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ABSTRACT 
Depending on their input, wind power forecasting models 

are classified as physical or statistical approaches or a 
combination of both. 

Physical models use physical considerations, as 
meteorological information (Numerical Weather Prediction) and 
technical characteristics of the wind turbines (hub height, power 
curve, thrust coefficient). Statistical models use explanatory 
variables and online measurements, usually employing recursive 
techniques, like recursive least squares or artificial neural 
networks (ANNs) which perform a non-linear mapping and 
provide a robust approach for wind prediction.  

In this paper a new hybrid method (mixing physical and 
statistical approaches) is proposed, based on the wavelet 
decomposition technique and on artificial neural networks,  in 
order to predict power production of a wind farm in different 
time horizons: 1, 3, 6, 12 and 24 hours.  

In particular, two approaches are compared, both based on 
the time series of on-line measured wind power and on the 
Numerical Weather Predictions; in the first approach, the 
forecast is carried out only through the training of a neural 
network which, in the second approach is, instead, used in 
combination with the wavelet decomposition technique, 
improving the performance especially over the short time 
horizons. 

The error of the different forecast systems is investigated 
for various forecasting horizons and statistical distributions of 
the error are calculated and presented. 

 
 

1. INTRODUCTION 
Among the new sources of renewable energy, wind energy 

is undoubtedly the one which in the last years has got the best 

growth, becoming in various countries the true alternative to 
fossil fuels. At the end of 2009, worldwide nameplate capacity 
of wind-powered generators was 159.2 gigawatts (GW) with an 
energy production of 340 TWh, about 2% of worldwide 
electricity usage (against the 0.1% of 1997). 

The increasing interest of the worldwide literature in the 
wind energy field is attested by several works which deal with 
this very attractive theme.  

Morales et al.[1] propose a procedure to produce a set of 
plausible scenarios characterizing the uncertainty associated 
with wind speed at different geographic sites. This 
characterization constitutes an essential part within the 
decision-making processes faced by both power system 
operators and producers with a generation portfolio including 
wind plants at several locations. Zhou et al. [2] review the 
current state of the simulation, optimization and control 
technologies for the stand-alone hybrid solar–wind energy 
systems with battery storage. In [3] Xydis et al. perform a wind 
resource assessment study in the area of Central Peloponnese 
(inland) using Geographic Information Systems (GIS) tools and 
an exergy analysis. Hongxing [4] recommends an optimal 
design model for designing hybrid solar–wind systems 
employing battery banks for calculating the system optimum 
configurations and ensuring that the annualized cost of the 
systems is minimized while satisfying the custom required loss 
of power supply probability (LPSP). In [5] the hourly measured 
wind speed data for years 2003–2005 at 10 m, 30 m and 60 m 
height for Kingdom of Bahrain have been statically analyzed to 
determine the potential of wind power generation. Luickx et 
al.[6] define various elements that come into play when 
considering backup for electricity generation from wind power. 
The effects of several parameters, to be situated on the short-
term operation of backup of wind power, are defined and 
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analysed. Most important parameters are the load profiles, the 
wind power output profiles and the total amount of installed 
wind power. 

The most important problem for the diffusion of wind 
energy is that it is characterized by a high variability, both in 
space and time. The short-term wind energy forecasts are very 
important to minimize the scheduling errors which impact grid 
reliability and market service costs. In a background as the one 
of energy, which is more and more oriented towards the 
economical concepts of Stock Exchange, the energy producers 
should be able to predict the amount of energy produced in the 
subsequent hours or days, with a good precision.  

The natural consequence in the evolution of electric market 
has been the search of technical solutions, often based on 
historical series, able to predict the deliverable power in the 
short and middle period. The introduction, also in the energetic 
field, of the artificial neural networks, has given new impulse to 
use of systemic techniques, among the real time prediction 
systems. A requirement for a good model in a real time 
prediction system is the ability to keep acceptable reliability of 
the forecasts when the prediction length increases.  

In fact, it’s essentially the availability of an enough lead-
time of forecasts which conditions the opportunity of the best 
use of the energetic source.   

Because of the variability of wind, the skill of forecasting 
the wind speed in subsequent time intervals, must be evaluated 
in the various cases.  

Different forecasting models have been developed in 
literature, each model has its own characteristics, and it can 
perform well in different situations.  

Numerical weather prediction (NWP) models are good at 
predicting large-scale area wind speed and can achieve better 
results in long-term forecasting [7,8]. They use hydrodynamic 
atmospheric models which take into account physical 
phenomena such as frictional, thermal and convective effects. 

