken along this 

direction.  Actually, a number of points are considered, and the 

one that exhibits the steepest gradient is chosen to define the 

new search direction.  When a maximum is identified, random 

amounts are added to each variable, to check whether 

convergence to the same extreme recurs.   Convergence can 

occur then for a local or total maximum, or it may not occur if 

the surface offers flat regions.  

  In our case, convergence did occur after the equations 

were cast in the way presented by Eqs 19 to 25,  including Eq 

17.  Starting at the hub, the guesses for each consecutive 

element are the converged values from the previous BE.  In a 

few cases during the course of the work, the optimal values 

were changed (by introducing inequality constraints that 

prevented reaching the optimal solution), with the invariable 

result that the power harvested by the BE under consideration 

decreased.  Hence, the optimizer seems to reach maximum 

values, although it is really impossible to estimate if still better 

values are reachable for all BEs at all conditions.  The optimal 

set arrived at is a function of the initial guesses, and 

convergence in our case is often dictated by the solidity 

distribution adopted. The power and torque are the sum of the 

BE power and torque for all elements in all blades.   

 

 

RESULTS 
 
Solidity ratio distributions  

The solidity ratio (Eq 17) and its radial distribution 

have a strong bearing on the optimal problem subject of this 

paper.  The solidity ratios distributions considered in this work 

had the forms:   

 

exponential:  )exp(),exp( nn     Eq. 26 

power:          
m

mnpow
n)1(

),,(   Eq. 27 

and constant:  Cc                             Eq 29. 

 

The average solidity is given by 
1

0

),( dn    Eq 30 

with similar expressions for other distributions.  The power 

coefficient is given by 

 

                              315.0 VA

P

Cp
t

BE
 

 

For conditions typical for small turbines (Table 1), the solidity 

ratio has a strong influence on convergence and power output.  

 

 

  

 

 

 

 

 

Table 1. Design conditions, typical case 

V1 10 m/s 

nB 3 

λ 5 

Ω 191 rpm 

R 2.5 m 
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Typically, solutions with small solidity ratios readily 

converge.  However, small turbines tend to exhibit larger values 

of solidity than those with ready convergence, probably due to 

strength considerations.   Larger solidity ratios tend to converge 

well for exponential distributions only, and for this reason the 

exponential distribution was adopted for most cases studied 

subsequently.  Power distributions can also converge at large 

solidities, but the convergence is conditioned to specific initial 

guesses for some BEs, as opposed to simply using the optimal 

solution of the previous one.  This makes the optimization 

process laborious,   Selected results for different solidity ratios 

are shown in Table 2, where the solidity, power coefficient,  

average solidity and chord  are presented for one airfoil, the 

SG6043. Data on lift and drag coefficients for all airfoils were 

obtained from www. aerspaceweb, 2010 and Bertagnolio et al., 

2001. 

 

Table 2. Initial experimentation with solidity 

 Power 

(kW) 

Cp  hC  

(cm) 

)8,(exp  3.9 0.35 0.106 8.6 

)8,2,(pow  5.4 0.48 0.039 5.8 

)8,3,(pow  2.6 0.23 0.029 3.4 

01.0c  6.4 0.57 0.01 2.7 

 

The exponential distribution yields reliable convergence for the 

conditions of this study,  and hence the turbine performance for 

different exponential solidity distributions was studied next.  

The results are shown in Fig 5, where the strong bearing of the 

solidity ratio on power coefficient is evident

.
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Fig 5. Exponential solidity and power coefficient  

 

Not all airfoils are created equal 

In past optimization studies, the setting angle resulting 

in an incidence angle value corresponding to maximum lift to 

drag ratio was adopted. In other words, it was assumed that the 

sought incidence angle could be predetermined, and that a 

specification of the airfoil was unnecessary.   In the present 

work, the incidence angle and chord are independent variables 

with optimal values determined by the optimizer.  Hence, 

different airfoils can yield different results, and indeed they do.   

For the conditions of Table 1 and exponential solidity 

distributions, the performance of different airfoils is recorded in 

Table 3.  The results show that SG 6043 develops more power 

(3.9 kW) than the alternatives.  All the airfoils result in about 

the same average and maximum chords, although the SG 6043 

solution shows a small advantage over the others in terms of 

material demand. 

