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ABSTRACT 

The Department of Energy’s (DOE) goal for wind energy 
is that it comprise 20% of the nation’s energy by 2030. For 
this to be achieved, so called “distributed wind” and off-shore 
wind farms will be required. However, to date, operating & 
maintenance and unscheduled outage costs make such 
applications risky [1]. A potential risk mitigation strategy is 
implementation of Prognostics and Health Management 
(PHM). Prognostics promise great benefits to parts 
order/handling, logistic planning, maintenance scheduling, 
which ultimately reduces the cost of ownership/operation. 
Successful prognostics require that faults be detected at the 
earliest possible stage. However, to fully realize the benefit of 
the investment, PHM systems must provide early detection of 
precursors for failure modes. Incipient fault detection is 
critical to increasing reliability and lowering Operation and 
Maintenance (O&M) costs for wind turbine gearboxes. The 
combination of this critical incipient fault detection capability 
with prognostics will allow wind turbine owners to reap the 
promised PHM benefits. 

It is possible to generalize gearbox faults into two areas: 
mechanical and lubricant related faults. To provide adequate 
coverage to both generalized areas, the authors will show how 
two primary sensing technologies can be combined to provide 
the necessary detection horizon for wind turbine gearboxes. 
The authors will introduce a generalized PHM architecture 
that can be adapted for a broad range of mechanical systems, 
especially wind turbine gearboxes. Various sensors and 
diagnostic techniques that can be integrated into the 
architecture will be discussed. Finally, the authors will show 
how the architecture, sensors, and techniques can be applied 
to a subscale test, including example results. 
NOMENCLATURE 

*  denotes complex conjugate,  
a  scale factor of wavelet coefficient 
b position factor of wavelet coefficient 
c material constant 
CCDF Cohen’s Class Distribution Function 

CWD Choi-Williams Distribution 
CWT Continuous Wavelet Transform 
da  Incremental crack growth   
dN  Incremental cycle count 
DOE Department of Energy 
FA  False Alarm 
Fa  pseudo frequency 
Fc  center frequency of a mother wavelet in Hz 
Fc/a  center frequency of the baby wavelet 
FFT  Fast Fourier Transform 
Fe  Ferrous 
FTIR Fourier transform infrared 
FN  Frobenious Norm Feature 
GMM Gaussian Mixture Model 
g(a,b)(t)  baby wavelet 
g(t)  mother wavelet  
JTFA joint time-frequency analysis 
kHz  kiloHertz 
∆K  Stress Intensity Factor 
µm  micron 
lbf  pound force 
L/min liters per minute 
m  material constant 
NP4  Nondimensional feature 
O&M Operation and Maintenance  
PPM parts per million 
P(MD) Probability of Miss Detection 
PDF Probability Density Function 
PHM Prognostics and Health Management 
RH  relative humidity 
RPM Revolutions Per Minute 
STFT Short-time Fourier Transform 
t  time 
x(t)  Vibration Signal 

INTRODUCTION 
A potential risk mitigation strategy for off-shore wind 

farms is the utilization of an integrated PHM approach. PHM 
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technologies are designed to predict the current and future 
conditions of critical systems by actively monitoring available 
data from the targeted system. PHM can be applied to a wide 
variety of systems; for wind turbines, they are most applicable 
to the gearbox due to documented reliability concerns [2].  

For a wind turbine operator, knowing the current and 
future health of an asset (in this case, a gearbox) promises 
several benefits. First, current health state can be used to help 
determine how best to achieve load requests and unit 
downtime (if specific units can be brought on/off line). 
Second, accurate future health predictions that provide 
advance warning of system failures would greatly decrease 
costs associated with maintenance, spares ordering, and 
logistics (crane and crew) by allowing optimal scheduling and 
planning. Third, robust diagnostics with proven incipient fault 
detection would ensure that any system faults are detected 
with enough time to allow for a planned reaction, even 
without sophisticated prognostics. Ultimately, PHM benefits 
offer to reduce the cost of ownership/operation and maintain 
operational time. Achieving these objectives is key to 
achieving the aforementioned DOE goal. 

Several factors affect a PHM system’s effectiveness, 
therefore affecting potential cost benefits. The system’s 
reliability, sensor suite, fault detection/isolation capability, and 
prognostic accuracy are some of the primary influencing 
factors. Various reliability effects can influence the results of 
the PHM system; for instance, faulty sensors can cause erratic 
readings and erroneous diagnoses. Obviously, the sensors 
themselves strongly influence the PHM system’s capabilities. 
Inadequate range, sensitivity, incorrect location, and many 
other factors can cause missed or incorrectly diagnosed faults. 
Even the best sensors will not reliably detect or isolate 
mechanical faults in a poorly designed diagnostic system.  