Generally forecasts can be of two kinds, like Burton asserts 
[9]: short time predictions of wind speed on a time horizon 
variable from few seconds to minutes, which could be useful for 
the operative control of wind turbines, and long time forecasts 
on a time horizon from few hours to days. These last forecasts 
are useful in order to plan the energetic supply of wind parks. In 
[9] it’s underlined that for short time forecasts the statistics 
techniques give good results, while for long time forecasts it’s 
necessary to rely on meteorological methods. 

The Auto Regressive Moving Average (ARMA) models are 
sophisticate methods which make a forecast based on a linear 
combination of n previous values. They are based upon the 
assumption that the value of wind speed at time k is a linear 
function of the two previous values at times (k-1) and (k-2) and 
that the coefficients of the linear function change every time. 
The initial assumption of this method is that the statistical 
properties of wind (average, auto-variance) don’t change in the 
period taken into consideration for the prediction. This 
assumption can be limiting in the use of ARMA models.  

Bossanyi [10] investigated the use of ARMA models for the 
forecast of wind speed from few seconds to few minutes 
obtaining a decrement of error up to 20% if compared with the 
statistical methods based on “persistence”. 

Instead, Boland et al. [11] applied ARMA models in order 
to predict the wind power with a prediction length of half an 
hour, also proposing a method for the selection of the optimal 
order of the model. 

Very longer horizons were taken into account by Kavasseri 
and Seetharaman [12] who examined the use of fractional- 
Autoregressive Integrated Moving Average (ARIMA) models to 
forecast wind speeds on the day-ahead (24 h) and two-day-
ahead (48 h) periods. They assessed forecast accuracy by 
computing three indexes, that’s to say the daily mean error, the 
variance and the square root of the forecast mean square error, 
and their results indicate that significant improvements in 
forecasting accuracy are obtained with the proposed models 
compared to the persistence method. 

Riahy and Abedi [13] proposed a new method, based on 
linear prediction, for wind speed forecasting. The method 
utilizes the ‘linear prediction’ method in conjunction with 
“filtering” of the wind speed waveform. This approach, oriented 
to minimize the absolute percentage error, is however applied 
only for a prediction time of few seconds ahead. 

Recent techniques as Artificial Neural Networks (ANNs), 
neuro-fuzzy networks and wavelet-based methods are more and 
more used. 

An application of ANNs for wind speed forecast with a 
time horizon of 1 hour is the one of Flores [14] on the base of 
the 3 previous values, obtaining a Mean Squared Error of 
0.057, while a new approach to wind speed forecast in the next 
hour has been made by A. Sfetsos [15], whose method is based 
on a multi-step prediction of average values in 10 minutes 
intervals. Among the middle-long time forecasts, it can be 
underlined the work of S. Jayaraj [16], who applied an ANN in 
order to predict the wind speed in the subsequent hour, in the 24 
subsequent hours and in the 48 subsequent hours: good 
performance have been obtained in forecasting the wind speed 
in the subsequent hour (with a maximum root mean squared 
error of 13% on the generated output), while the use of ANN in 
longer time intervals shows an increment  of root mean squared 
error up to 23% in the case of the 24 subsequent hours. 

Cadenas[17] applied the ARIMA models and the ANNs to 
a time series conformed by 7 years of wind speed 
measurements, with good results through a seasonal parameter 
introduced in the ARIMA model, using a prediction length of 1 
hour and evaluating the performances by the mean squared 
error, the mean absolute error and the mean absolute percentage 
error. Potter et al. [18] and Johnson et. al [19] obtained an 
improvement of forecast quality for the brief prediction lengths 
by applying the Adaptive Neuro-Fuzzy Inference Systems 
(ANFIS), but a very short prediction length is tested: 2.5 
minutes in [18] and 5 minutes in [19].  

Barbounis and Theocharis [20] made a long-term wind 
speed and power forecasting in a wind farm using locally 



 3 Copyright © 2011 by ASME 

recurrent multilayer networks as forecast models with a 
prediction length from 15 minutes to 3 hours; they evaluated the 
performance by the normalized mean squared error, revealing 
an improvement in respect of the persistent and the ARMA 
models.  

