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ABSTRACT
Bifurcation analysis is conducted on experimental data ob-

tained from a simple setup comprising of ducted, laminar pre-
mixed conical flames to investigate the features of nonlinear
thermoacoustic oscillations. It is observed that as the bifurca-
tion parameter is varied, the system undergoes series of bifur-
cations leading to characteristically different nonlinear oscilla-
tions. Through the application of nonlinear time series analysis
on pressure and flame (CH* chemiluminescence ) intensity time
traces, these oscillations are characterised as periodic, aperi-
odic or chaotic oscillations and subsequently the nature of the
obtained bifurcations is explained based on dynamical systems
theory. Nonlinear interaction between the flames and the acous-
tic modes of the duct is clearly reflected in the high speed flame
images acquired simultaneously with pressure and flame inten-
sity measurements.

INTRODUCTION
Practical combustion applications such as gas turbines and

industrial furnaces often suffer from the problem of thermoa-
coustic instabilities. The instability is manifested in the form
of large amplitude oscillations in pressure and heat release rate.
Such oscillations can induce mechanical vibrations and increase
thermal loading within the structure of the combustor. Such in-
stabilities are more prominent in systems running on lean pre-
mixed combustion and hence, are a hindrance to the development
of cleaner combustion technologies [1].

∗Address all correspondence to this author

Thermoacoustic instability in combustion systems ensues as
a result of a positive feedback loop between combustion and the
acoustic field in the combustor. For such coupling to occur, the
time scales associated with the combustion processes and the
time scales associated with one or more of the acoustic modes of
the combustion chamber are of the same order of magnitude [2].
Quite often, hydrodynamic phenomena, such as vortex shedding,
also play an important role in the development of the instability
in industrial combustors [3]. Hence, depending on the config-
uration of the system, several sources such as equivalence ra-
tio fluctuations [2], vortex-flame interaction [4] and oscillatory
flame area variation [5], can contribute to thermoacoustic insta-
bility. Predicting and controlling combustion instability is al-
ways a challenge because decoupling all the process responsible
for the occurrence of instability restricts the modelling work and
measurements in experiments [6].

Thermoacoustic oscillations are most often reported to oc-
cur in the form of limit cycles, characterized by a single dom-
inant frequency of oscillations [2, 7, 8]. However, since several
processes simultaneously contribute to the nonlinear interaction
between combustion and acoustics, it is reasonable to expect a di-
verse nonlinear behavior of oscillations. In several numerical and
experimental investigations on thermoacoustic instability, oscil-
lations different from limit cycle oscillations have been reported.
For instance, Jahnke and Culick [9] observed quasi-periodic os-
cillations in their continuation analysis of a uniform cross section
combustor model with six longitudinal acoustic modes. Ster-
ling [10] reported quasi-periodic oscillations in experiments on
a premixed laboratory combustor, which he explains is a result
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of interaction between two acoustic modes of the combustor. He
also observed transition of limit cycle oscillations to chaotic os-
cillations through bifurcation analysis of simple models incorpo-
rating nonlinear combustion. Chaotic oscillations were observed
by Lei and Turan [11] in the bifurcation analysis of a simplified
one-mode thermoacoustic model employing simple harmonic os-
cillatory heat release rate.

Here, we focus on studying the characteristics of the ther-
moacoustic oscillations through an experimental bifurcation
analysis. Variation of the control parameter in our thermoacous-
tic system results in several bifurcations and a variety of com-
plex oscillations - periodic, quasi-periodic, frequency-locked and
chaotic. The location of the flames with respect to the enclosing
duct is chosen as the control parameter in the bifurcation anal-
ysis. As the flame location is varied, self excited oscillations
emerge in the system due to coupling between heat release rate
from the flames and acoustic modes of the duct. The oscilla-
tions are recorded in terms of pressure oscillations in the duct,
flame intensity fluctuations due to flame surface area modula-
tions and high speed flame images. Subsequently, we charac-
terize the resulting complex oscillations through reconstructed
phase portraits from the acquired time series data. The observa-
tions reported in this paper shed light on the interesting nonlinear
dynamics exhibited by thermoacoustic systems.