Therefore, the authors’ approach to PHM system 
definition begins with careful selection of data sensors and 
evaluation of various signal processing and feature 
extraction/interpretation techniques. This approach generates 
high level, reliable, accurate, and actionable 
diagnostic/prognostic information. Within this method, 
detection and prediction of gearbox failures results from the 
fusion of diagnostic/prognostic algorithms with reliable 
sensed data that is focused on critical failure modes.  

Sensor-based health assessments of gearbox components 
can detect failures at various phases, from incipient to near-
failure. This is often referred to as the detection horizon. The 
authors have generated a notional graphic, see Figure 1, of 
common gearbox failure root cases, sensor-based readings 
(observables), and the approximate detection horizon 
provided. In this figure, detection horizon observables are to 
the left, with gearbox functional failure to the extreme right. 
In addition, the approximate range of each sensor’s maximum 
effectiveness is provided. Although notional, the authors have 
developed this overview based on a thorough literature review 
and their own experience with multiple gearbox failures. One 
of the goals of any diagnostic system should be to provide the 
earliest possible confident indication of a fault - in other 
words, the longest detection horizon. This is especially true 
for wind turbine applications, in which early indications of 

future faults can allow for spares ordering and optimal 
scheduling of downtime and maintenance. 
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Figure 1 – Gearbox Failure Mode Observables (Notional) 

As with any mechanical system, gearboxes are prone to 
particular failure modes/types. For a wind turbine system with 
many subcomponents, multiple potential failure modes exist. 
A succinct list by Mark Barnes summarizes the most prevalent 
gearbox failure types: shaft misalignment, wrong oil, low oil 
level, age-induced fatigue, lubricant degradation, and 
contamination (water or particles) [3]. 

As mentioned above and in Figure 1, many (if not most) 
gearbox failures can be diagnosed with two primary sensing 
technologies: lubricant (oil) monitoring and vibration. In the 
case of most gearbox components, vibration analysis has 
proven to provide some of the most quantitative and reliable 
indicators of rotating member fatigue. Furthermore, the utility 
of using high frequency measurements (sampling rates greater 
than 100 kHz) for diagnostics and prognostics of these 
components is well documented in numerous studies [4,5,6]. 
Prognostics play an important role in any PHM system; 
however, it is only through robust, accurate information about 
current health (diagnostics) that future system health 
(prognostics) can be predicted. For this reason and for the 
sake of brevity, this paper focuses on diagnostics; prognostics 
will be evaluated in future work. 

APPROACH 
The purpose of any diagnostic algorithm is to provide an 

assessment of the current health state of a monitored system 
given a set of observations (e.g., monitored variables, features, 
condition indicators, etc.). Typically, a diagnostic algorithm 
will indicate whether the assessed state has reached a specified 
value or threshold. However, to realize the full benefit of a 
PHM system, it is necessary to integrate diagnostics with 
prognostics by quantifying the health state rather than merely 
indicating whether its condition indicators have reached a 
certain threshold. Diagnostic results should include an 
estimate of the assessed state and its uncertainty (since the 
health state is inferred from analysis and interpretation of 
indirect measurements). Uncertainty information can be 
provided by assigning probabilities to a series of estimated 
health conditions. These probabilities and their corresponding 
condition values will generate a probability density function 
(PDF), as seen in Figure 2. Obviously, the more uncertainty a 
PHM system’s result has, the less beneficial the system is. 
Therefore, a diagnostic or PHM system should mitigate the 
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uncertainty in the current (and future) health in order to be as 
beneficial as possible. 
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Figure 2 – Statistical Diagnostic Output  

The intelligent use of oil and vibration sensing 
technologies is crucial in decreasing uncertainty levels in wind 
turbine gearbox diagnostics and thereby increasing PHM 
performance. For instance, an oil sensor may give an 
indication of wear (and even amount of wear) in the gearbox, 
but it cannot isolate the damage to a specific component. In 
contrast, a vibration sensor can isolate damage to a specific 
degraded component, but may not be able to correlate it to a 
wear level with an acceptable amount of uncertainty. Both of 
these sensors provide information that is critical to PHM. The 
generic approach shown in Figure 3 is a potential method for 
combining these oil and vibration measurements to create 
more accurate diagnostics (and eventually PHM) of wind 
turbine gearboxes. 
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Figure 3 – Generic Gearbox PHM Approach Integrating Oil and 

Vibration Monitoring 

Within this approach, the accelerometer data (vibration) 
and available oil sensor data are used to diagnose the 
appropriate gearbox failure modes: 

• Accelerometer: age-induced fatigue (normal wear) 
and shaft misalignment. 