Bilgili et al. [21] applied resilient propagation (RP) 
artificial neural networks to predict the mean monthly wind 
speed of any target station using the mean monthly wind speeds 
of neighbouring stations which are indicated as reference 
stations. The maximum and the minimum mean absolute 
percentage errors were found to be, respectively, 14.13% and 
4.49%. Another attempt to forecast the mean monthly wind 
speed by ANNs is the one of Kalogirou et al. [22], who used a 
multilayered artificial neural network for predicting the mean 
monthly wind speed in regions of Cyprus. Data for the period 
1986-1996 have been used to train the neural network, whereas 
data for the year 1997 were used for validation; in this case the 
maximum percentage difference was of only 1.8%. 

In [23] the profile of wind speed in Nigeria is modelled 
using artificial neural network. The ANN model consists of 3-
layered, feed-forward, back-propagation network with different 
configurations, designed using the Neural Toolbox for 
MATLAB. The geographical parameters (latitude, longitude 
and altitude) and the month of the year were used as input data, 
while the monthly mean wind speed was used as the output of 
the network. 

Beccali et al.[24] present a novel approach to wind speed 
spatial estimation on the isle of Sicily (Italy): an incremental 
self-organizing neural network (Generalized Mapping 
Regressor – GMR) is coupled with exploratory data analysis 
techniques in order to obtain a map of the spatial distribution of 
the average wind speed over the entire region. 

Li et al.[25] illustrate a comprehensive comparison study 
on the application of different artificial neural networks in 1-h-
ahead wind speed forecasting. Three types of typical neural 
networks, namely, adaptive linear element, back propagation, 
and radial basis function, are investigated. 

In literature there are some interesting attempts to compare 
the new non linear forecast techniques with the linear ARMA 
models ([26],[27],[28]). According to Kariniotakis [26] the 
fuzzy-logic leads to improvements in the predictions of the 
wind power if compared with the simplest statistical techniques, 
but the forecast range that the author considered is however 
included between ten minutes and two hours. Palomares-Salas 
et al [27] based their comparison between ARIMA model and a 
back-propagation neural network on three parameters: the 
Pearson correlation coefficient associated with the original 
time-series and the forecasted series, the Index Of Agreement 
(IOA) of Willmot and the Root Mean Square Error. Their 
results show that ARIMA model is better than ANNs for short 
time-intervals to forecast (10 minutes, 1 hour, 2 hours and 4 
hours).  

Sfetsos [28] compares ARMA, ANNs and ANFIS 
techniques by evaluating the RMS error in the prediction length 
of 1 hour for the hourly wind speed. 

The Multilayer Perceptron network (MLP) is the principal 
technique used in [29] behind other forecast methods like 
ARMA models and various kinds of ANNs. Two main forecast 
systems are presented, based not only on historical real data but 
also on numerical weather predictions, obtaining an average 
RMS error of about 14% in the horizon 12-24 hours.  

Lei et al. [30] give a bibliographical survey on the general 
background of research and developments in the fields of wind 
speed and wind power forecasting. Based on the assessment of 
wind power forecasting models, further direction for additional 
research and application is proposed, such as deepen further 
study on artificial intelligence methods and improve their 
training algorithm aiming at more accurate results, combine 
different physical and statistical models to achieve good results 
both in long and short-term prediction, deepen further research 
on the practical application of the models, not only in 
theoretical, put forward new mathematical methods.  

Another useful technique, proposed in the recent years for 
the short-term load forecasting of wind power systems, is 
wavelet decomposition. A certain regularity of the data is an 
important precondition for the successful application of ANNs 
[31]. When using classical statistical techniques, a stationary 
process is assumed for the data. For load time-series, an 
assumption of stationary series has to be discarded most of the 
time. Besides, one has to bear in mind that different kinds of 
non stationary series may exist [31]. In order to tackle the 
problem of non stationary series, wavelets have been utilized 
because they can produce a good local representation of the 
signal in both time and frequency domains [32]. Using this new 
representation of the original load-signal, one alternative is 
creating a model for the short-term load forecasting whose 
inputs are based on information from the original load sequence 
and from wavelet domain subseries, too [31]. Another 
alternative predicts the load’s future behaviour by 
independently forecasting each subseries in the wavelet domain 
and the final forecast is obtained by returning to the original 
domain (inverse transform) [33,34]. Some other researchers 
proposed merging wavelets with ANNs (called wavenets) for 
short-term load forecasting [35,36]. 

Amjady and Keynia [37] propose a new hybrid method for 
the short-term load forecasting of power systems, composed of 
wavelet transform (WT), neural network (NN) and evolutionary 
algorithm (EA). WT can efficiently decompose the hourly load 
time series into its components. Each component is predicted by 
a combination of NN and EA and then by inverse WT the 
hourly load forecast is obtained. 