EXPERIMENTAL SETUP
The bifurcation analysis is conducted on a premixed com-

bustor, as depicted in Fig. 1. A multipoint injection , one sim-
ilar to the configuration used in investigations by Matsui [12],
and recently by Noirayet al. [13], is used for the burner. In the
current setup, there are seven conical LPG (Liquefied Petroleum
Gas)-air premixed flames (A) anchored on a 18mm thick cop-
per block. The top view of the burner is given on the top right
of Fig. 1. In preliminary experiments, it was observed that the
onset of instability causes flame blowout. In order to facilitate
investigations, a fine wire mesh is used to stabilize the flames.
The burner tube (C) is 800mm long with an inner diameter of
14 mmand thickness of 1.5 mm. The burner is connected to a
decoupler (D) as shown, which is in turn connected to a premix-
ing chamber (E) for enhanced mixing of the fuel and the air. The
burner tube is enclosed in a glass duct (B), 800mmlong, closed
at the bottom. This glass duct acts as the combustion chamber.
During the experiments, the acoustic modes of the duct get cou-
pled with the heat release rate fluctuations leading to self-excited
oscillations. For the results on bifurcation analysis reported in
this paper, the equivalence ratio,φ , is kept constant at 0.50 by
keeping the volumetric fuel flow rate (V f ) at 68ccmand the volu-
metric air flow rate (Va) at 4000ccm, measured using rotameters
with an accuracy of 2%. The corresponding uncertainty in the
equivalence ratio is estimated to be 2.8%. Three pressure micro-
phones (model no. 103B02, PCB piezotronics make), P1, P2 and

FIGURE 1: SCHEMATIC OF THE THERMOACOUSTIC
SETUP, A- PREMIXED MULTIPLE FLAMES, B- OPEN-
CLOSED GLASS DUCT, C- BURNER TUBE, D- DECOU-
PLER, E- LPG-AIR PREMIXER, F-TRAVERSE, P1, P2, P3-
PRESSURE SENSORS. A TOP VIEW OF THE BURNER IS
GIVEN AT THE TOP RIGHT CORNER OF THE FIGURE.
ALL DIMENSIONS ARE IN MM.

P3, mounted on the walls of the glass duct, as shown in Fig. 1,
were installed to monitor the unsteady pressure oscillations. The
results reported in this paper are based on pressure time series
(p(t)) obtained from the microphone P1, which is mounted at a
distance of 20cm from the top. A 16-bit analog to digital con-
version card (NI-6143) was used for data acquisition which has a
resolution of 0.15mV taking the input voltage range as±5V. The
uncertainty in pressure microphone measurement is 0.14Pa. The
intensity fluctuations (I(t)), proportional to the heat release rate
oscillations in the flame, were detected simultaneously with pres-
sure oscillations using a photomultiplier tube (model no. H5784,
Hamamatsu make) equipped with a CH* filter (bandwidth 10nm,
centered at 431.4 nm). High speed flame images, were recorded
simultaneously at a recording speed of 5000 frames per second
, using a Phantom v12.1 high speed camera. The flame location
was measured using a ruler with a least count of 1mm.

RESULTS
Figure 2 shows the stability diagram of the system for an

air flow rate ofVa= 4000ccm. For the diagram, the stability of
the system at each fuel flow rateV f , with variation in the flame
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FIGURE 2: STABILITY MAP OF THE SYSTEM INDICAT-
ING THE STABILITY REGIMES OF THE SYSTEM FOR A
AIR FLOW RATE (4000CCM).

location is plotted. The dark shaded region of the plot represents
the conditions for which the system is unconditionally unstable.
The dotted region, is stable/unstable depending on whether these
regions are approached from a stable/unstable condition. This
region is known as the bistable region. The non-shaded regions
in the stability diagram indicate stability. Although, the stability
diagram successfully indicates the set of parameter values (here,
the flame location and the fuel-flow rate) for which the system
is stable/unstable, but it is inadequate to explore the dependence
of the nonlinear characteristics of thermoacoustic instability on
different parameters. For this purpose, we present the bifurcation
analysis of the system. The flame location has been chosen as
the control parameter for bifurcation studies. The advantage of
choosing flame location over other parameters is that the system
response to any variation will be immediate. In addition, flame
location could be conveniently and precisely controlled for the
setup and we can have a large range of control parameter values
to explore the bifurcations. We will now examine at the changes
in the behavior of the system with respect to changes in flame
location for a constant equivalence ratio (φ ) of 0.50 by keeping
the fuel flow rate (V f ) constant at 68ccmand the air flow rate
(Va) at 4000ccm.

