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ABSTRACT 
Fault detection in complex mechanical systems such as 

wind turbine gearboxes remains challenging, even with the 
recently significant advancement of sensing and signal 
processing technologies. For example, the non-stationary 
nature of the wind load may require the joint time-frequency 
domain feature extraction methods for the signals collected 
from the gearbox.  In this paper, a harmonic wavelet based 
method is adopted, and a speed profile masking technique is 
developed to account for tachometer readings and gear meshing 
relationship.  In such a way, those features with fault-related 
physical meanings can be highlighted.  While multiple sensors 
yield redundant features, we fuse them through a statistical 
weighting approach based on principal component analysis. 
The fused data are fed to a simple decision making algorithm to 
verify the effectiveness. Using experimental data collected 
from a gearbox testbed emulating wind turbine operation, we 
can detect gear faults statistically for a given confidence level. 

 
INTRODUCTION 

Engineers have used vibration based analysis for decades 
to evaluate performance of complex mechanical systems such 
as rotating machineries. There are many challenges for 
detecting fault conditions, since faults occur primarily at the 
materials level but their effects can only be observed indirectly 
at a system level.  Another problem is the many-to-many 
relationship between faults and the observable quantities at 
macroscopic system level, e.g., vibration amplitude.  The 
accuracy of the empirical techniques may be significantly 
subject to human interpretation.  In recent years, along with the 

rapid advancements of microelectronics and information 
technologies, innovative monitoring and diagnosis systems 
have emerged.  Although visual inspections are still needed in 
certain situation, vibration and acoustic emission signals 
become main inputs in many cases.  Those signals are easily 
accessible by small yet sensitive sensors of different types.  
Even when individual sensor’s performance is compromised 
due to cost or energy constraints, multiple sensors can be 
deployed for information redundancy.  Utilizing signal 
processing algorithms, an intelligent monitoring scheme can 
enable the implementation of a condition-based maintenance 
(CBM) philosophy [1]. 

Signal processing has been playing a critical role in 
gearbox monitoring and fault detection, especially when raw 
data are collected in a noisy observing environment [2].  It is 
well known that the vibration and acoustic emissions produced 
by a gearbox contains important diagnostic and prognostic 
information about the condition of the gears.  The key is to 
extract damage-sensitive features from those signals and 
perform statistical analysis of these features for decision 
making.  The Fourier transform as a signal representation 
method, though widely used, provides only the global 
frequency information averaged over the entire time span.  To 
preserve time information in the signal, wavelet analysis has 
been utilized to transform a signal into the joint time-frequency 
domain.  Each wavelet coefficients represents how well the 
input signal correlates with a windowed basis function called 
wavelet.  For different applications, a variety of wavelets have 
been adopted, e.g., Haar, Daubechies, Mexican Hat, Gabor and 
Morlet wavelets.  Generally speaking, wavelet analysis is 
capable of extracting time-frequency features from complex 
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signals [3].  However, choosing a specific wavelet remains 
empirical in many engineering applications. 

In a multi-sensor setup, data fusion can improve the ability 
to detect, characterize, and eventually identify fault conditions.  
Despite extensive research on mechanical models, pattern 
recognition, neural network, and other signal processing 
techniques for individual sensor, relatively less research has 
been conducted on fusion of multi-sensor data for condition 
monitoring [4].  The sensor-level data fusion is mainly raw data 
alignment, denoising, normalization, and resampling, etc. 
Techniques such as frequency banding and time-domain 
averaging are commonly adopted at this lowest level to insure 
data quality and provide sensor self-check.  Other examples can 
be found in [5].  When features are extracted from the raw data, 
through wavelet analysis for example, it becomes feature-level 
data fusion.  Next, determining the health of the monitored 
system based on the fused features involves decision-level data 
fusion.  There are statistical, voting or neural network based 
algorithms developed at this level [6], where decisions are 
weighted, blended and quantified as indicators of fault 
existence. The data fusion methodology discussed in this paper 
will be focused on the feature level.  In a gearbox application, 
features extracted respectively from accelerometers, 
microphones and tachometer measurement may cover one 
aspect/area/property of the overall condition.  When combined, 
these features may provide a better characterization of the 
condition or reduce the size of the critical feature subspace for 
easier decision-making.   