In this paper a new hybrid method (mixing physical and 
statistical approaches) is proposed, based on the wavelet 
decomposition technique and on artificial neural networks,  in 
order to predict the power production of a wind farm in 
different time horizons: 1, 3, 6, 12 and 24 hours.  

In particular, two approaches are proposed, both based on 
the time series of on-line measured wind power and on the 
Numerical Weather Predictions (NWPs); in the first approach, 
the forecast is carried out only through the training of a neural 
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network which, in the second approach is, instead, used in 
combination with the wavelet decomposition technique, 
improving the performance especially over the short time 
horizons. For each approach two forecast systems have been 
developed: the first includes only the wind speed coming from 
the NWPs, while the second contains also pressure and 
temperature.  

The performance in the several testing sets has been 
evaluated by analyzing both the normalized absolute average 
percentage error and the frequency distribution of the 
normalized relative percentage error. 

  
 
 

2. WIND FARM CHARACTERISTICS 
This work is aimed to wind power forecasting and has been 

based on data measured on the three wind turbines of a park in a 
country of the Southern Italy. 

In order to define a prediction model for wind power, the 
most significant problem is to choose which parameter(s) will 
be used for the prediction.  

In particular, an analysis of the historical series has been 
carried out, series represented by the following daily data 
(collected every 10 minutes): temperature (°C), wind speed 
(m/s), direction (degree), pressure (mmHg), wind power of each 
of the three turbines (kW), measured for five years.  

First, it was necessary an accurate elaboration of the 
measured values in order to check, for each month, the days in 
which the parameters weren’t available or were incorrect; of 
course an algorithm has been created in order to fill the missing 
parts of the historical series data and two vectors have been 
obtained: the hourly average wind speed for years I-V; the 
hourly average power for years I-V. 

It’s important to underline that the real values of wind 
power are reserved, so the normalized values are plotted in the 
following, adopting the range [0;1] to cover the whole range of 
measured powers. 

Figures 1 and 2 depict the normalized hourly wind power 
versus, respectively, the hourly temperature and the hourly 
pressure in month of March, year V. It’s evident the very low 
correlation between each of them and the wind power, so 
pressure and temperature haven’t been taken into consideration 
in the developing of the forecast models. 

Figures 3 and 4 show the normalized measured hourly wind 
power in the months of September and March, year IV. The 
determination coefficient of the best interpolation curve 
between the time series of wind power and wind speed is equal 
to 0.907, while the same coefficient is almost zero between 
power and pressure or power and temperature. 
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Figure Figure Figure Figure 1111. Normalized hourly wind power vs hourly temperature in the 

month of March, year V 
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Figure Figure Figure Figure 2222. Normalized hourly wind power vs hourly pressure in the 

month of March, year V 
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Figure Figure Figure Figure 3333. Normalized hourly wind power vs hourly wind speed in the 

month of September, year IV 
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Figure Figure Figure Figure 4444. Normalized hourly wind power vs hourly wind speed in the 

month of March, year IV 
 
 
3. NUMERICAL WEATHER PREDICTION MODELS 

Numerical Weather Prediction (NWP) models are usually 
developed and maintained by meteorological institutes and can 
be classified according to their space-temporal scale. Each 
NWP model tries to monitor the evolution of the atmosphere for 
its specific scale, even though high spatial resolution cannot be 
combined with high temporal resolution. In general, a NWP 
model with high spatial resolution (small spatial scale) will have 
a low temporal validity for its predictions (small temporal 
scale). A NWP model with a low spatial resolution (great spatial 
scale) will have a much greater temporal validity. The NWP 
models with great spatial and temporal scales are known as 
macro-scale models; they usually make predictions for the 
whole world (they are also known as global models) valid over 
one week. The NWP models with high spatial resolution, but 
with limited temporal resolution (validity) of a number of hours, 
are known as mesoscale models. Short-term wind power 
forecasting needs predictions from a NWP model with high 
spatial resolution. 

The weather predictions used in this paper come from a 
mesoscale NWP model, characterized by a grid resolution of 7 
km; it’s initialized at 00:00 (Italy time, GMT+1:00) and 
supplies the NWPs for the next 72 hours at hour intervals for 
the following variables: mean wind speed, direction, pressure, 
temperature and relative humidity at a quote of about 75 m. The 
NWPs have been available only for the year V, at 25 sites 
forming a square at the center of which the three turbines are 
approximately placed.  