Bifurcation analysis
A qualitative change in the behavior exhibited by any dy-

namical system on varying a control parameter is termed as bi-
furcation. Bifurcation plot for the system under investigation is
given in Fig. 3. The horizontal axis represents the flame location
relative to the duct, measured from the open end of the duct (see
Fig. 1). The total length of the glass duct, as mentioned already,
is 80cm. The bifurcation plot (Fig. 3) has been shown till flame
locationxf = 50 cm as the system remains stable (fixed point)
beyond this point. The vertical axis is the pressure amplitude

FIGURE 3: BIFURCATION DIAGRAM WITH RESPECT
TO FLAME LOCATION (Va = 4000 CCM, V f = 68 CCM).
THE BLOCK ARROWS INDICATE THE DIRECTION OF
CHANGE IN THE FLAME LOCATION. (a) INCREASING
FLAME LOCATION AND (b) DECREASING FLAME LOCA-
TION. LOCAL MAXIMA IN THE PRESSURE TIME SERIES
HAVE BEEN PLOTTED FOR EACH FLAME LOCATION. IN-
SET SHOWS A FEW CYCLES OF A SAMPLE TIME SERIES
WITH LOCAL MAXIMA MARKED WITH BLACK DOTS.

in Pascalsobtained from pressure microphoneP1 (Fig. 1). For
each flame location, local maxima from the corresponding pres-
sure time series, about 100 cycles long, have been plotted. For a
limit cycle oscillation, this will be a single point, corresponding
to the peak amplitude of the oscillation. Figure 3(a) represents
the bifurcation diagram for increasing flame location and Fig.
3(b) for decreasing flame location. While increasing the flame
location, the system jumps from a stable to an unstable state at
xf = 13.5 cm (xf1). The set ofy ordinates corresponding to this
particularxf is a single point, indicating that the amplitudes of
all the local maxima in the pressure time series are of the same
magnitude and hence, the oscillations present at the particular lo-
cation are limit cycle oscillations. As we go beyond this point,
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limit cycle oscillations exist tillxf = 14 cm. At this point, there
is sudden change in the behavior of oscillations - a second bi-
furcation occurs. The local maxima in the oscillations no longer
have the constant amplitude, which as we will see later, is also
reflected in the Fourier spectrum in the form of the emergence of
additional frequencies. Further changing the flame location leads
to a series of bifurcations in the system. The system returns to
its steady state at the flame locationxf = 48.5 cm. In the reverse
direction, we find that the system exhibits hysteresis for each re-
gion as shown in Fig. 3(b). This hysteresis in system behavior
is evident from the fact that there is a jump from the limit cycle
oscillation back to the steady state, atxf2 = 10cm, instead ofxf1
(Fig. 3). The hysteresis behavior suggests that the bifurcation at
the onset of instability is a subcritical Hopf bifurcation. The re-
gion of hysteresis,xf1 − xf2, is formally known as the subcritical
zone or the bistable region.

From Fig. 3, it is seen that the oscillations observed in the
system assume several characteristically different periodic and
aperiodic states. In the following sections, the oscillating behav-
ior obtained for each flame location (xf ) is characterized from the
time series data of pressure and intensity oscillations, with the
application of concepts from dynamical systems theory - phase
space representation of the system and Poincaré sections. These
concepts are briefly discussed below.

The state space [14–16] (or equivalently called the phase
space here) is an ‘N’- dimensional space, where, ‘N’is the num-
ber of independent variables, also referred to as the state vari-
ables, that determine the dynamics of a system. It is a graphical
approach to visualize the dynamics of systems, particularly, non-
linear systems. Coordinates corresponding to each point in the
phase space completely and uniquely define the state of the sys-
tem in terms of its state variables, at a particular instant of time.
The phase space hence, contains all the possible states of a dy-
namical system under consideration. It is easily inferred that, the
dimensionality of the phase space is a measure of complexity in
the system dynamics. Dynamical systems with three or lesser
degrees of freedom can easily be visualised in the phase space.
For system with a higher degree of freedom, the projections to
a two or three dimensional phase space can be visualised. If the
set of equations governing the evolution of the dynamical sys-
tem are at our disposal, the evolution of the state variables can
be determined and therefore, the phase space can be constructed
directly.