• Oil sensor: incorrect oil, low oil, level lubricant 
degradation, contamination (water or particles). 

In addition, appropriate information from both sensors is 
combined (or fused) to form a better, less uncertain 
diagnostic/prognostic. For example, since vibration data needs 
more interpretation and analysis for correlation to mechanical 
system health when compared to measurements like oil debris, 
it is inherently more uncertain. Therefore, the authors propose 
development of a fault classifier that utilizes the two separate 
sensing techniques to isolate and describe current system 
faults/health. Combining measurements from the two sensors 

will generate a more accurate overall classification since the 
two methods address each other’s limitations. 

In addition, by integrating on-line oil quality/debris 
measurements with vibration measurements, gearbox failure 
mode indicators can be fused to produce fault classification, 
maintenance action recommendations, and component 
replacement recommendations. This on-line predictive 
capability will improve asset reliability and availability. 

OIL MONITORING 
Oil monitoring is usually more straightforward than 

vibration analysis since oil sensors typically measure the 
appropriate data for a particular failure mode directly, which 
minimizes the need for additional processing. (As discussed 
later, vibration sensing requires determination of the 
appropriate signal processing and feature extraction methods 
based on the failure modes of interest.) There are three leading 
modes of degradation for wind turbine gearbox oil: 
• Water – water contamination can lead to corrosion as 

well as accelerated breakdown of the lubricant’s additive 
package, ultimately leading to micro-pitting (on bearings 
and/or gears) and consequently lowered fatigue life [7]. 

• Wrong/Aged Lubricant – oil degradation by-products 
and depleted additive molecules can lead to loss of 
operating clearance or loss of heat transfer capability [8]; 
incorrect oil can cause similar detrimental heat and 
clearance effects as well as accelerated wear. 

• Contamination (particles or water) - metallic particles 
can be both indicators of wear and initiators of collateral 
damage through debris “dents” acting as stress risers or 
blocking fine clearances, causing oil starvation [7]. Water 
in even trace amounts can greatly reduce gearbox 
component life. 

Detection of these lubricant faults is discussed briefly in 
the following sections. 
Detecting Water Contamination 

Water is one of the most detrimental contaminants within 
a lubricating system. Depending on its state, water can not 
only reduce oil’s lubricating ability but also increase 
oxidation, leading eventually to rust and/or corrosion induced 
fatigue. By itself, dissolved water poses a reduced threat to 
lubricant performance. However, emulsified and free water 
will greatly reduce the operating life of the system. Emulsified 
water droplets can travel through the lubricating system, 
attaching to steel surfaces and, in time, forming rust and/or 
embrittling those surfaces. It has been shown that 1% water in 
a lubricating system can cause a 90% reduction in the life of a 
journal bearing [9] and 0.1% water can reduce ball bearing 
life by 70% [10], as illustrated in Figure 4. 
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Figure 4 – Water Contamination’s Effect on Bearing Life [11] 

Traditionally, water content is measured using offline 
laboratory type testing, such as Crackle or Karl Fisher testing. 
These types of tests are less than ideal for distributed or off-
shore wind turbine applications since they involve large, 
fragile laboratory equipment and dedicated trained personnel. 
Therefore, to accurately track water contamination, the 
authors have developed an online/inline sensing element that 
detects moisture in oil in a similar fashion as a humidity 
sensor detects moisture in air (refer to [12] for further sensor 
details). The sensor measures the relative humidity (RH) of 
the oil, correlates that to parts per million (PPM), and outputs 
the PPM of water directly. 

Figure 5 shows the benefit that can be provided through 
real-time monitoring of water contamination using the above-
mentioned sensor. In this example, a dehydrator stalled, 
causing a steady increase in contamination. Without real-time 
monitoring, several weeks or even months would have passed 
before an oil analysis report would have identified the 
problem. Even then, maintainers would have likely waited to 
receive a second report to confirm the problem before taking 
action due to the lack of repeatability in lab analyses. 
However, with real-time monitoring via the inline RH sensor, 
corrective action was taken before the contamination could 
reach a level that would threaten the health of the system. 
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Figure 5 – Example Gearbox Water Contamination, Detected 

Via On Line RH Measurement 

Detecting Wrong/Aged Lubricant 
Incorrect or aged lubrication can lead to premature wear 

of oil-wetted components. Again, this is traditionally detected 
using periodic (every 100 – 300 hours [2]) oil sample 
methods, such as Fourier transform infrared (FTIR) (condition 

and contamination), viscometer (viscosity), and flashpoint 
(contamination). Although these tests can be very accurate, 
they are also offline and costly, limiting their usefulness 
within an integrated and practical wind turbine diagnostic 
system. 