Thus, it’s important to individuate among all the sites, the 
ones for which the forecasted NWPs data are in good agreement 
with the real data coming from the three turbines, in order to 
use these data in the training algorithms illustrated in the 
following sections.  

To evaluate the sites with the best correlation with the real 
data recorded at the turbines, the linear correlation coefficient 
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Figure Figure Figure Figure 5555. Linear correlation coefficient between the real hourly 
average wind speed and the forecasted one, year V 
 
between the real hourly average wind speed and the forecasted 
one of all the sites has been calculated and thus, the five best 
correlated sites have been individuated and only the NWP data 
coming from these five sites have been used in the forecast 
systems described in the following. Figure 5 depicts the linear 
correlation coefficient evaluated for each of the 25 sites in the 
months of March, June and September (year V); the best sites 
individuated through this analysis are: 1, 12, 14, 22, 24. 

 

4. ARTIFICIAL NEURAL NETWORKS 
Neural networks are composed of simple elements 

operating in parallel. These elements are inspired by biological 
nervous systems. As in nature, the network function is 
determined largely by the connections between elements. It is 
possible to train a neural network to perform a particular 
function by adjusting the values of the connections (weights) 
between elements (Fig. 6 and 7). The basic component of such a 
system is a neuron. When they are in action, electrochemical 
signals are received through synapses to the neuron cell. Each 
synapse has its own weight that determines the contribution and 
extent to which the respective input affect the output of the 
neuron. The weighted sum of the input electrochemical signals 
is fed to the nucleus which in response sends electrical impulses 
that are transmitted to other neurons or to other biological units 
as actuation signals. Neurons are interconnected through 
synapses. The synaptic weights keep modifying during learning. 
Groups of neurons are organized to subsystems and they 
integrate to form the brain. 
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Figure Figure Figure Figure 6666. Scheme of operating in a neural network 

 

 
Figure Figure Figure Figure 7777. Model of a general neuron 

 
In the ANN technique, a simulation of a small part of the 

central nervous system is done, which is rather a crude 
mathematical model of the biological nervous system. Inputs 
are fed into the corresponding neurons, and the electrochemical 
signals are altered by weights. The weighted sum is operated 
upon by an activation function, and outputs are fed to other 
neurons in the network. All these neurons are highly 
interconnected, and the activation values constitute the final 
output or may be fed to the next model. These connection 
weights are continuously modified during training to obtain the 
desired accuracy and generalization capabilities. 

 

4.1 The Elman network 
After a wide sensibility analysis described in [40] and 

oriented to evaluate the most suitable neural network to the 
forecast purposes of this paper (following the object to 
minimize the Mean Square Error), the Elman network has been 
chosen. It is characterized by a feedback from the first-layer 
output to the first layer input. This recurrent connection allows 
the Elman network to both detect and generate time-varying 
patterns (Fig. 8).  

The aforementioned analysis [40] shows that the Elman 
network, compared to other neural networks and other kinds of 
forecast systems,  is more suitable, especially in the final 
prediction length (24 h). This may well be due to the ability of 
the Elman network to both detect and generate time-varying 

patterns, (by the recurrent connection seen in Fig. 8) which 
appears practically negligible in the short-medium time 
horizons, yet becomes of great importance as the prediction 
length increases. 

Several algorithms for training use the gradient of the 
performance function to determine how to adjust the weights to 
minimize performance. The gradient is determined using a 
technique called back-propagation, which involves performing 
computations backward through the network. 
 
 

 
Figure Figure Figure Figure 8888. Typical architecture of an Elman Back Propagation network 

 
The goal of the algorithm is to minimize the global error E 

defined as 
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where o(k) and t(k) are the output and target network for any k 
output node. 

The Elman network has been used in all the methods 
applied. 

