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ABSTRACT 
Fischer-Tropsch liquid fuels synthesized from syngas, also 

called synthetic paraffinic jet fuel (SPK), can be used to replace 
conventional petroleum-derived fuels in jet engines. Whereas 
currently syngas is mostly produced from coal of natural gas, 
its production from biomass has been reported. These synthetic 
liquid fuels contain a very high fraction of iso-alkanes, while 
conventional jet fuels contain large fractions of n-alkanes, 
cycloalkanes (naphtenes), and aromatics. In that contest, a jet-
stirred reactor (JSR) was used to study the kinetics of oxidation 
of a 100% SPK and a 50/50 SPK/Jet A-1mixture over a broad 
range of experimental conditions (10 atm, 560 to 1030K, 
equivalence ratios of 0.5 to 2, 1000 ppm of fuel). The 
temperature was varied step-wise, keeping the mean residence 
time in the JSR constant and equal to 1s. Three combustion 
regimes were observed over this temperature range: the cool-
flame oxidation regime (560-740K), the negative temperature 
coefficient (NTC) regime (660-740K), and the high-
temperature oxidation regime (>740K). More than 15 species 
were identified and measured by Fourier transform infrared 
spectrometry (FTIR), gas chromatography/ mass spectrometry 
(CG/MS), flame ionization detection (FID), and thermal 
conductivity detection (TCD). The results consisting of 
concentration profiles of reactants, stable intermediates and 
products as a function of temperature showed similar kinetics 
of oxidation for the fuels considered, although the 100% SPK 
was more reactive. A surrogate detailed chemical kinetic 
reaction mechanism was used to model these experiments and 
ignition experiments taken from the literature. The kinetic 
modeling showed reasonable agreement between the data and 
the computations whereas model improvements could be 
achieved using more appropriate surrogate model fuels. Kinetic 
computations involving reaction paths analyses and sensitivity 
analyses were used to interpret the results. 

 
INTRODUCTION 

Synthetic liquid fuels obtained via various processes 
(Fischer-Tropsch synthesis, hydro-treatment of organic liquids) 
using a variety of feedstock could be used in the future to 
replace petroleum-derived liquid fuels. In that contest, research 
activities on the synthesis[1-3] and testing of synthetic jet fuels 
have increased significantly over the last years[1, 4-13] 
whereas until now no kinetic model was proposed for their 
ignition and combustion over a wide range of conditions, i.e. 
for both cool-flame and high temperature oxidation regimes. 
Since the composition of synthetic paraffinic jet fuels (SPK) 
differs significantly from that of usual jet fuels (Jet A-1, JP-8), 
the applicability of existing kerosene combustion models for 
simulating the oxidation of SPK is not obvious.  

In fact, usual aviation fuels consist of complex mixtures 
of hundreds of medium molecular weight hydrocarbons that 
participate in thousands of chemical reactions [14-16]. 
Synthetic paraffinic kerosenes obtained from non-petroleum 
feedstocks (coal, natural gas, and biomass) are chemically 
different: the main chemical classes present are iso-alkanes 
(iso-paraffins), and n-alkanes (n-paraffins) whereas a small 
fraction of aromatics is usually introduced to avoid issues with 
O-rings leakage [17-18]. 
To overcome the complexity of computing the kinetics of 
oxidation of such multi-components fuels, surrogates with a 
limited number of components must be used. In addition to the 
simplification of the computations, the use of surrogates allows 
a molecular-level understanding of oxidation processes.  

For usual jet fuels, a surrogate consisting of n-decane, n-
propylcyclohexane, and n-propylbenzene was used previously 
[14-16] to represent Jet A-1 which consists predominantly of n-
alkanes, cyclic paraffins (naphtenics), and mono-aromatics. No 
iso-alkane oxidation sub-scheme was considered in these 
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computations. However, the inclusion of an iso-alkane 
oxidation sub-scheme is required with SPK since iso-alkanes 
represent the main SPK components. Also, our previous model 
was limited to the high-temperature oxidation regime while 
low-temperature oxidation kinetics can play a role until ca. 900 
K. Recently, the ignition of SPK/air mixtures was investigated 
over a range of conditions (1 atm, 900–1200K)[6]. A kinetic 
model involving the oxidation sub-schemes for n-decane, n-
propylcyclohexane, n-propylbenzene, and iso-octane was used 
to simulate the data. Nevertheless, no kinetic data were 
available below 900 K where cool flame can develop, and 
where flashback can occur in lean premixed pre-vaporized 
(LPP) combustion. In that contest, experimental results were 
needed for the oxidation of a synthetic paraffinic jet fuel over 
an extended range of conditions and the previously proposed 
kerosene oxidation kinetic mechanism [14-15] needed to be 
extended by including low-temperature oxidation chemistry 
and an iso-alkane sub-scheme. 