To quantify the severity of fault or malfunction, statistical 
indices can be calculated from the extracted features. Common 
scalar indices include [7] root-mean-square deviation (RMSD), 
mean absolute percentage deviation (MAPD), covariance (Cov) 
and correlation coefficient (CC). In this paper we adopt a 
straightforward statistical decision making algorithm to 
demonstrate the effectiveness of our data fusion algorithm.  

 

GEARBOX DYNAMICS EXPERIMENTAL SETUP  
Gearbox is typical rotating machinery that serves as a 

major dynamic component in most mechanical systems.  There 
are often multiple pairs of meshing gears in each gearbox 
mounted on rotating shafts, while the shafts themselves require 
bearings and fixtures to be installed.  Many types of mechanical 
faults and failures can occur in a gearbox, for example, surface 
wear, misalignment, eccentric or crack gears.  Vibration and 
acoustic sensor signals collected from such a system may 
reveal partial information about its running operating condition.  
With the aid of advanced signal processing techniques, our goal 
is to achieve autonomous condition monitoring. 

One challenge for wind turbine gearbox condition 
monitoring comes from the non-stationary nature of its 
operation, as the energy source, the wind load, is often a time-
varying quantity.  A direct consequence would be that harmonic 
based method like Fourier transform cannot be used effectively.  

Instead, time-frequency methods such as wavelet analysis 
become a natural choice [8]. To obtain real-time running 
conditions of a gearbox with or without faults, we use a 
gearbox dynamics simulator manufactured by SpectraQuest.  It 
consists of a 3HP motor controlled via USB by a software 
package on PC, a gearbox with 3 shafts and 2 pairs of meshing 
gears, and a voltage controlled magnetic brake. According to 
the diagram shown in Figure 1, we can see that the two-stage 
gearbox is a speed reducer, in which the input speed is first 
reduced to its 40% and then reduced to its 30%.  A built-in 
tachometer measures the rotational speed of the input shaft.  In 
addition, we use one PCB accelerometer and two PCB 
microphones to record the vibration and acoustic signals.  All 
the sensor readings are converted into digital signals and 
recorded onto PC through a dSPACE system with an ADC 
board. 

 
To emulate the non-stationary wind load condition, we 

create a speed profile in the driver controller software.  Starting 
from zero speed, the motor first accelerates to 1500rpm within 
2 sec, remains for 1 sec, and then decelerates to zero within 1 
sec. This speed profile may mimic a testing process from start-
up to shut-down. A typical signal collected from the 
accelerometer is shown in Figure 2 together with its frequency 
spectrum.  Since the signals are non-stationary, the frequency 
spikes on the spectrum do not necessarily correspond to 
harmonics. A time-frequency domain method is thus needed for 
feature representation. 

 a) 

b) 
Figure 1. a) Gearbox dynamics simulator; and b) Gear 
mesh schematics. 
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HARMONIC WAVELET BASED SIGNAL 
REPRESENTATION 

Newland [9, 10] derived the family of generalized 
harmonic wavelets, 
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We can see that it is a square window function, i.e., 
constant in a certain octave band and zero elsewhere.  

Harmonic wavelet transform combines the advantages of the 
short-time Fourier transform and the continuous wavelet 
transform.  Signal analysis can thus be restricted to specific 
frequency bands with known physical meanings. This partially 
explains why harmonic wavelet has been chosen for many 
vibration based condition monitoring and fault detection 
applications [11, 12]. 

 

 
 
Another advantage of harmonic wavelets is that the 

coefficients can be calculated through a FFT/IFFT based 
algorithm.  For a given signal ( )s t  represented by the time 
series ( ),  0,1, , 1s r r N= −K , the corresponding complex 
wavelet coefficients can be expressed as  [13] 
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where ( ),  0,1, , 1F q q N= −K  are the Fourier coefficients 
defined as 

 
1

0

1 2( ) ( ) exp( )
N

r

i rqF q s r
N N

π−

=

= −∑  (4) 

