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ABSTRACT 
A new modeling formulation for turbulent chemistry 

interactions in large eddy simulation (LES) is presented that is 

based on a unique application of the linear-eddy model (LEM) 

that includes large scale strain effects.  This novel application 

of the LEM may be used to predict turbulent flame extinction 

limits due to both small and large scale strain effects.  Statistics 

from this modeling formulation may be used to generate an 

inexpensive run-time model for LES predictions.  This paper 

presents the LEM modeling formulation and demonstrates the 

capabilities of the approach for augmentor conditions.  A 

methodology is also presented to formulate a LES subgrid 

model based on the simulation data.  

INTRODUCTION 
Advanced computational methodologies such as large-

eddy simulation (LES) are required to evaluate design concepts 

for combustors and augmentors in high performance aircraft 

engines.  However, LES is limited by the sub-models used to 

account for turbulence-chemistry interactions.  For LES, 

turbulent combustion models span a wide spectrum of 

generality.  On the low end of the spectrum are moment 

methods (e.g., eddy dissipation concept model [1], laminar 

flamelet model [2]) which employ a variety of simplifying 

assumptions to develop computationally affordable models that 

are relatively general.  On the high end of the spectrum are 

stochastic methods (i.e., LES-LEM [3][4], pdf evolution 

equation method [5]) that seek to model the physics of the flow 

in a comprehensive fashion.  These stochastic methods are 

accurate and general, but are very expensive computationally 

and become intractable for large chemical mechanisms. 

There is a wide disparity between the modeling capabilities 

and computational cost of moment and stochastic methods.  

Moment methods sacrifice physics by specifying the shape the 

subgrid probability distribution function (pdf) of the reacting 

scalars in order to develop a computationally affordable model.  

On the other hand, stochastic methods retain the physics 

through a prediction of the subgrid pdf, but at a much greater 

computational cost.  Currently there are very few models 

between moment methods that employ an assumed pdf 

approach and full stochastic methods that directly predict the 

pdf.  With this in mind, the aim of this research is to develop a 

predictive methodology that is between current moment and 

stochastic methods with regard to computational cost and the 

ability to model the physics of the flow.  This may be 

accomplished through a parameterization of the linear-eddy 

model (LEM) [6][7].  The LEM is a comprehensive mixing model 

that separately treats molecular diffusion (with finite-rate kinetics) and 

small scale turbulent stirring.  Because the model resolves the 

microscale flame structure, extinction and re-ignition may be 

accurately captured.   

Statistics from the LEM may be parameterized to form a 

computationally inexpensive run time model.  Parameterization 

entails characterizing the model’s statistics in terms of a 

reduced set of variables.  In this approach, statistics required to 

close the filtered LES transport equations are derived from 

stand-alone LEM simulations that are parameterized in terms of 
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a set of characteristic variables.  These statistics are stored in a 

database that may be deployed within a LES solver for a 

predictive calculation.  The LES solver then recalls the required 

closure statistics from the database in a fast and efficient 

manner.  Consequently, the parameterized LEM subgrid scale 

formulation is computationally inexpensive because the model 

statistics are precomputed and are not generated during the LES 

run.  However, the model does include all the physics of the 

underlying stochastic model, including a prediction of the 

subgrid pdf. 

This type of approach was first developed by Goldin and 

Menon [8][9], who employed the LEM to construct a database 

of mean species properties as a function of mean mixture 

fraction, mixture fraction variance and scalar dissipation.  That 

type of parameterization is very similar to what is used for the 

laminar flamelet turbulent combustion model [2].  Goldin and 

Menon [9] applied this methodology for a priori comparisons 

of species and temperature pdfs with experimental data.  That 

study demonstrated the excellent agreement between LEM 

predicted pdfs and those obtained from experiments for 

hydrogen-air and methane-air jet flames.  That study also 

demonstrated the superiority of the LEM approach compared 

with the assumed pdf formulation that is used within the 

flamelet model.[2]  Goldin and Menon [8] also applied this 

approach to the RANS predictions of a hydrogen-air jet flame 

and obtained excellent results compared to experimental data 

for mean species and mixture fraction.  Good predictions of 

mean temperature and pollutant formation for Sandia flames D 

and F were also achieved by Goldin and Raman [10] using the 

parameterized LEM approach.  Sankaran, et al. [11] developed 

a parameterized LEM combustion model as a function of mean 

mixture fraction, scalar dissipation and turbulent Reynolds 

number and made a priori comparisons with experimental 

scatter plot data for species and temperature for a CH4/H2/N2 jet 

flame.  Sen and Menon [12] generalized this approach to 

develop a LEM parameterized model for an 11 species – 22 

reaction step mechanism for H2/CO – air combustion.  In their 

approach, the filter species production rates for the mechanism 

were parameterized in terms of mean temperature, species, 

species gradient and subgrid Reynolds number. Sen and Menon 

[12] applied this model to predict local extinction and re-

ignition in a temporally evolving jet simulation and produced 

good results compared to DNS data. 

LEM parameterized models are very powerful and 

computationally efficient, making them an excellent choice for 

routine application of LES to engineering design and analysis 

of combustor and augmentor flows.  However, current LEM 

formulations are deficient from the perspective that they do not 

include the effect of large or resolved scale strain.  This results 

from that fact that current LEM formulations assume uniform 

mean flow within the subgrid.  Consequently, these 

formulations cannot capture the effect of resolved scale strain 

on the subgrid combustion.  Some previous LEM parameterized 

models [11][12] attempted to include resolved scale strain 

effects within their formulations by initializing the LEM 

simulations used to generate the models with strained laminar 

flame solutions.  However, these strain effects were only 

contained within the initial conditions and were not maintained 

during the LEM simulations because these formulations 

assumed uniform mean flow within the LEM.  The generalized 

LES-LEM [3][4] formulation which directly employs stochastic 

simulations using the LEM within each LES subgrid cell also 

does not account for the effect of resolved scale strain on the 

subgrid for the same reason. This is also true for the pdf 

evolution equation method [5] because the subgrid mixing 

models used in that approach do not account for mean strain 

either. 

The lack of accounting for resolved scale strain on the 

subgrid for both the LEM and pdf evolution equation methods 

may result in an underprediction of local flame extinction, for 

example, in the vicinity of the high strain region between two 

counter rotating vortices.  To resolve this deficiency, the 

objective of this research is to develop a LEM formulation that 

will account for mean or resolved scale strain on the subgrid 

flow.  This is accomplished by developing a fully coupled 

LEM/counter flow solver that may be used to predict the 

behavior of turbulent counter flow flames under the influence 

of mean strain.  With this new formulation, statistics may be 

generated to close the filtered LES equations within a 

parameterized LEM model that directly includes the resolved 

scale strain as an input parameter.  The resulting model will be 

computationally inexpensive and directly account for both 

resolved and unresolved strain effects on the extinction and 

ignition behavior of the subgrid flame. 

This paper describes the development of this fully coupled 

LEM/counter flow (LEM-CF) formulation to predict turbulent 

counter flow flames.  This paper also describes the application 

of this methodology to augmentor like conditions, and 

illustrates how this approach may be used to generate a 

computationally inexpensive run-time model for LES. 

The following section of this paper first describes the basic 

LEM for application to homogeneous turbulence.  Next, a 

counter flow formulation to predict the mean velocity field is 

presented that was developed to be amenable to coupling with 

the stochastic LEM.  A description of modifications to the basic 

LEM that are required to apply the model to the counter flow 

configuration is then  presented, along with a description of the 

strategy used to couple the LEM and counter flow solvers.  

Results are then presented for the application of this unique 

LEM-CF formulation to augmentor-like conditions.  A 

methodology is also described to generate a parameterized 

LEM combustion model for those conditions.  Conclusion and 

recommendations then follow. 

LINEAR-EDDY MODEL SUMMARY 
The linear-eddy model is a stand-alone turbulent 

combustion model for the simulation of flame evolution in 

isotropic turbulence under constant pressure conditions.  The 

model is designed to separately treat two fundamental physical 

processes that describe the evolution of chemical species in 

turbulent flames. In doing so, an accurate picture of the 

interaction of the turbulence and chemistry may be obtained.  