In the present study, the kinetics of oxidation of a 
synthetic paraffinic jet fuel and mixtures of SPK with a 
commercial jet fuel (Jet A-1) were measured. These 
experiments were carried out in a pressurized jet-stirred reactor 
to: (i) supply new data for the kinetics of oxidation of a 
synthetic paraffinic jet fuel over a wide range of conditions, 
and (ii) propose and validate a detailed kinetic reaction 
mechanism for the oxidation of SPK and a semi-synthetic jet 
fuel from low to high temperatures. 

NOMENCLATURE 
φ: Equivalence ratio 
FID: Flame ionization detector 
FTIR: Fast Fourier Transform Infrared 
GC: Gas chromatography 
JSR: Jet-stirred reactor 
MS: mass spectrometry 
Su: Laminar burning velocity 
SPK: synthetic paraffinic kerosene 
TCD: Thermal conductivity detector 
τ: residence time in the JSR 

 
EXPERIMENTAL 

The jet-stirred reactor (JSR) used here is similar to that 
used in previous kinetic studies of the oxidation of a range of 
fuels [19-21]. A schematic overview of the experimental set-up 
is presented in Figure 1. The JSR consists of a fused silica (to 
minimize wall catalytic reactions) sphere of 33 cm3 in volume. 
It is equipped with four nozzles of 1 mm inner diameter for the 
injection of the gases achieving the stirring. A nitrogen flow of 
100 L/h was used to dilute the fuel and avoid its pyrolysis 
before admission into the reactor. All gases were preheated 
before injection to minimize temperature gradients inside the 
JSR. The liquid fuel was atomized and vaporized before 
injection into the reactor using an in-house atomize-vaporizer 
assembly maintained at ca. 550 K. The SPK fuel had a density 
of 0.757 g/cm3 and a global chemical formula of C11.5H24.41 

(H/C=2.1). Its composition was determined to be ca. 79.9% 
iso-alkanes, 19.6% n-alkanes, and 0.5% aromatics in mass. The 
second fuel considered in the present study is a 50/50 mixture 
of this SPK with Jet A-1. That fuel mixture had a density of 
0.78 g/cm3 and a global formula of C11.24H23.17 (Table 1).  

 
Table 1. Composition of the fuels. 

Chemical class % mass SPK % mass Jet A-1 
n-paraffins 19.63 12.19 

iso-paraffins 79.88 26.30 
aromatics 0.49 33.22 
naphtenics -- 24.28 
 
The fuel and oxygen were diluted by a flow of nitrogen 

(<50 ppm of O2; <1000 ppm of Ar; <5 ppm of H2), and mixed 
at the entrance of the injectors. The experiments were 
performed at steady state, at a constant mean residence time of 
1 s, the reactants flowing continuously in the reactor. The 
temperature of the gases inside the JSR ranged from 560 to 
1030 K. A high level of dilution was used (11240–11500 ppm 
of carbon in the fuel), minimizing temperature gradients in the 
JSR and heat release. Thermocouple measurements, using 
0.1 mm Pt/Pt–Rh 10% wires located inside a thin-wall silica 
tube, showed a good thermal homogeneity along the vertical 
axis of the JSR (gradient ≤ 3 K/cm).  
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Figure 1: The JSR experimental set-up 
 