The selection of wavelet levels ( , )m n  can be arbitrary, but 
each selection, e.g., { }0 0 1 1 1 1( , ), ( , ), , ( , )L Lm n m n m n− −K , must 
begin with 0 0m =  and continue with touching (but not 
overlapping) pairs until 1L fn N− = , where fN  corresponds to 
the Nyquist frequency and L  denotes the number of levels. 
Figure 3 illustrates the above process with a sample input 
signal of 16 data points. 
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Figure 2. a) A typical sensor signal; and b) Its 
frequency spectrum. 
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Figure 3. Schematic illustration of FFT based Harmonic 
wavelet computation (N=16). 
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Comparing the time-frequency maps using different 
wavelets as shown in Figure 4, we can see that only on the 
harmonic wavelet map there is a recognizable pattern similar to 
the predefined motor speed profile: accelerating for the first 2 
seconds, remaining steady for the third second, and 
decelerating for the last second. Since the vertical axis 
corresponds to frequency, we can further identify that specific 
profile around 500-800 Hz, which matches exactly the gear 
mesh frequency of the gear pair on the input and intermediate 
shafts. The other three wavelet maps are plotted using 
MATLAB’s wavelet toolbox, none of which can reveal features 
with physical meanings. 

 

FEATURE HIGHLIGHTING USING SPEED PROFILE 
MASKING 

We have extra information regarding the running condition 
of a gearbox from the built-in tachometer.  Such information 
can be utilized to enhance the time-frequency features from the 
harmonic wavelet coefficients.  As mentioned, there are two 
pairs of gears mounted in the gearbox. The first pair connects 
the input and intermediate shafts, and the other pair connects 
the intermediate and output shaft. Figure 5 shows a segment of 
signal from the tachometer mounted on the input shaft. The 

speed profile can be easily converted into Hz. Along with the 
gear mesh relationship, we can then derive the rotation speed of 
each shaft and the gears on it.  The gear mesh frequency is 
defined as the product of the shaft speed and the tooth number. 
It can expressed as 

 gear gear pinion pinionGMF v N v N= × = ×  (5) 
where gearv ( pinionv ) is the gear (pinion) rotation speed in Hz and 

gearN  ( pinionN ) is the gear (pinion) tooth number. Also, since the 
tooth number of each gear is known, we can calculate rotation 
speed of other shafts if we know the speed of the input shaft. 

Through the study of rotating machineries, engineers have 
accumulated empirical knowledge about gearbox dynamics.  It 
has been demonstrated that certain frequency components are 
of high interest for fault diagnosis [14].  If the running 
condition is stationary, experienced engineer may identify 
gearbox faults based on the frequency spectrum of measured 
signals.  To name a few, the shaft speed and its multiples, as 
well as the gear mesh frequency and its multiples sidebanded 
by the shaft speed, are all of high interest.  Using the converted 
tachometer reading, we can then construct a mask to extract the 
critical features from the harmonic wavelet map. Figure 6 
shows a contracted mask, where blue lines correspond to the 
critical frequency components for the first gear pair, whereas 
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the dotted lines correspond to the second gear pair. Here we 
include 1x and 2x shaft frequencies, as well as 1x and 2x gear 
mesh frequencies sidebanded by 1x shaft frequency. In 
practice, we also need, say, 2% relaxation to account for 
unavoidable experimental variations. 

 
Compared to the wavelet map prior to the masking as 

shown in Figure 4, we can see that most characteristics have 
been extracted while stationary noise or unrelated frequency 
components, such as those caused by the cooling fan, are 
thrown away. 

 
 

 
 

FEATURE LEVEL MULTI-SENSOR DATA FUSION 
Each recorded time series can generate an array of time-

frequency features through the above procedure.  Thus, a multi-
sensor data collection will generate 3 arrays of features 
simultaneously. To evaluate the running condition of the 
gearbox based on all the information available, we need to 
further fuse the features from different sensors. 

Instead of simply averaging the features, here we use a 
statistical method based on the principal component analysis 
(PCA). PCA is a multivariate statistical procedure that 
transforms a number of correlated variables into a smaller 
number of uncorrelated new variables called the principal 
components [15].  The first principal component accounts for 
as much of the variation in the data as possible, and each 
succeeding component explains as much of the remaining 
variability as possible.  To be exact, the first principal 
component is along the direction with the maximum variance, 
and the second component is constrained to lie in the subspace 
perpendicular to the first component.  Within the subspace, the 
second component points to the direction of maximum 
variance.  And the third component is taken in the maximum 
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variance direction in the subspace perpendicular to the first 
two, and so on. 