In the absence of exact governing equations, a dynamical
system can still be represented in a phase space through indirect
methods. It is clear from the above discussion on phase space
representation that the dynamics of a system is projected onto
its state variables. The system dynamics can be represented in
a phase space reconstructed from scalar observations obtained
in experiments [17]. The technique of phase space reconstruc-
tion has been successfully applied to experimentally obtained
data for several nonlinear processes. Even in the reconstructed

phase space, important properties such as the correlation dimen-
sion and the positive Lyapunov exponents are conserved and can
be extracted [14].

According to Takens’ embedding theorem [17] the phase
space can be reconstructed using time-delayed vectors obtained
from experimentally obtained time series data. For an appropri-
ate reconstruction, two critical values have to be determined - the
time delay and the embedding dimension. The time-delay should
be large enough to capture true dynamics of the system, but not
so large that the relation between time-delayed vectors becomes
completely random. A correct embedding dimension is required
to unfold the geometric structure of the actual phase space of
the system in a space created by time-delayed vectors unambigu-
ously. A three dimensional phase space representation of a dy-
namical system, for example, can be constructed by the vectors
s(t), s(t + τ) ands(t +2τ), where,s(t) is the acquired time se-
ries andτ is the optimum time delay for appropriate phase space
reconstruction determined from the time series itself. Again, dif-
ferent approaches to finding the optimal time-delay exist [18].
The first zero-crossing of the auto-correlation function and the
first minima in the average mutual information curve are two of
the most frequently used approaches. Since, the auto-correlation
function is essentially a linear concept, the average mutual infor-
mation is preferred for the analysis of nonlinear systems and has
been used for the analysis of all the cases presented in this paper.
The second important detail to be considered while reconstruct-
ing the phase space is the dimension chosen for reconstruction
of the phase space. One could loose essential quantitative infor-
mation about a system by representing it on a phase space with a
dimension lower than the actual dimension. The appropriate di-
mension for phase space reconstruction can also be determined
from the time series [19]. Several methods exist to find out the
appropriate embedding dimension. In this paper, we have used
the false nearest neighbor method [18].

We will now continue with the results obtained by nonlinear
time series analysis of data acquired for the thermoacoustic sys-
tem under study. For the results presented here, the maximum
embedding dimension was found to be four. A three dimensional
space was found adequate to represent the phase portrait and to
identify qualitative differences between various classes of oscil-
lations obtained. The phase space representation will be in a
three dimensional space constructed from time-delayed vectors
(p(t), p(t+τ), p(t+2τ)) and (I(t), I(t+τ), I(t+2τ)) obtained
from pressure time series and intensity time series respectively
with time delay calculated for each case. We will discuss these
different regimes with reference to Fig. 3a.

Limit cycle oscillations: Region II. The appearance
of periodic oscillations from a steady state is first observed in the
system atxf = 13.5 cm (see Fig. 3a). The self-excited state is
a limit cycle oscillation, resulting from a Hopf bifurcation. Ow-
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FIGURE 4: PHASE PORTRAITS (i), POINCAŔE SECTIONS (ii) AND FREQUENCY SPECTRA (iii) FOR PRESSURE TIME
SERIES (LEFT HALF - a) AND INTENSITY TIME SERIES (RIGHT HALF - b), FOR DIFFERENT TYPES OF OSCILLA-
TIONS, SEQUENTIALLY ARRANGED IN THE ORDER OF THEIR OCCURRENCE IN THE BIFURCATION DIAGRAM, FIG. 3a.
f1 = 570.2 HZ, f2 = 366.3 HZ. IN FIG. IIa(iii) AND FIG. IIb(iii), MARKERS a, b, c AND d POINT TO FREQUENCIES 163.6 HZ,
202.7 HZ, 406.6 HZ AND 529.9 HZ RESPECTIVELY.