The reacting mixtures were sampled using a low-pressure 

fused-silica sonic probe movable along the vertical axis of the 
JSR. The samples (≤0.06 bar), were taken at steady temperature 
and residence time. They were analyzed on-line by Fourier 
Transformed Infra-Red spectrometry (FTIR) and gas 
chromatography-mass spectrometry (GC-MS), and off-line, 
after collection and storage at low-pressure (ca. 0.04 bar) in 1 L 
Pyrex bulbs, by GC. The high vapor-pressure species and 
permanent gases were analyzed off-line and low vapor-pressure 
compounds were analyzed on-line. A heated (70 °C) glass 
piston chamber was used to pressurize the samples to 1 bar in 
the GC injection loop. Gas chromatographs equipped with 
capillary columns (DB-5ms, DB-624, Plot Al2O3/KCl, 
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Carboplot-P7), thermal conductivity detector (TCD), and flame 
ionization detector (FID), were used for species measurements. 
Compound identification was made via GC/MS analyses using 
an ion trap detector (Saturn 2000, Varian) and a quadrupole 
(V1200, Varian) operating in electron impact ionization mode 
(70 eV). On-line FTIR analyses (Nicolet Magna 550; 1 cm-1 
resolution) were used to quantify H2O, CO, CO2, CH2O, CH4, 
C2H2, and C2H4. For these measurements, the sampling probe 
was connected to a temperature controlled (140 °C) gas cell (2 
m path length; 0.5 bar) via a 6.35 mm O.D. deactivated 
stainless steal heated line (140-200°C). A good repeatability of 
the measurements and a reasonably good carbon balance 
(100 ± 10%) were obtained in the present series of 
experiments. Since many oxygenated intermediates could not 
be quantified, no oxygen balance could be calculated. 

 
COMPUTATIONS 

The Senkin code [22] was used for the ignition 
simulations. The constant volume approximation was used and 
the ignition delays were defined as the time at which the 
computed temperature reaches 200 K above the initial 
temperature. The PSR computer code [23] was used for the 
kinetic modeling of the JSR experiments. It computes species 
concentrations from the balance between the net rate of 
production of each species by chemical reaction and the 
difference between the input and output flow rates of species.  

The detailed chemical kinetic scheme used here derives 
from previous studies on the oxidation of liquid fuels, i.e. n-
decane, gasoline, diesel, and kerosene surrogates [14, 24-25]. 
For the kinetic modeling, surrogate model fuels were used. In 
the computations, the SPK was represented by a mixture of n-
decane, iso-octane (2,2,4-trimethylpentane), and n-
propylbenzene whereas, as previously [25], a mixture of n-
decane, n-propylcyclohexane, and n-propylbenzene was used 
for representing Jet A-1. The SPK surrogate composition was 
chosen on the basis of a previous study on SPK ignition[6]. 
Iso-octane was used to represent the iso-paraffins since a 
kinetic model was available for the oxidation of this fuel [26-
27]. The SPK fuel was represented by a 60/40 n-decane/iso-
octane mixture. This composition was chosen in order to 
represent the amount of branched methyl in the SPK. Since iso-
octane has 3 branched methyl and SPK has ≥ 1 branched 
methyl, the fraction of iso-octane should be > 80/3=26.7%.  

The proposed kinetic reaction mechanism consisting of 
6228 reactions involving 2006 species is available from the 
authors upon request. Cross-reactions between the fuel 
components sub-schemes were included [27]. The rate 
constants for the reverse reactions were computed from the 
forward rate constants and the equilibrium constants calculated 
using the appropriate thermochemical data [14, 24-25]. The 
pressure dependencies of the unimolecular reactions and of 
pressure-dependent reactions were taken into account when 
information was available (i.e., k(P,T)). For interpreting the 
computational results, we performed local first-order sensitivity 
analyses and reaction rate analyses were done by computing the 

rates of consumption (ROC) and production (ROP) for every 
species. 

 
RESULTS AND DISCUSSION 

In this study, the kinetics of oxidation of a SPK and of a 
50/50 mixture of this SPK with Jet A-1 were studied under the 
same conditions. The surrogate model fuels used for the kinetic 
modeling consist of mixtures of: n-decane, iso-octane, n-
propylbenzene, and n-propylcyclohexane. 