5. THE WAVELET TRANSFORM 
The Wavelet Transform (WT)  can be mainly divided into 

two categories: Continuous Wavelet Transform (CWT) and 
Discrete Wavelet Transform (DWT). The CWT W(a,b) of a 
signal f(x) with respect to a wavelet Φ(x) is given by [31,32]: 

∫
+∞

∞−

−Φ= dxabxxf
a

baW )/)()(
1

),(  (2)

where scale parameter a controls the spread of the wavelet and 
translation factor b determines its central position. Φ(x) is also 
called mother wavelet. A W(a,b) coefficient, represents how 
well the original signal f(x) and the scaled/translated mother 
wavelet match. Thus, the set of all wavelet coefficients W(a,b), 
associated to a particular signal, is the wavelet representation of 
the signal with respect to the mother wavelet. Since the CWT is 
achieved by continuously scaling and translating the mother 
wavelet, substantial redundant information is generated. 
Therefore, instead of doing that, the mother wavelet can be 
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scaled and translated using certain scales and positions usually 
based on powers of two [31,37]. This scheme is more efficient 
and just as accurate as the CWT [31]. It is known as the DWT: 

))2/)2(()(2),(
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2/ mm
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−

=

−  (3)

where T is the length of the signal f(t). The scaling and 
translation parameters are functions of the integer variables m 
and n (a=2m, b=n⋅2m); t is the discrete time index. In the 
proposed forecast method, a fast DWT algorithm based on the 
filters, e.g. decomposition low-pass, decomposition high-pass, 
reconstruction low-pass and reconstruction high-pass filters has 
been used. This algorithm was developed by Mallat [32]. 
Multiresolution via Mallat’s algorithm is a procedure to obtain 
“approximations” and “details” from a given signal. An 
approximation is a low-frequency representation of the original 
signal, whereas a detail is the difference between two successive 
approximations. An approximation holds the general trend of 
the original signal, whereas a detail depicts high-frequency 
components of it [31]. Mathematical details of the Mallat’s 
algorithm can be found in [32]. By successive decomposition of 
the approximations, a multilevel decomposition process can be 
achieved where the original signal is broken down into lower 
resolution components. 

In the present work the authors use Daubechies wavelet of 
order 6 (abbreviated by Db6) as the mother wavelet Φ(t). This 
wavelet offers an appropriate tradeoff between wave-length (for 
evaluation of local behavior of signal) and smoothness, 
resulting in an appropriate behavior for short-term wind power 
forecasting. Mathematical details of Daubechies wavelet can be 
found in [38,39]. 

In [31] a discussion about the number of decomposition 
levels in the WT is presented where it is concluded that three 
levels of decomposition is the most promising choice for the 
short term wind power forecasting, because it has described the 
load series in a more thorough and meaningful way than the 
others. So, in the following three decomposition levels are 
considered. 

  

6. THE FORECAST MODELS 

6.1 First forecast approach: the Elman network on 
historical measured data and NWPs 
The first forecast approach consists in the generation of the 

wind power forecast through the training of an Elman neural 
network. In particular, two forecast systems have been 
implemented. 

In the system I, for each time instant t, the input vector is 
given by the average measured hourly power at that time and by 
the hourly wind speeds coming from the NWPs; in particular, 
for the five sites with the most correlated predicted variables 
(sites called A, B, C, D, E) the predicted wind speeds along the 
forecast horizon h are considered. 

In the system II, for each time instant t, the input vector is 
given by the average measured hourly power at that time and by 
the hourly wind speeds, pressures and temperatures coming 
from the NWPs; in particular, for the above named sites (A, B, 
C, D, E) the predicted variables along the forecast horizon h are 
considered.  

The target of both the systems is always made up of the 
sum of the average hourly powers along the forecast horizon h. 

Because the NWPs were available only for the year V, the 
forecasting models have been applied with a training period of 
8 months and on a testing period of 4 months, in 5 forecast 
horizons (1, 3, 6, 12, 24 hours). 

The input/target schemes of the two systems are shown in 
Tab. 1 and 2, while Tab. 3 shows the final network parameters 
used in the training for each prediction length, obtained by an 
optimization process oriented to minimize the Mean Square 
Error. 

Table Table Table Table 1111. Input/target scheme of the forecast system I 

Horizon 
(hours) Input 

Unity of 
measurement 

Target (kW) 

vA, t+1 … vA,t+h 

vB, t+1 … vB,t+h 

vC, t+1 … vC,t+h 

vD, t+1 … vD,t+h 

vE, t+1 … vE,t+h 

m/s 
h 

Pt kW 

Pt+1 + …+ Pt+h 

 
 Table Table Table Table 2222. Input/target scheme of the forecast system II 

Horizon 
(hours) Input 

Unity of 
measurement 

Target (kW) 

vA, t+1 … vA,t+h 

vB, t+1 … vB,t+h 

vC, t+1 … vC,t+h 

vD, t+1 … vD,t+h 

vE, t+1 … vE,t+h 

m/s 

pA, t+1 … pA,t+h 

pB, t+1 … pB,t+h 

pC, t+1 … pC,t+h 

pD, t+1 … pD,t+h 

pE, t+1 … pE,t+h 

mmHg 

tA, t+1 … tA,t+h 

tB, t+1 … tB,t+h 

tC, t+1 … tC,t+h 

tD, t+1 … tD,t+h 

tE, t+1 … tE,t+h 

°C 

h 

Pt kW 

Pt+1 + …+ Pt+h 
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Table Table Table Table 3333. Elman network parameters used in the training process 