ing to the subcritical nature of the bifurcation, the change in the
system dynamics is marked by an abrupt jump in the oscillation
amplitude. The characteristics of the resulting oscillations are
given in Figs. 4-IIa & -IIb for the pressure time series and the
intensity time series respectively. The frequency spectra (Figs.
4-IIa(iii) & -IIb(iii)) shows the presence of a single frequency
f1 along with the super-harmonics. Correspondingly, structure
representative of the system dynamics (referred to as the attrac-
tor henceforth) is a distinct single loop (Figs. 4-IIa(i) & -IIb(i)).
To investigate the structure of the attractor, we use Poincaré sec-
tions. A Poincaré section [14] is a surface (a Poincaré plane here)
in the phase space, intersecting the trajectories of the phase space
attractor. In the case of a limit cycle, the intersection will give

a single point, as observed in the Figs. 4-IIa(ii) & IIb(ii). The
Poincaré plane for different cases represented here was chosen
differently for different cases for easier visualisation of the dy-
namics. The Poincaré plane used for the phase portraits for limit
cycle and other subsequent cases is given in the phase space dia-
gram as a dotted rectangle.

Simultaneously acquired instantaneous flame images have
been presented as imagesa−h in Fig. 5. During the limit cycle
oscillations, flames undergo sinusoidal modulations as seen from
in the intensity fluctuation time series. The first six framesa−
f represent flame shape during different phases of oscillation,
arranged in a sequence. Framesg andh are given to illustrate that
for the case of limit cycle oscillations, the flame shapes occurring
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FIGURE 5: INSTANTANEOUS FLAME IMAGES FOR
LIMIT CYCLE OSCILLATIONS. THE TAGGED DOTS IN
THE PRESSURE TIME SERIES HAVE CORRESPONDING
FLAME IMAGES MARKED BY THE SAME LOWERCASE
ALPHABETS AS USED FOR THE TAGS.

after time intervals of integral multiples of the oscillation time
period are identical - as seen in image pairse & g andd & h.
This regular behavior is as expected since, the time traces also
show regular behavior. As the flame location is varied further, we
observe interesting changes in the dynamics of the self-excited
oscillations.

Quasi-periodic oscillations: Region III. In region-
III, oscillations qualitatively different from limit cycle oscilla-
tions are observed as a result of bifurcation of limit cycle os-
cillations. A second periodicity ensues in the system, which is
revealed in the power spectrum (Figs. 4-IIIa(iii) & -IIIb(iii)) as
a second frequencyf2 along with other frequencies with smaller
contributions. When at least two frequencies of an oscillation
are irrationally related, the oscillation will be aperiodic and the
trajectories cannot form a closed loop, but instead, they evolve
on the surface of a torus - a 2-torus if two such frequencies are
present and covers the torus densely as it evolves. This is seen
in the phase portrait in Figs. 4-IIIa(i) & -IIIb(i). Such oscilla-
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FIGURE 6: INSTANTANEOUS FLAME IMAGES FOR
QUASI-PERIODIC OSCILLATIONS. THE TAGGED DOTS
IN THE PRESSURE TIME SERIES HAVE CORRESPOND-
ING FLAME IMAGES MARKED BY THE SAME LOWER-
CASE ALPHABETS AS USED FOR THE TAGS.

tions are referred to as quasi-periodic oscillations. The Poincaré
section (Figs. 4-IIIa(ii) & -IIIb(ii)), further illustrates the inner
structure of the quasi-periodic attractor that we have obtained in
our case. The intensity time series and the pressure time series
both exhibit similar behavior in the phase space and in the power
spectra. This secondary bifurcation of a limit cycle leading to the
emergence of a second frequency is known formally in the the-
ory of nonlinear dynamics as Hopf-Hopf or a Neimark-Sacker
bifurcation [14].