The two processes treated within the model are molecular 

diffusion and turbulent convective stirring.  Molecular diffusion 

is treated deterministically by the numerical solution of the 

species and temperature diffusion equations, which include the 
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effects of chemical reactions and volumetric expansion. 

Turbulent stirring, however, is modeled stochastically by a 

series of instantaneous rearrangement events of the species and 

temperature fields.  Due to the isotropic nature of the model, it 

is formulated in only one spatial dimension.  The 1-D LEM 

scalar domain has been interpreted as a time varying space 

curve that is aligned with the maximum scalar gradient within 

the flow.   For this 1-D domain, the strategy employed within 

the model is to resolve all relevant fluid mechanical length 

scales as in direct numerical simulation.  As a result, the 

reaction rate source terms in the species and temperature 

equations appear in closed form and do not require additional 

modeling.  Also, because the model is formulated in 1-D, 

resolving all the length scales of the flow is computationally 

tractable.  The smallest length scales that must be resolved are 

the Kolmogorov microscale for momentum transport and the 

Bachelor scale for species diffusion. 

The model equations for the influence of molecular 

diffusion and chemical reactions on the time evolution of the 

species mass fraction, Yk, and temperature, T, fields within the 

LEM 1-D spatial coordinate, x, are given by: 
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where ,  and cp are the mixture density, thermal conductivity 

and constant pressure specific heat, respectively.   Also, Uk, 

k , cp,k and hk are the kth species diffusion velocity, chemical 

production rate, constant pressure specific heat and enthalpy, 

respectively.  The species diffusion velocities, Uk, may be 

modeled using any level of sophistication desired, from 

constant or mixture averaged diffusion coefficients to the 

solution of the multicomponent diffusion equation.  Since the 

model formulation explicitly includes molecular diffusion, the 

LEM directly captures Schmidt number (Sc) and differential 

diffusion effects.  No other mixing model formulation has this 

capability. 

Turbulent convection within the linear-eddy model is 

treated as a series of randomly located instantaneous 

rearrangement events of the species and temperature fields. 

These rearrangement events correspond to mixing induced by 

turbulent eddies.  The eddy size l and frequency M of these 

events are determined based on Kolmogorov scaling for high 

Reynolds number flow.  Given values for l and M, a mapping 

procedure called the triplet map [7] is used to rearrange the 

distribution of the scalar fields.  This mapping was developed 

by Kerstein [7] to simulate the effect of small scale turbulent 

stirring on diffusion layers.  The mapping generates 

discontinuous (turbulent) fluid motion and causes a random 

walk of the fluid particles.  The effect of this mapping 

procedure is to increase the local scalar gradient, as is 

characteristic of the action of turbulent eddies on scalar fields.  

The mapping procedure is designed to satisfy species and 

energy conservation and does not introduce any mass or 

thermal diffusion.  The triplet mapping eddy size l is chosen 

randomly from a power-law distribution f(l) within the range nK 

< l < L, where nK and L are the Kolmogorov and integral scales 

of turbulence, respectively.  Relationships [6] for f(l) and the 

frequency parameter M are derived by equating the diffusivity 

of a random walk of a fluid particle under the influence of the 

mapping procedure with high Reynolds number scaling for 

turbulent diffusivity.  As a result, these relationships are a 

direct function of the turbulent Reynolds number, 

/
L

Re u L  . 

The LEM does not assume scale separation between the 

flame thickness and the turbulent mixing scales [2].  As a 

result, the model is applicable to all flame regimes of turbulent 

combustion.  This feature of the model distinguishes it from 

other mixing model formulations. 

The basic LEM model may be applied to a variety of flow 

configurations through the specification of appropriate initial 

and boundary conditions, as well as application-specific 

processes needed to supplement the basic convection and 

diffusion algorithms.  This includes the specification of the 

mean flow, since the LEM does not directly account for mean 

flow effects, including large scale strain.  The capabilities of 

the LEM model have been demonstrated for flows that include 

mixing in grid turbulence, reacting mixing layers, mixing and 

reacting jets, mixing in homogeneous turbulence, and for 

premixed flame applications. Calhoon [13] presents a 

comprehensive review of the model’s capabilities. 

To apply mean flow strain effects to the LEM, the model 

may be formulated for the counter flow configuration.  This 

requires a methodology to specify the effect of the mean 

velocity on the LEM stochastic particles.  This is accomplished 

by coupling the model with a counter flow solver for the mean 

flow variables, including the velocity.  The following section 

describes the development of a specialized counter flow solver 

that was coupled to the LEM. 

COUNTER FLOW FORMULATION 
A specialized counter flow formulation and solver was 

developed for coupling with the LEM.  This counter flow 

solver provides the mean velocity field to the LEM solver, 

while the LEM solver provides heat release effects back to the 

counter flow solver.  The LEM solver requires the mean 

velocity in turbulent flow.  Therefore, the counter flow solver 

must include a turbulence model for momentum transport.  

Also, the counter flow formulation must be unsteady to account 

for the time evolution of the LEM statistics, and to account for 

unsteady effects such as autoignition.  The counter flow 

formulation employed in this study was based on the low Mach 

number formulation of Im, et al. [14].  As described by Im, et 

al. [14], the low Mach number assumption decouples the axial 

momentum equation from the system, and decouples the effect 

of the hydrodynamic pressure on heat release from combustion.  

The system of equations then reduces to the continuity, radial 

momentum, species conservation, and temperature equations, 

along with a compatibility relation for the pressure eigenvalue 

[14]. This formulation was modified by replacing the 

temperature equation with an equation for the internal energy 

that was derived using the low Mach number assumption.  The 
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internal energy equation does not include any chemical source 

terms that must be modeled for turbulent flow. 

Reynolds averaging was then applied to these equations for 

application to turbulent flow.  This resulted in a collection of 

unclosed terms associated with the averaging of the convection, 

diffusion and chemical source terms.  All turbulent fluctuations 

within diffusion related terms were neglected.  Terms 

associated with averaged chemical source terms will be 

modeled using the LEM combustion formulation.  The 

remaining unclosed terms are the turbulent momentum, species 

and thermal transport terms.  These terms are modeled using 

the turbulent viscosity and gradient diffusion hypotheses [15], 

with the eddy viscosity (T ) specified in terms of the mean 

density, velocity fluctuation ( u ) and integral length scale of 

turbulence (L).  This representation of the eddy viscosity may 

in turn be written in terms of the turbulent Reynolds number, 

ReL, as, 

 
T L

u L Re     (3) 

where the overbar represents Reynolds averaging.  The 

Reynolds number in this equation is the same one specified for 

the LEM turbulent stirring algorithm described earlier. 

With this turbulence model formulation, the final form of 

the continuity, radial momentum, species conservation, and 

internal energy equations are, 
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where  is the density,  u is the axial velocity, V is the 

normalized radial velocity [14], e is the specific internal energy 

[16], and  is the pressure eigenvalue [14]. In these equations 

all the overbars and symbols that denote Reynolds and Favre 

quantities have been dropped for clarity.  The parameters ScT 

and PrT are the turbulent Schmidt and Prandtl numbers and 

were specified as ScT = PrT = 0.7, consistent with low speed jet 

flow experiments.  The only unclosed terms in this system of 

equations are the chemical production terms in Eqn. (6).  This 

closure issue will be addressed using the LEM turbulent 

combustion modeling formulation to be described in the next 

section.  Also, these equations are supplemented with the low 

Mach number equation of state [14] and the definition of the 

internal energy in terms of temperature and species mass 

fractions. 

The boundary conditions for this system of equations are 

described by Im, et al. [14] and are not repeated here for 

brevity.  The spatial discretization procedure used for these 

equations also followed Im, et al. [14].  These equations are 

advanced in time using a first order implicit method, which 

includes sub-stepping to converge the pressure eigenvalue at 

each time step. 

The mathematical formulation and the numerical 

implementation of this system of equations were verified by a 

comparison of results for steady-state, laminar, nonreacting and 

reacting flows with those of a well developed steady-state 

solver based on the work of Smooke, et al. [17].  For 

application to turbulent flows, the LEM is required to close the 

equation system.  The next section describes the application of 

the LEM to the counter flow configuration, and the strategy 

used to couple the LEM and counter flow solvers. 