 System I System II 
Training function  TRAINGDX TRAINGDX 
Adapt learning function  LEARNGD LEARNGD 
Performance function  MSE MSE 
Number layers 3 3 
Neurons  (layer 1)  h=1 

h=3 
h=6 
h=12 
h=24 

6 
16 
31 
61 
121 

21 
61 
121 
241 
481 

Neurons  (layer 2)  h=1 
h=3 
h=6 
h=12 
h=24 

5 
8 
16 
31 
61 

11 
31 
61 
121 
241 

Neurons  (layer 3) – output 1 1 
Activation function hidden layer TANSIG TANSIG 
Activation function output layer PURELIN PURELIN 
Epochs 500 500 

Notes 
TRAINGDX = Gradient descent with momentum and adaptive 
learning rate backpropagation 
LEARNGD = Gradient descent weight and bias learning 
function  
MSE = Mean Squared Error 
TANSIG = Hyperbolic tangent sigmoid transfer function 
PURELIN = Linear transfer function 
 
6.2 Second forecast approach: the wavelet 

decomposition and the Elman network on 
historical measured data and NWPs 
The two systems (I and II) above described, based on the 

only application of an Elman neural network on the historical 
measured wind powers and on the NWPs, have been used in 
order to experiment a new forecasting approach based on:  

- the six Daubechies wavelet employed to do the 3rd 
level discrete wavelet decomposition of the original hourly 
wind power time series (Fig. 9); 

- the training of four Elman networks, like in the above 
described systems I and II, one for each of the four components 
obtained by the wavelet decomposition;  

- the aggregation of the four partial forecast results of 
the previous step in order to generate the final forecast (Fig. 
10). 

This forecast approach has been applied on both the two 
systems I and II, keeping the same input/target schemes and the 
same network parameters illustrated in Tab. 1, 2 and 3. The 
wavelet decomposition of the time series of wind powers is, 
instead, depicted in Fig. 11. As discussed in the section 5, the 
so-called approximation (A3) is a low-frequency representation 
of the original signal and holds the general trend of the signal 
itself, while a detail is the difference between two successive 
approximations and depicts high frequency components of it.  

  

A1

Original signal f

D1

A2 D2

A3 D3

A1

Original signal f

D1

A2 D2

A3 D3  
Figure Figure Figure Figure 9999. Multilevel decomposition process of the original hourly 
wind power time series (f): A and D stand for approximation and 

detail, respectively (f =A3+D1+D2+D3) 
 

Σ

A3

D1

D2

D3

Hourly
power
time

series

Elman
Network

Forecasted
hourly
power

Elman
Network

Elman
Network

Elman
Network

Forecasted
A3

Forecasted
D1

Forecasted
D2

Forecasted
D3  

Figure Figure Figure Figure 10101010. Architecture of the forecast approach based on the wavelet 
decomposition technique  
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Figure Figure Figure Figure 11111111. Six Daubechies wavelet decomposition (level 3) of the 

original wind power series (normalized values) 
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7. RESULTS 

The performance of each forecast system has been 
evaluated through the normalized mean absolute percentage 
error 

100
)(

1

1 1

⋅
−

⋅= ∑
= =

n

i i
n
i

ii

TMax

TP

n
NMAPE  (4) 

where:  
i = generic time instant; 
n = number of observations; 
Pi = predicted power at instant i; 
Ti = real power at instant i. 

Figure 12 illustrates the normalized absolute average error 
for the four forecast systems.  
 

It’s quite evident that the performances obtained by 
applying the wavelet decomposition technique in combination 
with the Elman network are highly better for the shorter forecast 
horizons, while there are no benefits when the prediction length 
exceeds 12 hours. 

In particular, by comparing the two systems (I and II) 
implemented with the first forecast approach, it’s noticeable that 
their performances are almost equivalent, with slightly better 
results for the systems II in the horizons of 12 and 24 hours, 
probably due to the further NWPs used in this system (pressure 
and temperature, besides the wind speed used in the system I 
too).  