Since, reporting a large number of flame images will not be
possible, we have limited the number of image frames to eight.
The differences between flame oscillation trends have been re-
ported instead. The absence of periodicity, which was present in
the case of limit cycle oscillations can also be seen in the flame
shape modulations (Fig. 6). Here, although imagesa,b,d, f and
g correspond to local maxima in the pressure time series, each of
them is significantly different from the other. Imagesc andh are
observed for two local pressure minima. The imagee, showing
an elongated flame shape, is acquired while pressure around the
flame location is building up towards a local maxima.
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FIGURE 7: INSTANTANEOUS FLAME IMAGES FOR
FREQUENCY-LOCKED OSCILLATIONS. THE TAGGED
DOTS IN THE PRESSURE TIME SERIES HAVE CORRE-
SPONDING FLAME IMAGES MARKED BY THE SAME
LOWERCASE ALPHABETS AS USED FOR THE TAGS.

Frequency-locked oscillations: Region IV. As the
trajectories are moving on the surface of the torus, the frequen-
cies become rationally related and lead to frequency-locked os-
cillations. In the power spectrum of the pressure and intensity
time series (Figs. 4-IVa(iii) & -IVb(iii)), we see frequencies that
are rationally related tof1, leading to a frequency-locked behav-
ior [20]. In the phase portrait (Figs. 4-IVa(i) & -IVb(i)), we find
the trajectory no longer wanders on a torus, but instead, closes
onto itself and hence, a periodic loop is formed. The time pe-
riod is very long so we see many loops in the phase portrait.
This is further seen in the Poincaré section (Figs. 4-IVa(ii) &
-IVb(ii)) which has distinct points where the loop intersects the
dotted Poincaré plane. The time taken by the system to complete
one full cycle, seen in the time series, is equivalent to the time
duration between pointa and the local maxima adjacent to, and
following point h (Fig. 7). Imagesa−h correspond to different
phases of the signal within this time duration.

Although oscillations are periodic in nature, since the total
time period (time required for phase space trajectories to come
back to the initial point) is much longer than a limit cycle, it is

difficult to come to the same conclusion by looking at the instan-
taneous flame images. The flame oscillations are stronger when
compared to limit cycle and quasi-periodic oscillations although
the pressure amplitude from the time traces is the same. In image
f , for example, the flame leaves the tip of the burner whereas in
imagee, it is on the verge of extinction. Imagesa,b,c ande are
all at local maxima in the pressure time series, but each one has
a completely different shape. The most interesting of the images
shown is imagec, where different flames in the multiple injec-
tion burner assume different lengths. As the flame location is
varied, the flame location with respect to acoustic modes of the
duct gets changed. The effect can be seen in flame images and
also in the pressure and intensity time traces since the interaction
is coupled.

Quasi-periodic oscillations with subharmonic fre-
quency content: Region V. Following this state, the next
bifurcation atxf = 25.5 cm, results in a quasi-periodic state
where the strength of the frequencyf1 decreases andf2 emerges
as the dominating frequency along with a frequencyf2

2 . This is
region V in Fig. 3. The attractor for this case is similar to the one
discussed for the quasi-periodic oscillations in region III, the dif-
ference being in the presence of a subharmonic. The dynamics
is dominated mostly by quasi-periodicity, except for a small re-
gion (the bulge within region V, Fig. 3a), where the subharmonic
content grows but subsides before the system eventually goes to
a period-2 oscillation.

Period-2 oscillations: Region VI. The quasi-periodic
region with f2 and its subharmonic now changes to a periodic os-
cillation, with frequency componentsf2 and f2

2 (Figs. 4-VIa(iii)
& -VIb(iii)). The presence of a sub-harmonic leads to double-
looped attractor in the phase space (Figs. 4-VIa(i) & -VIb(i));
i.e. the trajectories need to loop twice before coming back to the
initial point. Since the orbit is periodic, we get two distinct dots
in the single-sided Poincaré section for the pressure time series
(Figs. 4-VIa(ii)) and set of four dots (scattered due to the noise
in signal) in the double-sided Poincaré section (Figs. 4-VIb(ii)),
in the case of flame intensity time series measurement.

In the flame shape modulations (Fig. 8), it can be seen that
because of the period-2 nature, image frames separated by the
time period corresponding tof are different. The pairs of images,
a & c, b & d, e & f andg & h are each acquired almost at the
same phase, separated by a time interval1

f andare different in
their intensities due to the period-2 nature of oscillations.