Consider a block of data denoted by a K L×  matrix X , 
each column vector represents a K -dimensional signal.  The 
covariance matrix / ( 1)L= −TC XX% %  can be calculated 

from [ ]1 2 L= − − −X x μ x μ x μ% L , where vector μ  
consists of the sample mean kμ  along each dimension 
( 1,2, ,k K= K ). We can find an orthonormal matrix 
(eigenvectors)  [ ]1 2 K=V v v vL  and a diagonal matrix 
(eigenvalues) 1 2diag( , , , )Kλ λ λ=D K  such that =CV VD . 

Without loss of generality, the eigenvalues are often arranged in 
descending order 1j jλ λ +≥  for 1,2, , 1j K= −K . 

Suppose we have two feature vectors 1x  and 2x , then both 
V and D  are of dimension 2 2× . Consider the first 
eigenvector 1v  that corresponds to the largest eigenvalue 1λ , 
we can have the weights for fusing the two features as 

1 1(1)w = v  and 2 1(2)w = v  such that 
 fused 1 1 2 2w w= +x x x  (6) 

where fusedx  is the fused feature vector. This PCA based data 
fusion method can also be applied segment by segment, though 
segment size may affect fusion performance. 

 
 

 

STATISTICAL DECISION MAKING 
Suppose now we have a baseline library, in which features 

for a healthy gearbox are stored. After a testing process, a new 
signal is collected from a gearbox under an unknown condition. 
The decision should be made about the gearbox by comparing 
the new features with the baseline features.  Since we cannot 
guarantee a perfectly synchronized signal for each data 
collection, we need to align the new signal along with those in 
the baseline library. It is a normal practice to use the 

Generalized Cross Correlation with Phase Transform (GCC-
PHAT) as presented by [16] and [17]. Given two time 
series ( )ix n  and ( )jx n  the GCC-PHAT is defined as 

 
*

*

( ) ( )ˆ ( )
( ) ( )

i j
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X f X f
G f

X f X f
=  (7) 

where ( )iX f  and ( )jX f  are the Fourier transforms of the two 
signals and * denotes the complex conjugate. The time delay 
for these two inputs is estimated as 
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 ˆ ˆarg max ( )PHAT PHAT
d

d R d=  (8) 

where ˆ ( )PHATR d  is the inverse Fourier transform of ˆ ( )PHATG f . 
Harmonic wavelet features are then extracted from the shifted 
signal using the above mentioned method. 

The decision making process is based on Student’s t-test, 
assuming the each feature point follows a normal distribution. 
Suppose there are k feature arrays in the baseline library, and 

1, , ka aK are the feature points from each array but corresponds 
to the same time-frequency location on the harmonic wavelet 
map. Let 1( ) /ka a a k= + +L be the sample mean, and 

2 2

1

1 ( )
1

k

i
i

S a a
k =

= −
− ∑ be the sample variance. For a new 

feature point ta , the T  statistic can be calculated as 

 
/

ta a
T

S k
−

=  (9) 

It is known that the T  follows a Student’s t-distribution. 
The (1 )α− -upper confidence limit 1UCL α− can be calculated 
using the following equation: 

 , 1
1UCL kt S

a
k

α
α

−
− = +  (10) 

where , 1ktα −  is the critical t-distribution value with 1k −  
degrees of freedom. If the calculated T  value exceeds the 
upper confidence limit, we can conclude that, with the 
confidence level of 1 α− , the test feature ta  is statistically 
different from the baseline. In other words, we can claim with 
1 α− confidence that the condition of the test gearbox is 
unhealthy.  Decisions on fault cases may be made by further 
analyzing the T values projected back to the wavelet map. 

 

CONCLUDING REMARKS 
In this paper, we present a collection of feature extraction 

and multi-sensor data fusion techniques for fault detection in 
complex mechanical systems such as wind turbine gearboxes. 
Time domain raw data are collected from our gearbox 
dynamics test bed, when a healthy or faulty gear has been 
installed. A harmonic wavelet based method is chosen to handle 
the complexity caused by the non-stationary nature of wind 
load. We also developed a speed profile masking technique to 
account for tachometer readings and gear meshing relationship. 
The highlighted features from multiple sensors are then fused 
through a statistical weighting approach based on principal 
component analysis. Finally a simple decision making 
algorithm is employed to verify the effectiveness of the entire 
scheme. Using experimental data collected from a gearbox test 
bed, gear faults can be detected statistically for a given 
confidence level. 
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