Some online quality sensors are available, typically using 
electrochemical impedance or conductivity meters. Unlike 
some sensors, the authors’ sensor interrogates the oil with a 
wide range of frequencies to extract more information from 
the oil than other sensors. Changes in the measured impedance 
spectrum correlate with changes in oil condition and 
contamination levels. An example impedance spectrum is 
shown on a Nyquist plot in Figure 6. Data summarized in this 
figure was collected during a degradation test (according to 
ASTM D2272) of wind turbine gearbox oil. As shown by the 
shifting Nyquist curves, the sensor’s response clearly trends 
with the oil’s degradation level. 

 
Figure 6 –Example Oil Quality Results from Degradation Testing 

Detecting Metallic Debris 
Oil debris monitoring technology can be employed to 

identify a failure in its early stages before it can propagate to 
other components. While some level of particulate is 
anticipated in any system, a sudden increase in particle 
detection rates can be attributed to an impending component 
failure.  

Several technologies exist for online/inline debris 
detection, including atomic emission spectroscopy (wear 
debris and dirt) [8], LaserNetFines (silhouette of particle, plus 
size and shape), ferrography (particle size, shape, ferrous/non-
ferrous), and magnetic chip collector/detectors (ferrous 
quantity/rate) [such as the sensor in reference 13]. 

Another technology used for debris sensing is based on 
an inductive sensor. Such a sensor is created by winding one 
or more wire coils around a non-conductive tube. As metallic 
particles entrained in an oil stream within the tube pass 
through the energized coils of wire, they cause the impedance 
properties of the coils to change. These changes can be 
measured through appropriate signal conditioning and 
acquisition electronics (built into sensor) and the resulting 
signal can be assessed to determine attributes of the particle. 
Because ferrous material impacts the coil in a different 
manner than non-ferrous material, particle type can be 
determined in addition to size. 

An inductive sensor in development by the authors was 
tested in a lubrication loop (MIL-23699 oil at 3 L/min) similar 
to those found on wind turbines. During testing, ~30 [100-200 
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μm] ferrous particles were added at approximately 21:14, 
followed by and additional ~15 [400-500 μm] ferrous particles 
at 21:17. Note that an exact count of particles was not 
performed and that the particles were sorted by a mesh screen, 
thus exact counts and sizes of the inserted particles are not 
known. These sensor readings during the test are shown in 
Figure 7 and the final totals for the various size bins are 
shown in Figure 8. 
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Figure 7 – Lubricant Loop Test, Ferrous Particle Count Trends 
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Figure 8 – Lubricant Loop Test, Ferrous Particle Count Totals 

VIBRATION-BASED ANALYSIS METHODS 
As previously mentioned, many common gearbox 

diagnostic methodologies use vibration based algorithms to 
infer or estimate gearbox health states. Although commonly 
used, one cannot directly use a reading from an accelerometer 
like the above mentioned oil sensors. In order to turn the raw 
vibration signal into something useful, complicated analysis 
often needs to be performed. 

Vibration based diagnostic methods typically involve 
various signal processing techniques to manipulate the raw 
vibration data before health indicative features are extracted. 
Gearbox vibration diagnostics are often based on frequency 
domain analysis, which assumes the monitored signal is 
“stationary” during the analysis period. However, because 
operating conditions are often non-stationary and evolving, 
this assumption leads to spectral smearing and erroneous 
analysis that creates uncertainty in the health assessment. 

Spectral smearing, in which energy from an evolving 
characteristic frequency (i.e., shaft frequency, bearing fault 
frequency, gear mesh frequency, etc.) gets spread across 

multiple frequency bins, can reduce the efficacy of traditional 
frequency domain analysis, including Fourier transforms. 
Typically, this is avoided by defining steady state operating 
conditions in which to perform the analysis. Although this 
may be acceptable for some systems, most wind turbines have 
constantly varying shaft speeds. In addition, certain 
component faults and their progressions can also lead to non-
stationary signals that could be missed by traditional 
techniques. As a result, the authors have developed a novel 
vibration diagnostics methodology that is applicable during 
non-steady operation through application of joint time-
frequency analysis (JTFA) [refer to 14 for more details]. 