As we vary the flame location gradually, the system moves
from period-2 oscillation to a chaotic state via quasi-periodic
states. The quasi-periodic route to chaotic oscillations has been
observed in several nonlinear systems such as Taylor-Couette
flow [21] and Rayleigh-Bénard convection [22].
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FIGURE 8: INSTANTANEOUS FLAME IMAGES FOR
PERIOD-2 OSCILLATIONS. THE TAGGED DOTS IN
THE PRESSURE TIME SERIES HAVE CORRESPONDING
FLAME IMAGES MARKED BY THE SAME LOWERCASE
ALPHABETS AS USED FOR THE TAGS.

Chaotic oscillations: Region VII. At the onset of re-
gion VII, a strange attractor [14, 15] emerges in the system. An
attractor is termed as strange when its calculated dimension is not
an integer i.e. when the structure is a fractal. There are several
measures to estimate the dimension of a set of points [16, 23].
The correlation dimension is one such measure. To calculate the
correlation dimension, the correlation sumC(r), given by Eq.1,
is calculated for the attractor. We need not limit ourselves to a
3-dimensional phase space for calculating quantitative informa-
tion.

C(r) = lim
r→0

1
N2

(

number of pairs of points withE < r

)

, (1)

where,N is the number of points in the phase space andE is the
euclidean distance between two points on the attractor. The cor-
relation sum has a power law dependence onr asr → 0 and the
power onr gives the correlation dimension of the attractor [16].
The correlation dimension calculated for the attractor shown in
Fig. 4-Va(i) observed in region (VII) is 2.63 - an indication that
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FIGURE 9: INSTANTANEOUS FLAME IMAGES FOR
CHAOTIC OSCILLATIONS. THE TAGGED DOTS IN THE
PRESSURE TIME SERIES HAVE CORRESPONDING
FLAME IMAGES MARKED BY THE SAME LOWERCASE
ALPHABETS AS USED FOR THE TAGS.

it is a strange attractor. To check if oscillations are chaotic, we
need to calculate the maximal Lyapunov exponent. The maxi-
mal Lyapunov exponent is a measure of the exponential diver-
gence or convergence of neighboring trajectories of an attractor.
A chaotic attractor will have at least one positive Lyapunov ex-
ponent. On application of Kantz algorithm [24] for calculation
of Lyapunov exponent for the chaotic attractor obtained here, we
obtain a value of 0.16 which indicates that the attractor is chaotic.
The route taken by our system to chaotic oscillations is a quasi-
periodic route, similar to the Ruelle-Takens scenario in fluid dy-
namics [17]. As the flame location is changed, several incom-
mensurate frequencies appear in the oscillations which eventu-
ally merge to form a broadband frequency spectrum as seen in
Figs. 4-VIIa(iii) & -VIIb(iii). The intersection of this chaotic
attractor with the Poincaré plane as shown in Figs. 4-VIIa(ii) &
-VIIb(ii) leads to a set of points scattered on a plane due to the
chaotic nature of oscillations.

Figure 9 gives the flame shapes at various phases as marked
in the pressure time series data. The chaotic nature of oscilla-
tions is also reflected in the flame images. We find that the flame
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exhibits irregular modulations. Chaotic oscillations in the sys-
tem are accompanied by rolling of the flame surface (imaged),
lifting-off (imagesc andg) and elongation (imagesb ande).

Following this chaotic state, the system jumps back to the
stable state atxf = 48.5 cm. Going in the reverse direction (Fig.
3b) all the states discussed above appear again in exactly the
reverse order but with a hysteresis in the flame location values
where the different bifurcations occur.