In the present experiments, the temperature was varied 
step-wise in the range 560–1030 K, keeping the mean residence 
time constant and equal to 1s. This temperature range allowed 
the observation of the cool-flame oxidation regime (560–740 
K), the negative temperature coefficient (NTC) regime (660–
740 K), and the high-temperature oxidation regime (≥750K). 
The experiments were performed for several equivalence ratios, 
from fuel-lean to fuel-rich condition (i.e. over the range 0.5-2). 
More than 15 species were identified and measured by CG/MS, 
FID, and TCD. Experimental concentration profiles were 
measured for H2, H2O, O2, CO, CO2, CH2O, CH4, C2H6, C2H4, 
C2H2, C3H6, i-C4H8, 1-C4H8, 1,3-C4H6, 1-C5H10, and benzene. 
Uncertainties for the measured concentrations based on 
analytical and systematic error were estimated to be ca. 10%.  
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Figure 2: (a) Concentration profiles obtained from the 

oxidation of SPK (open symbols) and Jet A-1 (closed symbols). 
Initial JSR conditions: 10 atm, τ= 1s, ϕ= 1, 1000 ppm of fuel, 
(b) Rates of production under the same conditions. 

 
Many minor species were detected at ppm levels but they 

were not quantified nor used in the modeling. The 
concentration profiles measured from the oxidation of SPK and 
Jet A-1 fuels were compared. Figure 2a presents an example of 
the present results. As can be seen from this figure, the 
concentration profiles are very similar. However, the 
concentrations of major stable intermediates, i.e. H2, CH2O and 
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CO, on that Figure tend to be higher when the fuel is SPK. As 
seen from Figure 2b, SPK is oxidized faster than Jet A-1, as 
reported previously [6]..     

The concentration profiles measured during the oxidation 
of the SPK and SPK-Jet A-1 fuels were compared to the 
present model predictions. The mechanisms used previously for 
modeling the oxidation of Diesel and surrogate Diesel fuels and 
that of n-propylcyclohexane, iso-octane, and a surrogate 
gasoline under similar conditions were merged. The resulting 
scheme included both low- and high-temperature oxidation 
processes. The present model was also successfully tested for 
the oxidation of pure fuels (n-decane, n-propylcyclohexane, 
iso-octane) under similar JSR conditions.  

Since n-decane was chosen as one of the surrogate SPK 
fuel component, and since we wanted to simulate the ignition 
of SPK fuel, we initially compared the ignition delays of n-
decane [28] with our computations. As can be seen from Figure 
3, the present model represents reasonably well the ignition of 
n-decane/air mixtures under shock-tube conditions.  
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Figure 3: Ignition of n-decane/air (model vs. literature 

data [28]) and SPK/air (model) at 13 atm. 
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Figure 4: Ignition of a stoichiometric SPK (C11H22)/air 

mixture at atmospheric pressure. The data (symbols) [6] are 
compared to the modeling (line; model fuel: 8738 ppm of n-
decane and 5855 ppm of iso-octane). 

The ignition delays of SPK (C11H22)/air mixtures were 
computed. An example is given in Figure 3 showing that SPK 
ignition is similar to that of n-decane above 900 K while SPK 
is less reactive at lower temperatures due to the presence of iso-
octane that is less ignitable than n-decane under these 
conditions. Since the model seemed to perform well, it was 
used to model the SPK ignition experiments available from the 
literature[6]. Figures 4 and 5 present a comparison between the 
literature data and the present modeling. As can be seen from 
Figure 4, the proposed kinetic model well predicts the literature 
ignition data under stoichiometric conditions. Also the 
presently predicted ignition delays are very similar to those 
predicted earlier [6]. The effect of the variation of the 
equivalence ratio on the ignition of SPK was also modeled, 
based on previous experiments [6]. The model confirms the 
increase of ignition delays from fuel-rich to fuel-lean 
conditions below 1000 K. 
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Figure 5: Ignition of SPK (C11H22) at atmospheric 

pressure and 3 equivalence ratios (model vs. literature data [6]): 
ϕ=0.5 (dotted line; model fuel: 4396 ppm of n-decane and 2946 
ppm of iso-octane); ϕ=1 (dashed line); ϕ=1.5 (continuous line; 
model fuel: 13028 ppm of n-decane and 8729 ppm of iso-
octane). 
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Figure 6: Oxidation of SPK in a JSR at 10 atm, τ= 1s and 