 

Table 3. Performance of different airfoils at conditions of 

Table 1, and with )8,exp(  

 Power 

(kW) 

Power 

coeff. 
maxCh  

(cm) 

hC  

(cm) 

NACA 63-421 3.1 0.28 29 8.8 

NACA 00-12 3.0 0.27 28 8.6 

RISO S809 2.0 0.18 31 9 

SG 6043 3.9 0.35 28 8.6 

 

 The SG6043 profile (Duquette and Visser (2003)) offers the 

substantial enticement of ready convergence to a better power 

coefficient, and it is often used in what follows.   In addition to 

solidity ratio, the tip speed greatly influences the power 

coefficient, as firmly established in the literature.   For the 

conditions of Table 1, and an exponential distribution with n 

equal to 8, (Eq 26), we obtain the graph in Fig 6.   
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Fig 6. Exponential solidity and power coefficient  

 

The optimal power coefficient increases with tip speed ratios, 

and the chord decreases.  Hence, these dependences suggest  an 

optimum in terms of material investment (which surely cannot 

go below the limits imposed by strength and fatigue 

considerations) and power output. 
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A few details of the distributions 

Records of the power, solidity, chord and setting angle 

radial distributions may be of interest some readers, and they 

are included here to satisfy that interest.  The conditions of 

Table 1 for the SG 6043 apply.  The BE power (Fig 7) peaks at 

r/R of 0.3, and the chord at r/R 0f 0.1.   One problem with the 

exponential distribution is the decrease of chord towards the tip.  

Whereas this fact may respond to the need of minimizing the tip 

loss, the values become rather small for r/R greater than 0.7.  

What is remarkable is that the shape of the chord distribution 

generally agrees with those presented in the optimal solutions of 

Pandey (1989) and also of Wortman (2004).  The reduced chord 

implicit in the exponential distribution indeed decreases the BE 

power towards the blade tip. 
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Fig7. BE power and chord distribution 

 

The blade setting angle distribution (Fig 8) is smooth and bears 

resemblance to other optimal solutions (Pandey 1989), where 

the setting angle decreases towards the tip.  The incidence angle 

hovers close to values that yield a lift to drag ratio of 35, 

whereas the airfoil under consideration exhibits a peak of 36.8 

at 5.7 deg.  This departure from was what assumed most 

desirable in previous work can be explained in terms of a 

multivariate optimization:  the optimizer strives to find the  

Fig 8. BE setting and incidence angle distribution 

maximum power for a set of independent variables (optimal 

set), yet each variable does not optimize the lift, but the rate of 

energy extraction. 

Comparison to results of related work 

Once the exponential distribution was adopted, the 

specifications of small horizontal axis turbines  were sought, to 

establish a performance benchmark.  Whereas a working wind 

generator is from every possible viewpoint preferable to an 

optimal numerical solution, the latter may yield some insights 

that perhaps were not incorporated in the former.  A 

complication ensues in that the solidity ratio of actual turbines 

is not part of the specs, and hence some uncertainty is always 

present.  Of the ratings offered by Duquette and Visser (2003) , 

we adopted the Southwest Whisper for somewhat primitive 

benchmarking, Table 4. 

 

Table 4.  A small turbine and optimal solutions 

 Southwest  

Whisper 

Optimal 

 solution,  
RISO  

Optimal  

solution, 
NACA 

R (m) 2.5 2.5 2.5 

 0.04 0.1 0.1 

V1 (m/s) 12 12 12 

nB 2 2 2 

λ 10.9 11 11 

Cp·ηg 0.154 n/a n/a 

Cp n/a 0.33 0.574 

Airfoil n/a RISO S809 NACA 

63-421 

Power, kW 3.2 1. 11.1 

N, rpm 500 275 504 

To, N·m 62 36 210 

hC , m 
n/a 0.055 0.105 

 

The results of this exercise show that the optimal 

solution can exceed the power of the actual device, but only if 

the solidity is increased over the value reported (Duquette and 

Visser (2003)), which exhibits some uncertainty.  As concluded 

before, optimal solutions differ with airfoils.  The NACA airfoil 

conveys superior performance.  However, there are solutions 

with lower solidity and tip speed ratio that are much inferior to 

the actual device.    

Another comparison is shown in Table 5, for the 

Skystream 3.7 (2010) unit.  Clearly, the optimal solution calls  

for a greater solidity ratio, since this seems like the only way to 

increase the power coefficient at constant wind speed and tip 

speed ratio.    Increasing material would not only increase cost, 

but may also result in much slower response to wind changes. 
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Yet another interesting comparison stems yet from the 

work of Duquette and Visser (2003).  Using the BEM analysis, 

it is determined that for turbines such as those considered here, 

the optimal set will require 6 to 12 blades, a tip speed ratio of 

about 4, and average solidities of 10 to 15%.   Solidity 

distributions are not specified, but it is possible to infer from 

other comparisons in the text that the chord is not constant, 

although its form of variation is unknown to this author.   Using 

the preferred airfoil SG 6043, and the conditions of Table 1, the 

results illustrated in Fig 9 were produced.  This plot shows the 

power coefficient and average chord for varying number of 

blades, all calculated at the optimal value of Duquesne and 

Visser (2003) of tip speed ratio of 4.                                                                                                                                              
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Fig 9. Power coefficient and chord for SG 6043. 