On the other hand, the second forecast approach leads to a 
very noticeable improvement in the shorter prediction lengths, 
and especially by applying the wavelet decomposition to the 
system I, in which the only NWP parameter is the wind speed. 

However, considering only the error average values is not 
enough to evaluate differences in the performances of the 
forecast methods. Thus, a further analysis of the statistical 
distribution of normalized error has been performed in order to 
evaluate the curves of error distribution with a narrower shape. 

Figures 13 and 14 depict, respectively, the probability that 
the error itself takes values in the ranges: [-10%; +10%] and [-
20%; +20%]. 

Similarly to what described about the performance in terms 
of normalized average absolute error, the probability that the 
normalized error takes values in the ranges [-10% ; +10%] and 
[-20% ; +20%] is appreciably higher with the wavelet 
decomposition approach in the shorter time horizons.  

By comparing the error distribution of the four forecasting 
models discussed in the paper (see Fig. 15, 16 and 17, 
concerning the time horizon of 1, 6 and 24 hours), it’s evident 
that the two systems based on the wavelet decomposition 
technique are characterized by an error distribution with a 
narrower shape in the shorter time horizons, while the first 
approach, only based on the Elman artificial neural network, is 
preferable in the longest prediction length. 
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However, it’s also important to underline that the wavelet 
decomposition approach, although characterized by better 
performances, it’s more complex and requires four training 
operations to generate a forecast, while the first approach 
assures a somewhat short computational time. As example, on a 
standard desktop PC (Pentium 4, 3 GHz, RAM 1 Gb), the 
training operations of the neural networks described in the first 
forecast approach (that’s to say without the wavelet 
decomposition) take about 10-15 minutes; of course, it’s 
necessary to multiply by 4 this value to obtain the total 
computation time of the forecast systems based on the wavelet 
decomposition.  

8. CONCLUSIONS 
In this paper a new hybrid method (mixing physical and 

statistical approaches) is proposed, based on the wavelet 
decomposition technique and on artificial neural networks, in 
order to predict the power production of a wind farm in 
different time horizons: 1, 3, 6, 12 and 24 hours.  

In particular, two approaches are proposed, both based on 
the time series of on-line measured wind power and on the 
Numerical Weather Predictions; in the first approach, the 
forecast is carried out only through the training of a neural 
network which, in the second approach is, instead, used in 
combination with the wavelet decomposition technique, 
improving the performance especially over the short time 
horizons. For each approach two forecast systems have been 
developed: the first includes only the wind speed coming from 
the NWPs, while the second contains also pressure and 
temperature.  

The performance in the several testing sets has been 
evaluated by analyzing both the normalized absolute average 
percentage error and the frequency distribution of the 
normalized relative percentage error. 

In particular, by comparing the two systems (I and II) 
implemented with the first forecast approach, it’s noticeable that 
their performances are almost equivalent, with slightly better 
results for the systems II in the horizons of 12 and 24 hours, 
probably due to the further NWPs used in this system (pressure 
and temperature, besides the wind speed used in the system I 
too).  

On the other hand, the second forecast approach leads to a 
very noticeable improvement in the shorter prediction lengths, 
and especially by applying the wavelet decomposition to the 
system I, in which the only NWP parameter is the wind speed. 

By comparing the error distribution of the four forecasting 
models discussed in the paper, it’s evident that the two systems 
based on the wavelet decomposition technique are characterized 
by an error distribution with a narrower shape in the shorter 
time horizons, while the first approach, only based on the 
Elman artificial neural network, is preferable in the longest 
prediction length. 

However, it’s also important to underline that the wavelet 
decomposition approach, although characterized by better 
performances, it’s more complex and requires four training 
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operations to generate a forecast, while the first approach 
assures a somewhat short computational time. 

A further future validation of the wavelet decomposition 
technique in the short-term wind power forecasting could be 
experimented by testing it on other prediction systems like Auto 
Regressive Moving Average (ARMA) models or Adaptive 
Neuro-Fuzzy Inference Systems (ANFIS), investigating the 
error in prediction for various forecasting horizons and 
comparing the results obtained with and without the wavelet 
decomposition itself. This kind of tests could be very useful in 
order to evaluate if the benefit due to the wavelet 
decomposition depends upon the forecast technique used, and 
so to select the best method (among ANNs, ARMA and ANFIS) 
on which to carry out a short-term wind power forecast system.     
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