LEM / COUNTER FLOW (LEM-CF) FORMULATION 
The basic LEM model formulation must be modified to 

apply it to the counter flow configuration.  Additionally, a 

strategy must be defined to couple the LEM with the counter 

flow solver.  These two issues are addressed in the following 

sub-sections. 

 

LEM Application to the Counter Flow Configuration 

To apply the LEM to the counter flow configuration 

requires the inclusion of mean convection on the species and 

temperature stochastic particles, particle removal at the 

stagnation point, and the inclusion of volumetric expansion due 

to heat release.  To account for mean convection, the stochastic 

particles must be transported in space due to the mean counter 

flow axial velocity.  This is accomplished as follows.  First, the 

LEM particles are initially distributed on equal intervals 

between the counter flow jet nozzle exit planes.  At these 

particle locations, the mean axial velocity from the counter 

flow solver is interpolated to associate a mean velocity with 

each LEM stochastic particle.  Second, the LEM particles are 

convected within a Lagrangian formulation using a fourth order 

Runga-Kutta solver, with the velocity updated at the sub-step 

locations through interpolation.  The LEM diffusion equations 

(Eqns. (1) and (2)) are then solved with an implicit method. 

As the LEM stochastic particles convect along the counter 

flow domain, new LEM particles enter the domain at the jet 

boundaries and particles collect around the stagnation point.  

To maintain a constant number of LEM particles within the 

simulation, particles whose spatial location falls within the 

range, 

 
0 0

/ 2 / 2
u u

x x x 
 
     (9) 

are removed from the simulation, where xu=0 is the stagnation 

plane, and  is the initial equal particle distribution interval.  

This particle removal procedure is justified because, as with all 

LEM implementations, the diffusion fields are fully resolved as 

in a direct numerical simulation.  As a result, no information is 

lost in this process since the original equal particle distribution, 

, fully resolved the flow.  The initial particle spacing was set 

equal to one-sixth the width of the Kolmogorov microscale, as 

is typical for LEM implementations. 
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As mentioned earlier, the LEM assumes constant 

thermodynamic pressure.  With this assumption, volumetric 

expansion due to heat release must be accounted for.  

Typically, LEM implementations must explicitly account for 

this effect because the model does not include mean 

convection.  In this case, the LEM grid cells are explicitly 

expanded based on density differences due to chemical heat 

release [13].  This expansion algorithm implicitly induces mean 

flow convection resulting from heat release.  For the present 

application to the counter flow configuration, however, mean 

convection is explicitly accounted for as described earlier.  As a 

result, the mean velocity field accounts for volumetric 

expansion through the solution of the continuity equation in the 

counter flow solver.  Consequently, volumetric expansion does 

not need to be explicitly implemented within the LEM diffusion 

solver as applied to the counter flow configuration. 

As discussed earlier, turbulent convection within the 

LEM is treated as a series of randomly located instantaneous 

rearrangement events of the species and temperature fields. 

These rearrangement events correspond to mixing induced by 

turbulent eddies.  The eddy size l and frequency M of these 

events are determined based on Kolmogorov scaling for high 

Reynolds number flow [6].  The inputs for the turbulent stirring 

algorithm are the integral scale of turbulence, L, and the 

turbulent Reynolds number, ReL.  For the counter flow 

configuration, ReL is defined in terms of the axial velocity 

fluctuation by, 

 
( ) / 2

L

FUEL OXI

u L
Re

 





 (10) 

where the kinematic viscosity in this relationship is taken as the 

average between the two jet exit conditions (i.e., ,
FUEL OXI

  ).  

The value of the viscosity used in Eqn. (10) may be specified in 

an arbitrary manner as long as the same value is used for both 

the LEM sub-model and within a LES case.  Consequently, the 

average of the boundary values was chosen because it is well 

defined and independent of heat release within the simulation. 

For the counter flow configuration, changes in ReL may be 

accomplished by increasing the diameter of the fuel and 

oxidizer jets, assuming both jets have the same diameter, D, 

and/or by changing L.  To relate the LEM Reynolds number 

and length scale to a physical counter flow configuration, the 

following assumptions were made: 

1) L is equal to the jet separation distance, XL. 

2) For turbulent counter flow conditions, the jets exhaust 

from fully developed turbulent pipe flows. 

3) L is also equal to the centerline mixing length, lT, for 

fully developed turbulent pipe flow. 

4) u  is equal to the centerline axial velocity fluctuation 

for fully developed turbulent pipe flow. 

5) The jet momenta are assumed equal. 

The first assumption is consistent with the application of 

the LEM to large-eddy simulation (LES) of turbulent reacting 

flows.  For LES, the LEM length scale is set equal to the LES 

filter width, , or the maximum spatial extent of the subgrid 

domain.  For the counter flow configuration, the maximum 

spatial extent is the jet separation width XL.  The second 

assumption is also reasonable for turbulent counter flow 

configurations.  This assumption is also needed because the 

LEM stirring relationships assume high Reynolds number flow, 

as mentioned earlier.  With the second assumption, the third 

assumption follows since the maximum turbulent length scale 

in pipe flow occurs at the centerline [18].  The fourth 

assumption regarding the axial velocity fluctuation is also 

consistent with the assumption of turbulent pipe flow.  The last 

assumption is typical for counter flow models and is used to 

establish the stagnation plane in the center between the two jet 

exhausts.  With these assumptions and the scaling relationships 

for fully developed pipe flow, the jet velocities (uFUEL, uOXI), jet 

separation distance (XL) and diameter (D) may be determined 

given the jet thermodynamic conditions, turbulent Reynolds 

number (ReL), and the mean strain rate (<a>), where <a> is 

defined by, 
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
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Appendix I presents a derivation of the relationships and 

methodology required to determine these quantities.  From 

these relationships, the jet diameter is given by, 
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where M0 and C0 are experimental correlations and uB is the 

maximum jet bulk velocity (see Appendix I).  Given the 

diameter and jet velocities, the jet Reynolds numbers are then 

given by, 

 ,  FUEL OXI

fuel OXI

FUEL OXI

u D u D
Re Re

 
   (13) 

With these relationships, a connection between a LEM/counter 

flow simulation and a laboratory set-up for a turbulent counter 

flow flame may be established. 

The final consideration for applying the LEM turbulent 

stirring algorithm to the counter flow configuration concerns 

the method in choosing the location where a stirring event will 

occur.  Typically, the LEM is formulated for homogeneous 

turbulence with no mean flow so that the LEM domain is 

periodic.  As a result, a stirring event is chosen randomly with a 

uniform probability along the entire domain irrespective of the 

eddy size.  However, for the counter flow configuration, the 

LEM domain is spatially confined to the jet separation distance.  

The event location must then be restricted based on the event 

eddy size so as to prevent the transport of fluid outside the 

domain boundaries.  Given this restriction, a stirring event is 

implemented by randomly choosing the event location on the 

counter flow domain with uniform probability, excluding 

locations that would result in an overlap of the domain 

boundaries.  This implementation is the same as the one used 

by Menon and Calhoon [3] for LES-LEM simulations of 

reacting shear layers.  In that study, the LEM domain within 

each LES subgrid contained an inflow and an outflow 

boundary, thereby necessitating this type of stirring 

implementation.  For the counter flow configuration, limiting 
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the stirring events in this manner is equivalent to excluding 

back flow into the jet nozzles, which is a reasonable 

assumption. 

 

LEM / Counter Flow Solver Coupling Strategy 
To enable heat release from the LEM simulation to affect the 

mean velocity field, a strategy was developed to fully couple 

the LEM and counter flow solvers.  This strategy is outlined 

below: 

1) The counter flow solver, which includes the turbulence 

model for momentum transport, provides the mean axial 

velocity, u, to the LEM solver. 

2) Scalar statistics are calculated from solution realizations 

of the LEM solver given u.  

3) The LEM mean scalar statistics for the species mass 

fraction and density are provided to the counter flow 

solver to enable the velocity field to be determined. 