These methods use various techniques to transform the 
two dimensional time domain signal into a three dimensional 
time-frequency domain signal to increase feature extraction 
accuracy.  Various features are then extracted from the three 
dimensional signals for fault detection. The following sections 
provide a brief description of the joint time-frequency analysis 
methods considered by the authors for gearbox monitoring 
applications.  
Wavelet Analysis 

Wavelet decomposition is a commonly used signal 
processing technique that can localize the exact time of 
specific vibration events [15]. Wavelets can reveal amplitude 
and phase modulation within their frequency band. From these 
modulations, algorithms can be applied to detect specific fault 
signatures. For gearbox monitoring, the authors employ a 
Continuous Wavelet Transform (CWT) for decomposing the 
time domain signal into the time-frequency domain. For a 
signal x(t), the CWT of the signal is defined as:  

Wx(a,b)=∫g*(a,b)(t)x(t)dt  (1) 

where * denotes complex conjugate, g(t) represents the 
mother wavelet, and g(a,b)(t) is a baby wavelet, and a and b 
represent the scale (dilation factor) and position (translation 
factor) at which the wavelet coefficient is calculated. The 
pseudo frequency (Fa) corresponding to the scale (a) can be 
defined in Equation 2. 

Fa=Fc/(a Δ)  (2) 

where Fc is the center frequency of a mother wavelet in Hz 
and Δ is the sampling period. Fc/a is the center frequency of 
the baby wavelet. By carefully selecting the Fc and Fa 
(equating them with gear mesh, bearing, and shaft 
frequencies) used during the decomposition, the approach can 
be tailored to gearbox analysis. In addition, the authors 
decompose the raw time domain vibration data, time 
synchronized signal, and demodulated signal for general 
anomaly, gears/shaft, and bearing fault detection, respectively. 
Short-Time Fourier Transform 

The authors have developed a Short-time Fourier 
Transform (STFT) method, commonly used in speech, sonar, 
and radar processing, that segments a time domain signal, 
applies a weighting window to each overlapping segment, and 
computes the discrete-time Fourier transform of each segment. 
An estimate of the short-term frequency content of the signal 
is estimated and assumed to be stationary since sufficiently 
short time spans are used. However, the method still uses a 
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typical Fast Fourier Transform (FFT), so the segment sizes 
must be set such that any shaft acceleration over the small 
time slice is negligible. A balance also must be struck between 
frequency and time resolution as dictated by the targeted fault 
detection needs. Small time slices result in high time 
resolution but low frequency resolution, affecting the resulting 
feature extraction. This approach is illustrated in Figure 9. 
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Figure 9 – Example Short-time Fourier Transform Analysis 

Cohen's Class Distribution Function 
Cohen’s Class Distribution Function (CCDF) is a 

generalized time-frequency analysis method that utilizes 
bilinear transformations through the use of a kernel function 
[16]. There are many available kernel functions, including 
Choi-Williams (commonly used in speech analysis and ultra 
wideband signal analysis) [17], Wigner-Ville (commonly used 
in biometrics), and Zhao-Atlas-Marks (evaluated for bearing 
diagnostics [18] and motor diagnostics [19]). CCDF offers 
two primary advantages. First, CCDF analysis can be used to 
analyze vibration data collected during transient conditions. 
Second, a CCDF approach can result in both good frequency 
resolution and good time resolution, as opposed to the STFT 
approach, which trades time resolution for frequency 
resolution. 

However, one of the commonly cited drawbacks of the 
CCDF approach is the influence of so-called cross term 
artifacts [19]. These cross terms are interferences caused by 
the linear combination of both auto and cross terms that result 
in increased signal redundancy [17, 19]. The resulting artifacts 
often obfuscate the frequencies necessary for fault isolation. 
To reduce the cross term effects, multiple methods having 
been implemented, including changing parameters of the 
kernel, utilizing different kernels, applying a filter, and using 
the analytic signal. In this paper, the authors chose a well-
known kernel function, Choi-Williams, as described next. 

The Choi-Williams Distribution (CWD), also called the 
Exponential Distribution, is a derivative of CCDF that uses an 
exponential kernel (Equation 3) to suppress the cross terms. 
However, it also reduces the time-frequency resolution. This 
tradeoff can be adjusted using the factor σ (controls cross 
terms) in Equation 3 to provide the optimal time-frequency 
resolution needed for a particular application [16, 17]. ξ is 

related to the time window used during CWD calculation and 
τ determines frequency resolution. 