ϕ= 0.5. The initial mole fractions were: fuel, 0.1%; O2, 3.52%; 
N2, 96.38%. The experimental data (large symbols) are 
compared to the computations (lines and small symbols). 
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Figure 6 Cont’d: Oxidation of SPK in a JSR at 10 atm, τ= 

1s and ϕ= 0.5. The initial mole fractions were: fuel, 0.1%; O2, 
3.52%; N2, 96.38%. The experimental data (large symbols) are 
compared to the computations (lines and small symbols). 

 
Again, the model seems to behave reasonably well and 

mostly matches previous modeling results [6]. 
Figures 6–9 show examples of the JSR results obtained at 

10 atm for the oxidation of SPK and SPK/Jet A-1 fuels. In the 
computations, the 1000 ppm of SPK were represented by a 
mixture of 745 ppm of n-decane, 500 ppm of iso-octane, and 6 
ppm of n-propylbenzene (H/C=2.2 for the surrogate SPK). As 
can be seen from these figures, a cool-flame is observed in the 
temperature range 560–740K.  
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Figure 7: Oxidation of SPK in a JSR at 10 atm, τ= 1s and 

ϕ= 1. The initial mole fractions were: fuel, 0.1%; O2, 1.76%; 
N2, 98.14%. The experimental data (large symbols) are 
compared to the computations (lines and small symbols). 

 
Above that temperature range, a high-temperature 

oxidation regime is observed with large conversion of the fuel 
to intermediates and final products (CO2 and H2O). These 
figures also show that the present model represents reasonably 
well the measured concentration profiles obtained for O2, H2, 
CO, CO2, H2O, C2H2, and 1,3-C4H6.  
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Figure 7 Cont’d: Oxidation of SPK in a JSR at 10 atm, τ= 

1s and ϕ= 1. The initial mole fractions were: fuel, 0.1%; O2, 
1.76%; N2, 98.14%. The experimental data (large symbols) are 
compared to the computations (lines and small symbols). 
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Figure 8: Oxidation of SPK in a JSR at 10 atm, τ= 1s and 

ϕ= 2. The initial mole fractions were: fuel, 0.1%; O2, 0.88%; 
N2, 99.02%. The experimental data (large symbols) are 
compared to the computations (lines and small symbols). 
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Figure 8 Cont’d: Oxidation of SPK in a JSR at 10 atm, τ= 

1s and ϕ= 2. The initial mole fractions were: fuel, 0.1%; O2, 
0.88%; N2, 99.02%. The experimental data (large symbols) are 
compared to the computations (lines and small symbols). 
 

The model generally over predicts the concentrations of 
CH2O, methane, ethane, and isobutene. In fuel lean conditions 
ethylene and propene are also over-predicted while in fuel-rich 
conditions, the model represents well the data. Nevertheless, 
the different oxidation regimes of SPK, i.e. cool-flame, 
negative temperature coefficient, and high-temperature are well 
predicted by the proposed model. 

The overestimation of methane and ethane mole fractions 
is indicative of an overestimation of the concentration of 
methyl radicals that produce these species via H-atom 
abstraction and recombination reaction:  

 
CH3 + RH → CH4 + R 
 
CH3 + H → CH4 
 
CH3 + CH3 → C2H6.  
 
The over-production of methyl radicals is due to the too 

highly branched character of iso-octane which has 3 branched 
methyl groups while most of the iso-alkanes present in SPK 
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have only one. Therefore, the iso-paraffinic fraction of the fuel 
is not well-represented by iso-octane. Less branched iso-
alkanes such as 2-methyl-heptane or 2-methyl-decane, as 
proposed earlier[29], should be better surrogate components. 
However, to date there is no data and no validated model 
available for their kinetics of oxidation.  
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Figure 9: Oxidation of a 50/50 SPK/Jet A-1mixture in a 

JSR at 10 atm, τ= 1s and ϕ= 1. The initial mole fractions were: 
fuel, 0.1%; O2, 1.7%; N2, 98.2%. The experimental data (large 
symbols) are compared to the computations (lines and small 
symbols). 