With this coupling strategy, the mean species transport 

equations within the counter flow formulation (Eqn. (6)) do not 

need to be solved.  This eliminates the need to directly model 

the mean chemical source terms in these equations, though they 

could be directly specified using the LEM.  For statistically 

steady-state problems, the density time derivative in the counter 

flow continuity equation (Eqn. (4)) is also neglected.  However, 

this term may be retained for problems that are unsteady in the 

mean, with this term being calculated directly from the 

evolution of the LEM statistics.  For the LEM statistics, mean 

variables are calculated over an averaging window of typically 

the last 1000 realizations of the solution.  These realizations are 

collected on a frequency that roughly corresponds to the LEM 

stirring frequency. This data collection frequency was chosen 

so that the statistics could adequately converge.  Averaging over 

a significantly higher frequency (such as the LEM diffusion 

step frequency) resulted in poorly converged statistics.  

Convergence of the LEM statistics for the 1000 realizations 

was verified by a comparison of the mean axial velocity field to 

a simulation that employed 2000 realizations.  The two 

simulations produced very close results for the mean axial 

velocity in both space and time as the counter flow solution 

evolved. 

With the LEM mean statistics, the counter flow solver is 

employed to recalculate the mean axial velocity in response to 

heat release effects within the LEM.  At each counter flow 

solution step, the counter flow equations are sub-iterated to 

ensure the convergence of the pressure eigenvalue and mass 

conservation.  This coupling strategy is very robust so that 

converged statistics may be obtained given practically any 

initial condition for the velocity and temperature fields that 

satisfies the boundary condition.  As a result, LEM-CF 

simulations are initialized with hyperbolic tangent like axial 

velocity and mixture fraction profiles.  With this profile for 

mixture fraction, the species and temperature are initialized 

with equilibrium values.  Initializing the simulations in this 

manner results in large initial oscillations of the pressure 

eigenvalue in order to adjust the velocity fields to conserve 

mass.  These large oscillations damp out quickly (within 50 

counter flow solution steps) so that the pressure eigenvalue is 

within a relatively small percentage of the final converged 

value.      

With a description of the LEM-CF formulation now 

complete, the next section presents the results from the 

application of this methodology to augmentor-like conditions, 

and describes the approach to using this methodology to build a 

subgrid combustion model for LES. 

APPLICATION OF LEM-CF TO AUGMENTOR 
CONDITIONS 

The LEM-CF formulation was applied to augmentor-like 

conditions to investigate the model characteristics, and to 

illustrate the methodology used to generate a parameterized 

LEM combustion model that could be deployed within a CFD 

flow solver.  The thermodynamic conditions for this 

investigation are listed in Table I.  The oxidizer stream 

consisted of vitiated air at a temperature of 1196 K and the fuel 

stream consisted of an ethylene surrogate at a temperature of 

339 K.  The pressure was 57.56 psi.  A reduced ethylene 

chemical mechanism [19] was used to represent the chemistry.  

This mechanism includes 19 species and 15 global reaction 

steps.  This mechanism was developed from a larger detailed 

mechanism using the quasi-steady state assumption for selected 

minor species [19]. This mechanism has been validated for 

ignition delay times, premixed laminar flame speeds, and 

opposed flow diffusion flame properties and extinction.  
    

Table I:  Counter flow jet boundary conditions. 

Vitiated air T = 1196 K, F/O = 0.010798 

Surrogate fuel  Ethylene, T = 339 K 
 

The two primary parameters that were varied to generate 

the LEM parameterized model were the turbulent Reynolds 

number (ReL) and mean strain rate (<a>).  As mentioned 

earlier, given the Reynolds number and mean strain rate, along 

with the flow thermodynamic conditions, the counter flow jet 

separation distance (XL), jet  diameter (D), jet exhaust velocities 

(uFUEL, uOXI), and jet Reynolds numbers (ReFUEL, ReOXI) may be 

determined. 

The parameter space for the LEM statistics generated from 

the LEM-CF simulations covered a range of values for the 

mean strain rate, <a>, and ReL.  For the strain rate, the 

maximum value of <a> was based on the laminar flow 

extinction limit value of ~ 1.70x10
+4

 1/sec.  Given this value, 

ten strain rate values were chosen for each Reynolds number in 

the range 1.06x10
+3

 ≤ <a> ≤ 1.75x10
+4

 1/sec.  For the 

Reynolds number, the values chosen were ReL = 0, 10, 50, 100, 

1000.  The value of ReL = 1000 is very high and represents 

intense mixing.  Given these values of strain rate and Reynolds 

number, Table A1 (in Appendix II) defines the simulation 

matrix for the statistics generation process.  The table lists the 

turbulent length scale (L), jet velocities (uFUEL, uOXI), jet 

diameter (D), and jet Reynolds numbers (ReFUEL, ReOXI) for 

each case.  Also, recall from the assumptions listed earlier that 

L = XL. From this table it may be observed that for a specified 

Reynolds number the values of L, D and the jet velocity all vary 

with varying strain rate.  Observe for the turbulent cases that 

increases in strain rate are achieved by reducing the separation 

distance (L) and by increasing the jet velocities.  Also, for a 
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specified ReL, the jet Reynolds numbers are constant for all 

strain rates.  The strain rate values for each Reynolds number 

are also clustered around the extinction value, as will be 

discussed later.  The LEM particle spacing for each case listed 

in Table A1 also resolved the Kolmogorov microscale using at 

least six points, as it typically employed for the LEM. 

From the simulation results for these cases, the following 

observations may be made.  First, for the laminar flow cases 

(Cases 1 – 10), the simulations burn for all strain rates except 

Cases 9 and 10, which are at or beyond the extinction limit.  As 

the strain rate increased for these cases, the peak temperature, 

major product, and OH mass fraction values all decreased, as 

expected.  However, for some radical species such as O, as the 

strain rate was increased, higher peak values were realized as 

the flames were pushed further away from equilibrium up to 

some intermediate strain rate.  Further increases in <a> beyond 

this value then suppressed O production until extinction was 

reached. 

The second observation from these LEM-CF simulations 

that may be drawn is that for the turbulent cases, the mean 

flame structure is broad with respect to the jet separation 

distance XL.  This result is a consequence of the assumption that 

the turbulent integral scale is equal to the jet separation 

distance, as was discussed earlier.  Recall that this assumption 

was employed to be consistent with the application of the LEM 

within LES codes, where L is set equal to the subgrid filter 

scale, which is the largest extent of the subgrid domain. 

The third observation from these simulations is that for all 

turbulent cases (e.g., Cases 11 – 50), flame extinction occurred 

prior to a mean strain rate value of <a> = 6.67E+03 1/sec for 

all Reynolds numbers.  The extinction limit varied with ReL, but 

was within the range 2.54x10
+3

 ≤ <a> ≤ 6.67x10
+3

 1/sec.  The 

last column in Table A1 indicates whether global extinction 

occurred for each case.  Global extinction was defined as the 

strain rate where the flame on the LEM computational domain 

extinguished for eight different realizations of the model, where 

each realization was initialized with a different random seed.  

As a result, the evolution of the instantaneous flame structure 

for each realization followed a different convergence path and 

yielded a different possibility of extinction occurring.  At low 

strain rates, all realizations would burn.  As the strain rate was 

increased, some of the realizations would extinguish while 

others would continue to burn.  As the strain rate approached 

the global extinction limit, a larger number of realizations 

would extinguish.  The strain rate for which all the realizations 

extinguished was therefore defined as the global extinction 

limit. The extinction limit predictions were also verified for 

LEM particle spacing convergence by decreasing the spacing 

by a factor of 2 and 3 for selected cases.  The predicted limits 

were unaffected by the grid distribution, thereby verifying the 

LEM computational resolution. 

To illustrate an extinction event within the LEM, Figure 1 

presents instantaneous temperature profiles for ReL = 50 and 

<a> = 3.69x10
+3

 1/sec at three instants in time.  From this 

figure, note that at the early times t1 and t2, the temperature 

profiles exhibit locally high values larger than 2000 K.  By the 

time t3, however, the flame is entirely extinguished (as noted in 

the figure) with local temperatures no higher than the vitiated 

air temperature. However, at this strain rate, some of other 

simulation realizations continued to burn so that global 

extinction was not achieved until <a> = 5.09x10
+3

 1/sec as 

noted in Table II, which lists the extinction limits as a function 

of Reynolds number.  For this value of strain rate, the laminar 

flow case is well below the extinction value.  Similarly for the 

other Reynolds number cases, extinction occurred well below 

the laminar flame values as illustrated in Table II.  This table 

shows that the global extinction limit initially drops rapidly as 

ReL is increased, and then  appears to approach an asymptotic 

value at higher ReL. These results illustrate that the inclusion of 

small scale turbulent strain significantly reduces the extinction 

limit for a fixed value of mean large scale strain rate <a>.  This 

is not a surprising result, but a very important one that 

illustrates the utility of the LEM-CF methodology to capture 

this type of behavior.  Currently, there is no other way to 

predict this type of behavior besides a full, 3-D DNS.  