( ) σ
τξ

τξ

22

,
−

= eCWD  
(3) 

Vibration Features  
Once calculated, the various JTFA signals still cannot be 

directly used to infer the health of a mechanical system. The 
signals need to be further analyzed for characteristics linked to 
gearbox failure phenomena. Most frequently, these 
characteristics are captured by features of the signals. From 
these various processed signals, several features (condition 
indicators) can be calculated that have been shown to relate to 
damaged gearboxes. Three primary features are extracted: 
NP4, FNP, and CWT variance. NP4 is a non-dimensional 
parameter related to the normalized kurtosis of signal power 
that depends only on the shape of the power distribution and is 
invariant to scale transformation [20]. The scale invariance 
property of this fault detection parameter can greatly simplify 
its application. The Frobenious Norm Feature (FN) describes 
the energy distribution of a vibration signal. Typically, the 
energy distribution is symmetrical under healthy conditions, 
but becomes asymmetric while the relative magnitude of the 
energy increases as faults occur and progress. These features 
can calculated for on any time domain signal, though the 
authors calculated each from the above mentioned 
transformed signals, the conventional (unprocessed or raw) 
signal, and finally the demodulated enveloped signal. 

EXAMPLE APPLICATION OF METHODS 
Although development of the oil and vibration analysis 

methods can be performed individually, a much more robust 
and accurate gearbox health assessment can be achieved by 
combing them. Therefore, data collected from a subscale 
bearing test rig was used to test this hypothesis and the above-
mentioned approaches. Due to the proprietary nature of the 
test rig used, the authors will introduce only generalized 
information about the testing.  As part of a series of tests run 
on the rig a damaged bearing was installed and ran for a 
period of time. Over the duration of this seeded fault test, 
vibration and oil debris data was acquired and saved for 
further analysis. 

 An inner raceway fault was seeded by means of a small 
hardness indentation (diameter <5% of circumference) made 
within the bearing’s wear path. The bearing was then loaded 
(>3000 lbf radial load, >150% of bearing’s maximum static 
load rating) and ran at a constant speed (>10,000 RPM). A 
radially mounted accelerometer (sampled at 200 kHz, 10 
seconds every minute) was used to collect the vibration. 
Within approximately 3.5 hours of accelerated life testing, the 
fault progressed from a small indent into a large spall that 
completely covered 20-30% of the inner race circumference. 
Note that only the initial and final spall sizes were directly 
measured; there were no intermediate damage measurements. 

Although the above-mentioned inductive sensor was not 
available for this testing, the quantity of debris was measured 
using a commercial magnetic chip collector. As the purpose of 
this test was to generate accelerated fatigue caused by high 
Hertzian stress (>400 kpsi), no other faults were seeded. 
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Therefore, only vibration and oil debris sensing are of interest 
for these results.  

Based on the test rig’s design/use (only a single test 
bearing) and the install sensor suite (a single accelerometer 
and chip collector), the authors adapted the generic approach 
introduced in Figure 3 to a form applicable for this test 
system. As shown in Figure 10, the generic vibration 
diagnostic algorithms block was replaced with the above-
mentioned signal processing methods and the generic bearing 
features replaced with the 2-3 features extracted for each 
technique. Finally, a specific Gaussian Mixture Model (GMM) 
classifier routine was applied, which is discussed below. 
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Figure 10 – Customized Vibration and Oil Diagnostic Approach 

The STFT and CWD features for the conventional (raw) 
and demodulated signals are shown in Figure 11. The y-axis 
of these plots is the normalized feature magnitude and the x-
axis is the time. There was a change in bearing health state 
over the duration of the test, as evidenced by the dramatic 
increase in feature magnitudes, particularly in the Frobenius 
Norm. The NP4 feature did react; however, it did not trend 
like FN.  

08:30 09:00 09:30 10:00 10:30 11:00 11:30 12:00
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Fe
at

ur
e 

Va
lu

e 
(N

or
m

al
iz

ed
)

STFT Features

 

 

Frobenius Norm
NP4

08:30 09:00 09:30 10:00 10:30 11:00 11:30 12:00
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Fe
at

ur
e 

Va
lu

e 
(N

or
m

al
iz

ed
)

STFT Demodulated Features

 

 

Frobenius Norm
NP4

08:30 09:00 09:30 10:00 10:30 11:00 11:30 12:00
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Fe
at

ur
e 

Va
lu

e 
(N

or
m

al
iz

ed
)

CWD Features

 

 

Frobenius Norm
NP4

08:30 09:00 09:30 10:00 10:30 11:00 11:30 12:00
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Fe
at

ur
e 

Va
lu

e 
(N

or
m

al
iz

ed
)

CWD Demodulated Features

 

 