Similar agreement between the JSR data and the modeling 
was observed for the oxidation of the SPK/Jet A-1 mixtures as 
exemplified in Figure 9. In these computations, the 1000 ppm 
of fuel were represented by a mixture of 756 ppm of n-decane, 
246 ppm of iso-octane, 116 ppm of n-propylbenzene, and 76 
ppm of n-propylcyclohexane.  

Kinetic computations were used to interpret the results. 
For the oxidation of SPK at 10 atm, 640 K, and in 
stoichiometric conditions (Figure 10), OH radicals are 
responsible for most of the oxidation of the fuel components 
(n-decane 98%, iso-octane 96%). Under these conditions, the 
formation of OH radicals is mainly due to the decomposition of 
alkylhydroperoxy (O2QOOH and OQ'OOH) produced through 
the oxidation of n-decane (R + O2 ⇄ RO2; RO2 ⇄ QOOH; 
QOOH + O2 ⇄ O2QOOH). As a result, under these conditions, 
the overall kinetics of oxidation of the fuel is driven by the 
oxidation of n-decane which has a higher reactivity than iso-
octane and feeds the radical pool.  
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Sensitivity Coefficient  
Figure 10: Sensitivity spectrum for CO2 during the 

oxidation of SPK in a JSR at 640 K. Only the main sensitive 
reactions are shown. 

 
Thus, the main oxidation channels of n-decane show large 

positive influence on CO2 formation. The oxidation of iso-
octane consumes OH radicals to produce radicals (2,2,4-
trimethyl-pent-1-yl and 2,2,4-trimethyl-pent-3-yl) that do not 
contribute efficiently to chain branching but form stable 
intermediates. These processes reduce the overall rate of 
oxidation of the fuel mixture and CO2 production rate.  

Above ca. 750 K, the negative temperature coefficient 
regime ends and a transition to the high-temperature oxidation 
regime occurs. At 1100 K, the oxidation of the fuel components 
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is still mostly due to reactions with OH radicals (i.e. ca. 88% 
for n-decane and 90% for iso-octane). The reactions of n-
decane and iso-octane with O (ca. 5%) also contribute to their 
consumption. The present sensitivity analyses (Figure 11) 
showed that CO2 formation is mostly influenced by the main 
chain branching reaction, i.e. H + O2 ⇄ OH + O and to the 
kinetics of oxidation of CO by OH and CH3 by HO2.   
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Figure 11: Sensitivity spectrum for CO2 during the 

oxidation of SPK in a JSR at 1100 K. Only the main sensitive 
reactions are shown. 

 
CONCLUSION 

The kinetics of oxidation of a synthetic paraffinic jet fuel  
and a 50/50 mixture with a commercial Jet A-1 were studied in 
a pressurized jet-stirred reactor under the same initial 
conditions, i.e. over the temperature range 560–1030K, at 10 
atm, for equivalence ratios of 0.5, 1, and 2, and using 1000 
ppm of fuel. The JSR results consisting of concentration 
profiles versus temperature for reactants, stable intermediates, 
and products obtained by GC and FTIR were used for kinetic 
modeling.  

A detailed kinetic scheme consisting of 6228 reversible 
reactions involving 2006 species was used for the chemical 
kinetic modeling of the JSR experiments and of literature 
ignition experiments. The SPK fuel was represented by a 2-
component surrogate mixture: n-decane and iso-octane were 
used. The small aromatic fraction (0.5%) in one of the synthetic 
kerosenes was represented by n-propylbenzene. The kinetic 
modeling showed reasonable agreement between the data and 
the computations. The SPK was determined to be more reactive 
than conventional Jet A-1 under JSR conditions but, according 
to the proposed model, less ignitable than n-decane, 

particularly below 900 K. The main reaction paths involved in 
the oxidation of SPK were delineated through kinetic 
modeling. The great importance of reactions producing and 
consuming OH radicals was highlighted.  

Improvements to the proposed kinetic model are still 
necessary. SPK flame speeds would be useful to further assess 
the validity of the proposed kinetic model. The use of an iso-
alkane less branched than iso-octane should help improving the 
kinetic modeling.  
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