However, DNS would likely be intractable at these high jet 

Reynolds numbers (Table A1).  
 

Table II: Extinction Limits as a Function of Reynolds 

Number 

ReL <a>ext x 10
-3 

0 17.01 

10 6.67 

50 5.09 

100 3.69 

1000 2.54 
 

The extinction behavior illustrated in Figure 1 cannot be 

accurately captured by the flamelet combustion model or the 

pdf evolution equation approaches because neither of these 

methods resolves the flame structure.  For the flamelet model, 

strain rate effects and extinction are modeled in terms of the 

laminar flow flame properties averaged over an assumed shape 

pdf for mixture fraction.  For pdf methods, turbulent strain and 

extinction effects are modeled with a single point statistical 

model for turbulent mixing that does not resolve the microscale 

flame structure. 

 
Figure 1.  Instantaneous temperature profiles for a turbulent 

counter flow flame at ReL = 50 and <a> = 3695 sec
-1

. 

Below the extinction strain rate for the turbulent cases of 

Table A1, mean flame properties may be computed from the 

LEM-CF simulations.  For example, Figure 2 presents the mean 

axial velocity for ReL = 50 for different values of mean strain 

rate.   This figure plots the mean velocity as a function of x/L. 
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In this figure it is apparent that as the strain rate increases, the 

velocity gradient at the stagnation point also increases.  The 

gradient /u x   is actually higher than shown in Figure 2 

because the length scale L decreases as the strain rate increases, 

as shown in Table A1.  The mean velocities plotted in this 

figure also include the effects of mean heat release from the 

LEM through the LEM-CF coupling strategy described earlier.  

For the cases shown in Figure 2 that are well below the 

extinction strain rate (i.e., <a> = 1056, 1681 and 2537 1/sec), 

the axial velocity profiles show a slight overshot of the 

boundary values due to heat release effects.  For <a> = 3695 

1/sec case, which is close to the extinction limit and partially 

extinguished (as noted earlier), the reduced level of heat release 

results in a monotonic axial velocity profile. 

  Heat release within the LEM statistics is illustrated in 

Figure 3, which presents the Favre mean temperature along the 

jet axis as a function of strain rate.  From this Figure, the 

reduced extent of the spatial domain (L) with increasing <a> is 

evident, as noted in Table A1.  Also note that the peak mean 

temperature gradually drops as <a> is increased until the 

extinction limit is approached.  Beyond <a> = 2537 1/sec, the 

peak temperature rapidly drops until global extinction occurs.  

This may also be seen in Figure 4, which re-plots the results of 

Figure 3 as a function of x/L.  From this figure, the effect of the 

strain rate on the temperature field is small for <a> = 1056 and 

1681 1/sec.  Beyond these values, the peak temperature 

progressively drops off. The temperature profiles in this figure 

also exhibit an inflection point at x/L ~ 0.5, which is the 

stagnation plane.  This behavior is a result of a mild inflection 

point in the axial velocity profile when heat release is present. 

Mean product mass fractions for these cases closely 

parallel the results for mean temperature seen in Figures 3 and 

4.  For example, Figure 5 presents mean CO2 mass fraction as a 

function of x/L.  As seen in this figure, the drop in peak values 

with increasing strain and the inflection point at the stagnation 

plane prior to extinction closely follow the trends of Figure 4.  

However, the peak CO2 values in Figure 5 are more sensitive to 

the strain rate, particularly at low values, than were the 

temperature peaks in Figure 3.  Regarding the radical species, 

Figure 6 presents mean O mass fraction for these cases.  From 

this figure, the peak O mass fraction value increases with strain 

rate until a maximum is reached at <a> = 2537 1/sec.  At 

higher strain rates, the peak value quickly drops until extinction 

is approached.  This behavior for O mass fraction is similar to 

what was observed for the laminar cases.  However, the peak O 

mass fraction occurred at a much higher mean strain rate for 

laminar flow.  This illustrates that adding turbulent microscale 

strain to the flow more rapidly pushes the flame to 

nonequilibrium and global extinction. 

OH mass fraction results for the LEM-CF cases (Figure 7) 

behave very similar to the O mass fraction results plotted in 

Figure 6.  Peak OH mass fraction increases with strain rate to a 

maximum value at <a> = 2537 1/sec, and then decreases with 

further increases in <a> until extinction is approached.  For the 

laminar case, however, the peak OH mass fraction continuously 

decreases as strain rate is increased.  This may be seen in 

Figure 8 which plots OH mass fraction along the jet axis as a 

function of strain rate for the laminar flow cases.  This 

difference in the behavior of the maximum OH mass fraction 

between the laminar and turbulent flow cases illustrates the 

following point.  The interaction of the microscale turbulence 

with the flame structure fundamentally alters the nature of the 

nonequilibrium processes occurring within the flame.  That is, 

the turbulence not only hastens the onset of nonequilibrium 

effects and extinction, but it also alters the chemical kinetic 

pathways that these effects follow on the way to extinction.  

This illustrates the capability of the LEM-CF to fundamentally 

capture the interaction of microscale turbulence with the flame 

structure.  Other turbulent combustion model formulations, 

such as the laminar flamelet model [2], that assume scale 

separation between the flame thickness and Kolmogorov 

microscale cannot capture this type of behavior.  For example, a 

laminar flamelet model table for this case would be based on 

the laminar flow result in Figure 8, averaged over an assumed 

pdf of mixture fractions.  As a result, such a flamelet model 

table could never capture the behavior seen in Figure 7 for the 

turbulent flow case.  Additionally, other parameterized models 

[8]–[12] based on the LEM formulated for homogenous 

turbulence also could not capture the effects seen in Figure 7.  

Those formulations do not include mean strain effects and 

would produce results similar to the lowest strain rate result in 

Figure 7.  The only way to produce higher OH values for those 

models would be to increase the microscale strain by increasing 

the Reynolds number.  However, increased microscale strain 

with increased ReL will not necessarily increase nonequilibrium 

OH values, as will be demonstrated later. 
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Figure 2.  Mean axial velocity as a function of strain rate at 

ReL = 50. 
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Figure 3.  Mean temperature variation with strain rate 

plotted as a function of x at ReL = 50. 
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Figure 4.  Mean temperature variation with strain rate 

plotted as a function of x/L at ReL = 50. 

 
Figure 5.  Mean CO2 mass fraction variation with strain 

rate plotted as a function of x/L at ReL = 50. 
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Figure 6.  Mean O mass fraction variation with strain rate 

plotted as a function of x/L at ReL = 50. 

 

x/L

Y
O

H
x

1
0

+
4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8
1056 1/sec

1680

2537

2768

3000

3231

3695

 
Figure 7.  Mean OH mass fraction variation with strain rate 

plotted as a function of x/L at ReL = 50. 
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Figure 8.  OH mass fraction variation with strain rate 

plotted as a function of x for laminar flow. 

The previous figures have illustrated the effect of strain 

rate on the flow at a constant Reynolds number.  The effect of 

Reynolds number on the statistics may be observed by 

examining a series of results at constant strain rate.  For 

example, Figure 9 presents Favre mean temperature results for 

ReL = 10, 50, 100 and 1000 at a strain rate of <a> = 1056 1/sec.  

At this low strain rate, the instantaneous flame structure is the 

closest to equilibrium.  In this figure, the mean temperature is 

plotted with respect to the normalized coordinate x/L as in 

Figure 4.  From Figure 9, the following trends may be 

observed.  First, increases in ReL substantially reduce the peak 

flame temperature.  Second, the results for all cases show an 

inflection point in the data at the stagnation plane.  Third, the 

location of peak mean temperature moves further away from 

the oxidizer jet (x = 0) as ReL is increased, except for the ReL = 

1000 case.  These trends for the temperature were also seen for 

the major product species, as illustrated in Figure 10 for Favre 

mean CO2 mass fraction.  These same trends consistently 

occurred at the other strain rates as well. 