Frobenius Norm
NP4

08:30 09:00 09:30 10:00 10:30 11:00 11:30 12:00
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Fe
at

ur
e 

Va
lu

e 
(N

or
m

al
iz

ed
)

STFT Features

 

 

Frobenius Norm
NP4

08:30 09:00 09:30 10:00 10:30 11:00 11:30 12:00
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Fe
at

ur
e 

Va
lu

e 
(N

or
m

al
iz

ed
)

STFT Demodulated Features

 

 

Frobenius Norm
NP4

08:30 09:00 09:30 10:00 10:30 11:00 11:30 12:00
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Fe
at

ur
e 

Va
lu

e 
(N

or
m

al
iz

ed
)

STFT Features

 

 

Frobenius Norm
NP4

08:30 09:00 09:30 10:00 10:30 11:00 11:30 12:00
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Fe
at

ur
e 

Va
lu

e 
(N

or
m

al
iz

ed
)

STFT Demodulated Features

 

 

Frobenius Norm
NP4

08:30 09:00 09:30 10:00 10:30 11:00 11:30 12:00
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Fe
at

ur
e 

Va
lu

e 
(N

or
m

al
iz

ed
)

CWD Features

 

 

Frobenius Norm
NP4

08:30 09:00 09:30 10:00 10:30 11:00 11:30 12:00
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Fe
at

ur
e 

Va
lu

e 
(N

or
m

al
iz

ed
)

CWD Demodulated Features

 

 

Frobenius Norm
NP4

08:30 09:00 09:30 10:00 10:30 11:00 11:30 12:00
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Fe
at

ur
e 

Va
lu

e 
(N

or
m

al
iz

ed
)

CWD Features

 

 

Frobenius Norm
NP4

08:30 09:00 09:30 10:00 10:30 11:00 11:30 12:00
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Fe
at

ur
e 

Va
lu

e 
(N

or
m

al
iz

ed
)

CWD Demodulated Features

 

 

Frobenius Norm
NP4

 
Figure 11 – STFT (Left) and CWD (Right) Feature Trends,  

Conventional Signal (top), Demodulated Signal (bottom) 

The CWT features are shown in Figure 12. The axes are 
the same as Figure 11. Again, FN features trended with the 
degrading bearing. However, the trends in Figure 11 and 
Figure 12 alone do not indicate the exact level of damage; 
only that something is occurring and progressing. 

These feature responses let us know there is a defect in 
the bearing and that the anomaly is evolving. However, for the 

accurate robust diagnostics required to provide the most 
diagnostic benefit, the amount of damage needs to be 
quantified. Unfortunately, vibration features are difficult to 
correlate directly to damage level. In contrast, oil debris can 
be directly correlated to damage. The normalized oil quantity 
trend shown in Figure 13 clearly depicts an increasing particle 
generation rate.  
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Figure 12 – CWT Feature Trends, Conventional Signal (top), 

Demodulated Signal (bottom) 
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Figure 13 – Oil Debris Quantity Trend 

In fact, drawing a comparison to crack growth phases, the 
authors identified three distinct regions of particle generation: 
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Region 1 (0-2 particles per minute), Region 2 (2-5 particles 
per minute), and Region 3 (>5 particles per minute). 
Notionally, these Regions correlate to the typical 3 phases of 
fatigue crack growth often described by the Paris Law (da/dN 
= c∆K m)[21]. For this discussion, one could assume that any 
diagnostics that can characterize the defect size to one of these 
regions adequately meets the fault’s size assessment criteria. 
In addition, by characterizing the defect size to one of these 
zones, there is inherently a characterization of the risk of 
failure. 

• Slow Growth: incipient fault state (Region 1) [low 
risk of immediate failure] 

• Stable Growth: moderate fault state (Region 2) 
[medium risk of immediate failure] 

• Unstable Rapid Growth: severe fault severities fault 
state (Region 3) [high risk of immediate failure]. 

One could certainly apply a typical statistical analysis to 
the individual features and achieve some sort of diagnostic 
performance. Within the process, thresholds are set on the 
individual feature magnitudes by optimizing the balance 
between probability of false alarm (P(FA)) and the probability 
of miss detection (P(MD) = 1-probability of detection P(D)), 
as illustrated in Figure 14, which is provided solely for 
reference. 