DISCUSSIONS
In summary, we have shown in this paper that thermoacous-

tic oscillations exhibit a variety of nonlinear phenomena. A sim-
ple laboratory combustor running on lean premixed combustion
is used to illustrate this point. For a constant equivalence ratio,
the system goes from a steady state to limit cycle oscillations
through a subcritical Hopf bifurcation, as flame location is var-
ied. This is followed by a second Hopf bifurcation (Neimark-
Sacker bifurcation) to a quasi-periodic state. On changing the
flame location further, the quasi-periodic state becomes a peri-
odic, frequency-locked state marked by several distinct peaks in
the frequency spectrum at rationally related frequencies. Fur-
ther, the system goes to another quasi-periodic state with sub-
harmonic frequency content. This state exists for a long range
of control parameter values and is followed by period-2 oscil-
lations. The next bifurcation leads to a chaotic state through
a quasi-periodic route, also known as the Ruelle-Takens sce-
nario [17]. Eventually the system comes back to the steady state
from the chaotic state directly. The complex nonlinear behav-
ior of the system was reflected in the pressure time series, the
flame intensity time series and simultaneously in the flame sur-
face modulations in the instantaneous flame images. Nonlinear
time series analysis made it possible to look at the oscillations
through their phase space representation. This was instrumental
in identifying the characteristics of oscillations and differentiat-
ing them from each other. A point to note further, is that due to
the subcritical nature of the Hopf bifurcation, it is possible that,
for different operating conditions, limit cycle oscillation is an un-
stable state. The self-excited oscillations at the Hopf point can
be a period-2 oscillation generate d via secondary bifurcation.
In fact, when the experiments were run for different equivalence
ratios or flow rates, the self-excited oscillations obtained at the
Hopf point were either period-2 or even quasi-periodic oscilla-
tions. A possible explanation for the rich nonlinear behavior is
as follows. The phenomenon of combustion instability (in the
system under study) is a result of interaction between the flame
and the duct acoustic modes. Depending on the flame location,
different acoustic modes are excited. As a result, the acoustic
fluctuations at the flame location (combination of excited acous-
tic modes of the duct) varies as the flame location is changed.
The nonlinear response of the flames to this acoustic field that is
varying with the flame location could lead to the emergence of

complex nonlinear oscillations. This complex nonlinear behav-
ior; i.e., bifurcations and different oscillation states, is also be
observed if other parameters such as the equivalence ratio or the
mean flow rate are chosen as the control parameter.

Thermoacoustic instability, in general, induces high ampli-
tude pressure oscillations within combustion systems. Looking
at the results from a practical standpoint, the presence of non-
linear oscillations such as quasi-periodic, frequency-locked and
chaotic oscillations, will cause further increase in thermal and
mechanical loading to the combustor walls. Thus, leading to pre-
mature failure, accelerated crack growth, amplified wear and tear
of structural components and higher fatigue loading. All these
factors contribute to the reduction in the life span of combus-
tors [25]. Furthermore, limit cycle oscillations consist of a single
dominant frequency whereas, other classes of oscillations consist
of a range of frequencies, which might include frequencies close
to the natural frequency of some of the structural components of
the system. As a result, thermoacoustic oscillations can cause
resonance in structural components leading to violent vibrations
in the system or even structural failure. A controller designed
to handle a single frequency or a set of frequencies might fail in
the presence of frequencies that have not been considered in the
design process. From the results on high speed flame images,
it is also seen that along with changes in the frequency content
of pressure signals, the flame dynamics drastically changes, giv-
ing rise to extreme behavior such as lift-off and flame extinction.
Such behavior is also unfavorable for real systems.

CONCLUSIONS
In this paper, we have seen that due to the nonlinear interac-

tions between combustion and acoustics, a simple thermoacous-
tic system can exhibit a rich variety of dynamics. It is well known
that the flame dynamics plays a crucial role in the phenomenon of
thermoacoustic instability. Here, we further illustrate this point
through flame images acquired for different classes of nonlin-
ear oscillations. The observed oscillations were investigated in
the light of nonlinear dynamics. We have reported a trend fol-
lowed by our system with change in one of the system parame-
ters. Changing other parameters or changing the same parameter
for different conditions will give a different trend, however, the
characteristics of the observed oscillations are expected to re-
main similar. Nonlinear time series analysis enables us to ob-
tain an understanding of the system dynamics purely through
experimental data. The information acquired could be critical
in constructing accurate models for thermoacoustic systems and
designing effective control strategies.
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NOMENCLATURE
I Flame intensity fluctuations.
Va Volumetric air flow rate,ccm.
V f Volumetric fuel flow rate,ccm.
f Frequency,Hz.
p Pressure fluctuations,Pa.
φ Equivalence ratio.
τ Time delay used for phase space reconstruction.
t Time,s.
xf Flame location,cm.
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