The reduction in peak values of temperature and major 

product species with increased Reynolds number also occurs 

for the radical species.  For example, Figure 11 and 12 present 

Favre mean O and OH mass fraction profiles for these 

Reynolds numbers.  As seen in both of these figures, the peak 

mean values for both of these species decrease as ReL is 

increased.  This same trend was observed for the other strain 

rates as well.  These results illustrate that increases in the 

microscale strain through larger values of Reynolds number 

alone cannot produce a high enough degree of nonequilibrium 

to cause an increase in these radical species, as seen in Figures 

6 and 7 when the strain rate was increased.  Consequently, other 

parameterized LEM models that do not include mean strain 

effects cannot capture the higher radical levels seen in Figures 6 

and 7, as mentioned earlier. 

The reduction in the maximum values of temperature, 

major species, and radical species seen in Figures 9 – 12 for 

increased Reynolds number appear to be primarily a result of 

mixture fraction fluctuations.  Figure 13 presents mixture 

fraction fluctuation intensity at <a> = 1056 1/sec for the ReL = 

10, 50, 100 and 1000 cases.  As seen in this figure, the 

fluctuations dramatically increase with Reynolds number.  An 

examination of instantaneous temperature profiles for these 

cases showed that the peak temperatures realized within the 

flow were close to the laminar case value.  However, 
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microscale strain effects for the ReL = 1000 case appeared to be 

significant in reducing the instantaneous flame temperature.  

Consequently, the reduction in peak values seen in Figures 9 – 

12 are a result of nonequilibrium effects introduced by 

microscale strain, and by the broadening of the mixture fraction 

pdfs for these cases.  This broadening effect on the mixture 

fraction pdfs is characteristic of the increase in mixture fraction 

fluctuations seen in Figure 13.   This is an interesting result 

from the perspective that this modeling formulation can 

distinguish between a reduction in mean temperature and 

product formation due to microscale strain (i.e., ReL) and 

nonequilibrium effects resulting from large scale flame 

straining (i.e., <a>).  This point again illustrates the unique 

capability of this modeling formulation. 
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Figure 9.  Mean temperature variation with ReL plotted as a 

function of x/L at <a> = 1056 1/sec. 
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Figure 10.  Mean CO2 mass fraction variation with ReL 

plotted as a function of x/L at <a> = 1056 1/sec. 
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Figure 11.  Mean O mass fraction variation with ReL plotted 

as a function of x/L at <a> = 1056 1/sec. 
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Figure 12.  Mean OH mass fraction variation with ReL 

plotted as a function of x/L at <a> = 1056 1/sec. 
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Figure 13.  Mixture fraction fluctuations as a function of 

x/L at <a> = 1056 1/sec. 
 

With the LEM statistical data generated for the simulation 

matrix given in Table A1, a parameterized LEM model database 

may be constructed.  There are two approaches to generating 

such a model database.  These are reduced and full 

parameterization.  Within the reduced parameterization 

approach, the model provides statistics for the filtered species 

and possibly a filtered reaction progress variable.  These 

statistics are parameterized in terms of a relatively small 

number of variables such as the filtered mixture fraction (<>), 

scalar dissipation (<χ>), and subgrid scale Reynolds number 

(Re).  This type of parameterization is very similar to flamelet 

modeling [2], except for the fact that within the LEM approach 

the underlying scalar pdf is predicted and not assumed.  The 

full parameterization approach, however, directly models all the 

filtered reaction rates within the chemical mechanism.  This 

approach will naturally entail a large number of parameters to 

accurately characterize the statistics.  The full parameterization 

approach is more general, but is limited by the number of 

species transport equations that may be tractably solved during 

a LES.  As a result, the full parameterization approach may not 

be applied to large chemical mechanisms due to the 

computational cost involved with the solution of a large number 

of species transport equations.  The reduced parameterization 

approach, however, may be applied to arbitrarily large chemical 

mechanisms because the flow solver is only required to solve a 

limited set of transport equations.  The LEM-CF modeling 

formulation may be applied to either the reduced or full 

parameterization approaches. 

To illustrate the development of a parameterized LEM 

combustion model from the LEM-CF data, a reduced 
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parameterization approach was chosen.  The strategy used to 

construct a database for the subgrid model followed that of 

Sankaran, et al. [11], who parameterized the mean species in 

terms of mean mixture fraction, mean scalar dissipation, and 

Reynolds number. As mentioned earlier, LEM data from that 

study were generated for homogeneous turbulence in the 

absence of mean strain.  With the LEM-CF formulation, 

however, mean strain effects may be directly included within 

the parameterization.  Consequently, the parameterization 

approach of Sankaran, et al. [11] was modified by replacing the 

scalar dissipation with the strain rate as, 

 ( , , )
k L

Y f Z a Re       (14) 

With this form of parameterization, strain rate effects that lead 

to local extinction are directly included within the formulation. 

As discussed by Sankaran, et al. [11], application of these 

types of parameterization strategies to LES modeling is straight 

forward.  The mean mixture fraction, mixture fraction variance, 

mean scalar dissipation and mean strain rate from the LEM are 

directly related to the LES filtered values of these quantities.  

As noted by Sankaran, et al. [11], since the mean quantities are 

computed directly from the LEM predicted scalar pdf, there is 

no need for any a posteriori model to link the instantaneous 

scalar distributions with the mean values, as is required for the 

flamelet model [2].  The LES subgrid Reynolds number (Re) is 

also directly related to the LEM Reynolds number as Re = ReL, 

with Re being defined as, 

 
2

FUEL OXI

u
Re

( ) /




 





  (15) 

where u  is specified in terms of the subgrid turbulent kinetic 

energy (ksgs) as 2 3
sgs

u k /  .  With this form of the Reynolds 

number, the LES and LEM-CF values are consistent and 

unambiguously defined in terms of the reference values 

( ,
FUEL OXI

  ) of the viscosity.  The LEM-CF strain rate (<a>) is 

specified from the LES as <a>=<a>LES, where <a>LES is the 

magnitude of the local resolved scale strain rate (Sij) with 

LES ij ij
a S S   .   

The parameterization strategy defined by Eqn. (14) offers 

an additional benefit beyond that of the strategy proposed by 

Sankaran, et al. [11] regarding LES modeling of the input 

parameters.  The mean or filtered scalar dissipation, <> must 

be supplied from the LES code using an addition model for this 

quantity.  The mean or resolved scale strain rate, <a>, in Eqn. 

(14), however, may be directly calculated from the LES 

resolved scale velocity field.  This removes the model 

uncertainty associated with the specification of <>. 

Given the parameterization defined by Eqn. (14), the LEM 

data generated from the results of the simulation matrix detailed 

in Table A1 were organized as a function of these three 

parameters.  For example, Figures 14 and 15 present CO2 and 

OH mass fraction as a function of mixture fraction and 

Reynolds number at a mean strain rate of <a> = 1056 1/sec, 

respectively.  These figures represent a re-plot of the data in 

Figures 10 and 12, respectively, but with the laminar flow 

results included.  As may be seen from these figures, the 

primary effect of the turbulence is to broaden the flame 

structure in mixture fraction space and reduce the maximum 

realized scalar values, as discussed earlier.  Figure 16 and 17 

present these species plotted as a function of mixture fraction at 

different strains rates for ReL = 50.  These figures are a re-plot 

of the data in Figures 5 and 7 as a function of mixture fraction.  

The post extinction values at <a> = 5095 1/sec are clearly 

evident in these figures. 

With the LEM simulation data processed as shown, for 

example, in Figures 14 – 17, a model database may then be 

created that conforms to the parameterization strategy defined 

by Eqn. (14).  The model data were stored in a binary space 

partition (BSP) [20] binary tree.  This type of database 

structure was used by Pope [21] for the in situ adaptive 

tabularization (ISAT) approach to chemical kinetic source term 

time integration.  Each data point within a BSP tree has a set of 

inputs or “keys,” and an associated set of output data.  Given 

the data in this form, a series of cutting planes are defined that 

segregate the data with respect to the input keys.  These cutting 

planes define the “branches” of the binary tree structure which 

eventually lead to “leaves” or data nodes.  The methodology 

used to construct a BSP database is described in detail by Pope 

[21] and is not repeated here for brevity.  A BSP tree is used to 

construct a database of the LEM statistical data based on the 

input keys of <Z>, <a> and ReL.  Output data for each entry in 

the tree are the mean species <Yk> that are required by the flow 

solver, as well as post processing data such as the species 

fluctuations. 