 
Figure 14 – Illustrations of Probability of False Alarm and 

Probability of Detection 

Assume that only the single “best” vibration feature was 
used, for this analysis that would be CWT Demodulated FN 
(based on P(D)). Setting a theoretically acceptable P(FA)=2%, 
leads to a normalized threshold of 0.025 and P(D)~=100% 
and a detection of a bearing anomaly at ~10:19 (the earliest 
time a feature crosses the threshold). All of the diagnostic 
information is there, except for the fault severity assessment. 
Conversely, if we used only the oil debris sensor with the 
same process, the threshold would be 0.0654 and P(D)~=81% 
and the detection of an anomaly would occur at ~10:40. All of 
the diagnostic information is there except the fault isolation 
(debris cannot be readily correlated to specific component). 

However, if the sensors and their features are combined, 
or fused, the resulting diagnostic would contain all necessary 
information. To address this fusion, the authors developed a 
cluster based classification method by generating a Gaussian 
Mixture Model (GMM) [22]. Many other techniques are 

available, but the GMM is a convenient method for this work. 
In the GMM process, also known as unsupervised learning 
modeling, clustering is performed using convex combination 
of probability distributions (similar to weighted sum). 
Clustering methods can be thought of as separating groups (or 
clusters) of features in multidimensional space. Unique to the 
GMM approach described herein, a model was defined that 
was capable of grouping the various features into classes 
associated with the oil debris regions shown in Figure 13. 
That is, the classifier was constructed in a manner to allow the 
sensor features to be assigned to one of the regions and 
thereby correlated to damage severity. 

 Like most clustering based techniques, developing the 
GM models requires both healthy and faulted data. The 
authors developed the model using 30% of the collected data 
(the remainder was used to test its performance). The resulting 
classification routine used several vibration features and oil 
debris data to provide an estimate on the fault severity 
(incipient, moderate, and severe). As shown in Figure 15, the 
estimated fault level is the blue line and is a direct output of 
the GMM classifier. The damage severity estimates were 
correlated well to the ground truth, in this case, the oil debris 
(green line, more detailed in Figure 13). Note that since the 
information is fused, the resultant time for anomaly detection 
from the fused is ~10:24, a bit later than vibration only and a 
bit sooner than oil only. 

 
Figure 15 – Damage Assessment Based on Final Fused 

Diagnostics 

Although the resulting damage assessment does not 
predict a discrete defect size (in this case, spall size), it 
provides the necessary diagnostic information required by a 
robust diagnostic approach, and ultimately by a complete 
PHM approach. The classification of severity level and risk of 
rapid fault progression, offered by correlating oil debris to 
known mechanical degradation phenomenon, would provide 
the wind turbine user with actionable information to make 
confident decisions on the current and future health of their 
gearboxes. 

CONCLUSION & FUTURE WORK 
In this paper, the authors briefly introduced the 

requirements needed by a wind turbine gearbox PHM system, 
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focusing on the diagnostics. A methodology was provided that 
allows optimization of failure mode coverage with a minimal 
set of sensor technologies. Within this methodology, the 
anomaly detection, fault isolation capabilities, and detection 
horizons provided by the potential sensors and diagnostic 
techniques are considered. 

New and innovative vibration analysis techniques were 
introduced. These JTFA methods have been shown in previous 
work to provide excellent fault detection/isolation capabilities, 
even in cases of unsteady operation like wind turbine 
gearboxes. In addition, several potential oil sensing methods 
were provided including their benefit to gearbox monitoring. 

Finally, a potential method for fusing vibration features 
and oil debris results was developed and applied to a bearing 
run-to-failure test. From the vibration data collected during 
this test, the JTFA vibration features clearly detected and 
isolated the fault. Using the information from the oil debris 
sensor as ground truth, an automatic health classification 
scheme was developed. By combining the oil debris and 
vibration data with a GMM-based classifier, the authors were 
able to categorize the fault severity over the duration of the 
testing. 

The authors believe this process described herein 
highlights some of the potential benefits of fusing oil sensing 
with vibration for wind turbine gearbox monitoring. Although 
only debris and bearing vibration data was available, this type 
of approach could be applied to any combination of oil 
sensing and mechanical component specific vibration 
diagnostics. The work presented in this paper is the first step 
in developing a complete gearbox PHM system. Additional oil 
sensing and vibration techniques would increase the fault 
mode coverage and increase its benefits. 

An accurate, robust diagnostic system that can reliably 
assess the current gearbox health, such as the one presented 
herein, would readily enable prognostics to autonomously 
predict future health. The authors intend to build upon these 
results by integrating appropriate prognostic techniques. In 
addition, the authors are working to identify a more 
comprehensive set of data to refine and verify the approaches. 
Once combined with accurate prognostics, the integrated 
PHM approach would enable wind turbine operators to fully 
realize the benefits of their PHM investment. 
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