 

Whereas the maximum solidity ratio that shows 

suitable convergence is 0.095, which is below the 10-15% 

desired, it is clear that increasing the number of blades towards 

the optimum arrived at by Duquette and Visser (2003) yields 

improved energy capture, with small chords.  So, the trend of 

increasing blade performance for increasing number of blades is 

well reflected here.  We note that accommodating many blades 

in the hub poses aerodynamic and unmet geometric challenges. 

 
CONCLUSIONS 

 

The computations performed with the optimizer show that the 

solidity ratio and its distribution have a large bearing on the 

power harvested.   For the conditions of this study, some airfoils 

perform better than others, but it is unclear why.   This aspect 

should be explored further, as should additional solidity 

distributions with larger solidities towards the tip of the blade.   

The radial setting angle and  chord distributions agree in 

general with those of previous work, but discrepancies are 

evident also.  For instance, the incidence angle not always 

coincides with the maximum lift to drag ratio, as assumed in 

previous optimizations.  It appears that the optimizer yields 

solutions that could increase the power available from some 

small wind turbines.  Yet, the dynamics and solidity distribution 

of such optimal solutions may be of difficult implementation.  

Finally, past work arrived at optimal sets that differ 

considerably from most small turbine designs.  Investigation of 

the optimal set as defined by previous work shows that indeed it 

yields superior performance. 

 A persistent difficult of the BET has not been 

addressed, but must be noted here.   The time and length scales 

of the wind translate into changes of the relative velocity and of 

the incidence angle.  Whereas we project those changes to result 

in power loss, such projection needs to be quantified, and could 

be the topic of future work. 

 On a broader note, the present work adds to the BET, 

which seemed exhausted, the intriguing possibility of finding 

optimal solutions for new airfoils and unexplored combinations 

of chords and incidence angles.  Whether those possibilities are 

indeed explored and result in valid designs remains to be seen, 

but the way to get there using BET would appear open. 

 

NOMENCLATURE 
a axial induction factor. 

α wind incidence angle, deg. 

ap tangential induction factor. 

A area, m
2
. 

At frontal turbine area, m
2
. 

Cd drag coefficient. 

Cl lift coefficient. 

Ch chord, m. 

γ lift-BE velocity angle, deg. 

  

AΔ
 

area increment, m
2
. 

DΔ  BE contribution to drag force, N. 

Du,DTr ΔΔ  components of BE drag force along direction 

of net thrust and along rotational direction 

respectively, N. 

LΔ  BE contribution to lift force, N. 

 

Table 5.  A small turbine and optimal solution 

 Skystream 3.7 Optimal solution, 

NACA 

R (m) 1.86 1.86 

 n/a 0.1 

V1 (m/s) 13 13 

nB 3 3 

λ 5 5 

Cp·ηg 0.06 n/a 

Cp n/a 0.28 

Airfoil n/a NACA 

63-421 

Power, kW 2.4 3.8 

N, rpm 333 333 

To, N·m n/a 108 

hC , m 
n/a 0.065 
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Lu,LTr ΔΔ  components of BE lift force along direction of 

net thrust and along rotational direction 

respectively, N. 

mΔ
 

mass flow rate increment, kg/s. 

MΔ  moment of forces, N·m. 

ηg generator efficiency. 

rΔ
 

radius increment, m. 

θ BE setting angle, deg. 

F Prandtl tip loss factor. 

Fu net force on BE along rotational direction, N. 

λ tip speed ratio. 

m factor for solidity distribution, Eq 27. 

n factor for solidity distribution, Eq 26 or 27. 

N rotational velocity, rpm. 

nB number of blades. 

r radius, m. 

R turbine radius, m. 

ρ density, kg/m
3
. Also, dimensionless radius r/R. 

σ solidity. 

To torque, N·m. 

Tr thrust, N 

Ub BE linear velocity along rotational direction, 

m/s. 

U azimuthal wind velocity component relative to 

BE, m/s 

V1, V2, Vn velocity at location 1,2,n,  m/s 

Vu2 azimuthal velocity component in rotational 

direction at point 2, m/s. 

W wind velocity relative to BE, m/s 

Φ flow angle, deg. 

Ω rotational velocity, rad/s. 
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