The BSP tree structure used for the LEM data in this study 

follows that of Pope [21], except for one modification.  The 

BSP tree employed here included multiple data points on each 

data node or leaf.  Each data node contained eight data points, 

which from prior experience with ISAT implementations [20] 

provides for efficient tree searching and data retrieval.  Given a 

set of input query keys, the outputs are generated by searching 

the BSP tree using the cutting planes to find the appropriate leaf 

or data node.  Once the data node is identified, a distance 

weighted interpolation algorithm is then used to create the 

outputs given all the data points on that node.  The extinction 

limits defined in Table A1 are implemented by adding 

additional entries into the database for each Reynolds number 

that correspond to the nonreacting or extinguished solution at 

the global extinction limit.  These additional entries include an 

arbitrarily large value of strain rate that is beyond that of the 

extinction limit.  By adding this additional data to the BSP tree 

database, any query point with a strain rate higher than the 

extinction limit will find a data node that is nonreacting from 

which to create the outputs using the distance weighted 

interpolation.  The BSP tree database then constitutes a 

completed LEM parameterized model that may be deployed 

within a CFD flow solver. 

  The final BSP database generated from the data was 

approximately 13 Mbytes in size. The database for this case is 

relatively small and could be directly deployed within a LES 

solver.  However, the database size will rapidly grow as more 

detailed or expanded parameterization strategies are employed.  

Large databases may be modeled using a collection of artificial 

neural networks.  Artificial neural network (ANN) 

methodology is a data modeling technique specialized for high 
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dimensional, highly nonlinear data sets.  Sen and Menon [12] 

used a collection of ANNs to model a LEM database that 

included ~ 24 input parameters.  Using that approach, a large 

reduction in memory requirements may be achieved while 

maintaining an efficient and accurate data retrieval 

methodology. 

The enhanced physics captured by the LEM-CF 

formulation compared to the flamelet model comes at a 

significant computational cost.  The computational cost of a 

LEM-CF case was roughly fifty times more expensive than a 

corresponding flamelet simulation for the same conditions.  

This additional cost is primarily a result of the time required to 

converge the LEM statistics.  Also, the computational cost 

increases with ReL due to the requirement that the Kolmogorov 

microscale be resolved.  From Table A1, the ReL = 1000 cases 

used approximately three times the number of points as the 

lower ReL cases.  Even with the additional cost of the LEM-CF 

formulation, all the simulations listed in Table A1 could be 

completed overnight on a modern Linux cluster. 
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Figure 14.  Mean CO2 mass fraction variation as a function 

of mixture fraction and Reynolds number at <a> = 1056 

1/sec. 
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Figure 15.  Mean OH mass fraction variation as a function 

of mixture fraction and Reynolds number at <a> = 1056 

1/sec. 

 

Z

Y
C

O
2

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06
1056 1/sec

2768

3000

3694

5095

 
Figure 16.  Mean CO2 mass fraction as a function of 

mixture fraction and mean strain rate at ReL = 50. 
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Figure 17.  Mean OH mass fraction as a function of mixture 

fraction and mean strain rate at ReL = 50. 

 

CONCLUSIONS AND RECOMMENDATIONS 
This effort has addressed the development of a unique 

sub-modeling formulation that may be used to generate 

parameterized subgrid combustion models for LES.  This sub-

model formulation is based on a novel application of the LEM 

turbulent combustion model to the counter flow configuration.  

This formulation may then be used to generate the required 

statistics to create an efficient subgrid model for LES. The 

principle conclusions from this study are summarized below.  

1. A unique application of the LEM turbulent combustion 

model to the counter flow configuration may be applied 

to the prediction of turbulent flame extinction limits that 

result from both small and large scale turbulent strain 

effects. 

2. The new LEM/counter flow (LEM-CF) formulation is 

unique from the perspective that no other methodology 

exist to predicts turbulent flame extinction due to 

resolved scale strain except a full 3-D direct numerical 

simulation (DNS).  However, application of DNS to 

Reynolds that may be simulated with the LEM-CF 

model is intractable due to grid resolution requirements. 

3. Using the LEM-CF formulation, LES closure statistics 

may be generated that directly include the effects of 

subgrid Reynolds number and resolved scale strain rate.  
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This includes a prediction of the turbulent flame 

extinction limits. 

4. The LEM-CF methodology was successfully applied to 

generate a parameterized LEM combustion model for 

augmentor conditions, thereby demonstrating the 

feasibility of this approach. 

The follow recommendations are made to fully develop 

this approach as an LES subgrid model: 

1. The new LEM-CF sub-model formulation should be 

applied to turbulent counter flow jet experiments to 

validate the formulation and provide confidence in the 

accuracy of the methodology. 

2. ANN data modeling methodology should be applied to 

model the LEM-CF databases to reduce the anticipated 

computer memory requirements of this formulation.  

3. The new subgrid model formulation needs to be 

validated for a series of test cases that include fully 

attached flames, flames near extinction, and to predict 

blow-out limits. 
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Appendix I 

As discussed earlier, several assumptions are needed to 

relate the LEM for the counter flow configuration to an actual 

counter flow experiment, and to the LES subgrid.  These 

assumptions again are:  

1) L is equal to the jet separation distance, XL. 

2) For turbulent counter flow conditions, the jets exhaust 

from fully developed turbulent pipe flows. 

3) L is also equal to the centerline mixing length, lT, for 

fully developed turbulent pipe flow. 

4) u  is equal to the centerline axial velocity fluctuation 

for fully developed turbulent pipe flow. 

5) The jet momenta are assumed equal. 

With the first assumption, L is related to the jet separation 

width XL as,  

 
L

L X  (A1) 

With the second and third assumptions, the centerline turbulent 

mixing length in pipe flows is given empirically by, [18] 

 0.07T
l

D
 (A2) 

which is independent of Reynolds number [18].  The turbulent 

length scale, L, is then given by, 

 (0.07)
T

L l D  (A3) 

Eqns. (A1) and (A3) now establish a relationship between the 

jet diameter, separation distance, and the LEM integral length 

scale. 

With the fourth assumption, the velocity fluctuation ( u ) 

may be determined from experimental correlations.  From Zhao 

and Smits [22], the centerline axial velocity fluctuation in fully 

developed pipe flow scales as, 

 
0

0.816
u

M
u



  (A4) 

and is independent of Reynolds number.  The friction velocity, 

u

, in Eqn. (A4) is defined by, 

 wu





  (A5) 

where 
w

  is the wall shear stress.  From Schlichting [18], 
w

  

for fully developed pipe flow is empirically given by, 

 7/4 1/4 1/4

0 0
,  0.03955

w B
C u D C      (A6) 

where uB is the pipe bulk velocity.  With Eqns. (A4) – (A6), the 

following relationship for u  may be derived, 

 1/2 1/2 7/8 1/8 1/8

0 0
( )

B
u M C u D    (A7) 

The term 7/8 1/8( )
B

u   in this equation is taken as the maximum 

value from the two jet streams because the maximum uwill 

determine the fluctuation level within the counter flow jet 

domain. 

With Eqns. (10), (A1), (A3) and (A7), a relationship for the 

jet nozzle exit diameter in terms of the LEM Reynolds number 

and jet velocity may be derived yielding, 

 

8/7

1/2 1/2 7/8 1/8

0 0

( ) / 2

(0.07) ( )

L FUEL OXI

B

Re
D

M C u

 



 
  
 

 (A8) 

With the diameter determined, the jet separation distance and 

LEM length scale are found from Eqns. (A1) and (A3).  The jet 

nozzle Reynolds numbers are then given by, 

 ,  FUEL OXI

fuel OXI

FUEL OXI

u D u D
Re Re

 
   (A9) 

The fifth assumption results in the following relationship, 

    
2 2

FUEL FUEL OXI OXI
u u   (A10) 

Eqns. (11), (A1), (A3), (A8) and (A10) may be combined 

into a system of nonlinear equations that may be solved to 

obtain uFUEL, uOXI, XL, L and D given the jet thermodynamics 

conditions and ReL and <a>. 
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Appendix II 

 

Table A1: LEM-CF Simulation Matrix for Augmentor Conditions 

          

Case 
no. 

ReL <a> 
(1/sec) 

L (cm) uFUEL 
(cm/sec) 

uOXI 
(cm/sec) 

D (cm) ReFUEL ReOXI Ext. 

          
1 0. 1.0563E+03 1.0000E+00 3.7032E+02 6.8603E+02 n/a n/a n/a No 
2 0. 1.6800E+03 1.0000E+00 5.8898E+02 1.0911E+03 n/a n/a n/a No 
3 0. 2.5369E+03 1.0000E+00 8.8938E+02 1.6475E+03 n/a n/a n/a No 
4 0. 3.6945E+03 1.0000E+00 1.2951E+03 2.3993E+03 n/a n/a n/a No 
5 0. 5.0946E+03 1.0000E+00 1.7860E+03 3.3086E+03 n/a n/a n/a No 
6 0. 6.6681E+03 1.0000E+00 2.3376E+03 4.3305E+03 n/a n/a n/a No 
7 0. 8.4966E+03 1.0000E+00 2.9786E+03 5.5179E+03 n/a n/a n/a No 
8 0. 1.0363E+04 1.0000E+00 3.6329E+03 6.7300E+03 n/a n/a n/a No 
9 0. 1.7010E+04 1.0000E+00 5.9632E+03 1.1046E+04 n/a n/a n/a Yes 

10 0. 1.7500E+04 1.0000E+00 6.1349E+03 1.1365E+04 n/a n/a n/a Yes 
11 10. 1.0563E+03 2.0698E-01 7.6651E+01 1.4199E+02 2.9569E+00 7.8749E+03 1.0094E+03 No 
12 10. 1.6800E+03 1.6412E-01 9.6668E+01 1.7907E+02 2.3446E+00 7.8749E+03 1.0094E+03 No 
13 10. 2.5369E+03 1.3356E-01 1.1878E+02 2.2005E+02 1.9080E+00 7.8749E+03 1.0094E+03 No 
14 10. 2.7685E+03 1.2785E-01 1.2409E+02 2.2987E+02 1.8265E+00 7.8749E+03 1.0094E+03 No 
15 10. 3.0000E+03 1.2282E-01 1.2917E+02 2.3929E+02 1.7546E+00 7.8749E+03 1.0094E+03 No 
16 10. 3.2315E+03 1.1834E-01 1.3406E+02 2.4835E+02 1.6906E+00 7.8749E+03 1.0094E+03 No 
17 10. 3.4630E+03 1.1431E-01 1.3878E+02 2.5710E+02 1.6331E+00 7.8749E+03 1.0094E+03 No 
18 10. 3.6945E+03 1.1067E-01 1.4334E+02 2.6555E+02 1.5811E+00 7.8749E+03 1.0094E+03 No 
19 10. 5.0946E+03 9.4250E-02 1.6833E+02 3.1184E+02 1.3464E+00 7.8749E+03 1.0094E+03 No 
20 10. 6.6681E+03 8.2383E-02 1.9258E+02 3.5676E+02 1.1769E+00 7.8749E+03 1.0094E+03 Yes 
21 50. 1.0563E+03 5.1921E-01 1.9228E+02 3.5620E+02 7.4173E+00 4.9552E+04 6.3520E+03 No 
22 50. 1.6800E+03 4.1170E-01 2.4249E+02 4.4921E+02 5.8815E+00 4.9552E+04 6.3520E+03 No 
23 50. 2.5369E+03 3.3503E-01 2.9797E+02 5.5200E+02 4.7862E+00 4.9552E+04 6.3520E+03 No 
24 50. 2.7685E+03 3.2072E-01 3.1127E+02 5.7664E+02 4.5817E+00 4.9552E+04 6.3520E+03 No 
25 50. 3.0000E+03 3.0810E-01 3.2403E+02 6.0027E+02 4.4014E+00 4.9552E+04 6.3520E+03 No 
26 50. 3.2315E+03 2.9685E-01 3.3630E+02 6.2300E+02 4.2408E+00 4.9552E+04 6.3520E+03 No 
27 50. 3.4630E+03 2.8676E-01 3.4814E+02 6.4493E+02 4.0966E+00 4.9552E+04 6.3520E+03 No 
28 50. 3.6945E+03 2.7763E-01 3.5959E+02 6.6614E+02 3.9662E+00 4.9552E+04 6.3520E+03 No 
29 50. 3.8103E+03 2.7338E-01 3.6518E+02 6.7650E+02 3.9054E+00 4.9552E+04 6.3520E+03 No 
30 50. 3.9260E+03 2.6932E-01 3.7068E+02 6.8669E+02 3.8474E+00 4.9552E+04 6.3520E+03 No 
31 50. 4.0418E+03 2.6543E-01 3.7611E+02 6.9674E+02 3.7919E+00 4.9552E+04 6.3520E+03 No 
32 50. 5.0946E+03 2.3642E-01 4.2226E+02 7.8225E+02 3.3775E+00 4.9552E+04 6.3520E+03 Yes 
33 50. 6.6681E+03 2.0665E-01 4.8309E+02 8.9493E+02 2.9522E+00 4.9552E+04 6.3520E+03 Yes 
34 100. 1.0563E+03 7.7155E-01 2.8572E+02 5.2931E+02 1.1022E+01 1.0942E+05 1.4026E+04 No 
35 100. 1.6800E+03 6.1179E-01 3.6033E+02 6.6753E+02 8.7399E+00 1.0942E+05 1.4026E+04 No 
36 100. 2.5369E+03 4.9786E-01 4.4279E+02 8.2028E+02 7.1123E+00 1.0942E+05 1.4026E+04 No 
37 100. 2.7685E+03 4.7659E-01 4.6255E+02 8.5689E+02 6.8084E+00 1.0942E+05 1.4026E+04 No 
38 100. 3.0000E+03 4.5783E-01 4.8151E+02 8.9200E+02 6.5405E+00 1.0942E+05 1.4026E+04 No 
39 100. 3.2315E+03 4.4113E-01 4.9974E+02 9.2578E+02 6.3018E+00 1.0942E+05 1.4026E+04 No 
40 100. 3.4630E+03 4.2613E-01 5.1733E+02 9.5837E+02 6.0875E+00 1.0942E+05 1.4026E+04 No 
41 100. 3.6945E+03 4.1256E-01 5.3435E+02 9.8988E+02 5.8937E+00 1.0942E+05 1.4026E+04 Yes 
42 100. 5.0946E+03 3.5132E-01 6.2748E+02 1.1624E+03 5.0189E+00 1.0942E+05 1.4026E+04 Yes 
43 100. 6.6681E+03 3.0709E-01 7.1787E+02 1.3298E+03 4.3870E+00 1.0942E+05 1.4026E+04 Yes 
44 1000. 1.0563E+03 2.8760E+00 1.0650E+03 1.9730E+03 4.1086E+01 1.5204E+06 1.9489E+05 No 
45 1000. 1.6800E+03 2.2805E+00 1.3431E+03 2.4882E+03 3.2578E+01 1.5204E+06 1.9489E+05 No 
46 1000. 1.9656E+03 2.1083E+00 1.4528E+03 2.6914E+03 3.0119E+01 1.5204E+06 1.9489E+05 No 
47 1000. 2.2513E+03 1.9700E+00 1.5548E+03 2.8803E+03 2.8143E+01 1.5204E+06 1.9489E+05 No 
48 1000. 2.5369E+03 1.8558E+00 1.6505E+03 3.0576E+03 2.6512E+01 1.5204E+06 1.9489E+05 Yes 
49 1000. 2.6141E+03 1.8282E+00 1.6754E+03 3.1038E+03 2.6117E+01 1.5204E+06 1.9489E+05 Yes 
50 1000. 2.7685E+03 1.7765E+00 1.7242E+03 3.1941E+03 2.5379E+01 1.5204E+06 1.9489E+05 Yes 
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