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ABSTRACT
An experimental investigation of the bistable region of in-

stability in a thermoacoustic system comprising of ducted, pre-
mixed laminar flames has been performed. The stability diagram
of the system is obtained and the bistable region for a range of
flame locations at different fuel-air mixture equivalence ratios
is identified. Subsequently, threshold amplitudes for triggering
instability in the system using sinusoidal acoustic forcing, intro-
duced externally, is obtained. It is observed that depending on
how close the system is to the Hopf point and the nature of os-
cillations at the Hopf point, the triggered oscillations can exhibit
different dynamical behavior.

INTRODUCTION
Thermoacoustic instability is a concern for confined com-

bustion systems such as gas turbines, industrial furnaces and par-
ticularly low NOx systems that run on lean premixed combus-
tion. The instability is manifested in the form of high amplitude
pressure oscillations that arise due to the establishment of a posi-
tive feedback loop between the unsteady heat release rate and the
acoustic oscillations within the combustion system, for a certain
range of operating conditions. Such oscillations tend to increase
the thermal and mechanical loading on the structure of the com-
bustor, greatly reducing the life-span of the combustor [1]. In
extreme cases, they can induce violent vibrations within the sys-
tem, leading to complete failure.

The transition of a thermoacoustic system from steady equi-
librium state (fixed point) to an oscillatory state, on variation of
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operating conditions occurs in two ways - through a supercriti-
cal Hopf bifurcation or a subcritical Hopf bifurcation [2]. In the
first scenario, there exists a clear demarcation between steady
and oscillatory states with respect to the bifurcation or control
parameter. The transition from the stable to oscillatory state and
vice versa is gradual and occurs exactly at the same parameter
value. On the other hand, in the case of a subcritical Hopf bi-
furcation, as we vary the control parameter, at the critical (Hopf)
point, the system jumps from steady equilibrium state to a high
amplitude oscillation. While going in the reverse direction, tran-
sition back to the steady state does not take place at the Hopf
point; the control parameter value needs to be changed further
(till the fold point [3]) to restore the steady non-oscillating state
of the system. Thus, hysteresis in the system behavior is a man-
ifestation of subcritical Hopf bifurcation [2, 3]. This region of
hysteresis is called the subcritical zone or the bistable zone. This
bistable zone as we infer from the discussion alone, has two pos-
sible states - the steady state that exists when the zone is ap-
proached from a stable state and the oscillatory state that exists
when the zone is approached from an initially unstable state. At
any operating condition, within the bistable zone, it is possible to
‘trigger’the system from a stable state to the corresponding oscil-
latory state, through the introduction of finite amplitude pertur-
bations. This phenomenon is known as triggering instability in
the combustion instability parlance [2, 4, 5]. Triggering instabil-
ity is a concern because the subcritical region, where it occurs, is
linearly stable but nonlinearly unstable; i.e. small amplitudes of
perturbations will not cause transition but finite amplitudes might
trigger instability. Hence, the classical stability analysis and the
linear flame transfer function cannot predict triggering instabil-
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ity. In recent investigations, Noiray [6] and Boudyet al. [7],
have reported, both experimentally and theoretically that using
the nonlinear describing function, it is possible to predict vari-
ous nonlinear characteristics of thermoacoustic systems such as
triggering instability, mode switching and hysteresis.

Previous studies reveal that thermoacoustic systems often
exhibit subcritical Hopf bifurcation [2,4,8]. Blomshieldet al.[5]
reported the observation of triggering instability during full scale
tactical motor stability tests. The susceptibility of a premixed
combustor with a swirl stabilized flame, to acoustic disturbances
has been investigated by Moecket al. [8] experimentally. They
were also able to reproduce the experimental results on triggering
and hysteresis through simulations incorporating linear acoustics
and a nonlinear response of the flame to upstream air flow rate
fluctuations.

Recent efforts to understand and explain the effect of dis-
turbances introduced in the system, in the subcritical zone have
revealed that parallels could be drawn between transition of lam-
inar fluid flows to turbulence and triggering of thermoacoustic
systems. Balasubramanian and Sujith [9, 10] have shown that
non-normality can play an important role in this transition in
thermoacoustic systems. Non-normality can cause linear ampli-
fication of disturbances leading to transient growth in the sys-
tem and hence, can trigger the system to self-sustained oscilla-
tion even when the disturbance amplitude is small. Juniper [11],
based on a dynamical systems approach, gives an analogy be-
tween triggering in thermoacoustic systems and bypass transition
in fluids [12, 13]. On a simplified Rijke tube model he showed
that the amplitudes required for triggering can be small compared
to the amplitude of the unstable limit cycle.

Dynamical systems’ theory helps in understanding the dy-
namics of complex systems using geometrical representations.
We apply the tools from dynamical systemś theory to a simple
thermoacoustic system that consists of ducted, laminar, premixed
flames. We study subcritical Hopf bifurcations in such a system,
using flame location with respect to the duct as a bifurcation pa-
rameter. We examine the asymptotic state of the system, with the
specific aim of finding out if the asymptotic state of the system is
always a limit cycle, or whether the thermoacoustic system can
be triggered to states other than limit cycle. Further, we exam-
ine the evolution of the system using phase space analysis, as the
system is triggered.

EXPERIMENTAL SETUP
The bifurcation analysis is conducted on a premixed com-

bustor, as depicted in Fig. 1. A multipoint injection burner,
similar to the configuration used by Matsui [14] for flame trans-
fer function measurements of premixed, laminar flames, is em-
ployed in this study. A similar burner configuration has also been
used recently by Noiray [6, 7] for nonlinear flame transfer mea-
surements. The premixed burner has seven conical LPG (Liq-

FIGURE 1: SCHEMATIC OF THE SETUP, A-MULTIPLE
FLAMES, B-OPEN-CLOSED GLASS DUCT, C-BURNER
TUBE, D-DECOUPLER, E-LPG-AIR PREMIXER, F-
TRAVERSE, P1, P2, P3 & P4-PRESSURE MICROPHONES.
TWO SUB-WOOFERS , ORIENTED TOWARDS THE DUCT
OPEN END ARE MOUNTED OUTSIDE THE DUCT FOR
EXTERNAL EXCITATION. TOP VIEW OF THE BURNER
IS GIVEN AT THE TOP RIGHT CORNER OF THE FIGURE.
ALL DIMENSIONS IN MM.

uefied Petroleum Gas) air premixed flames (A) anchored on a
18 mm thick copper block. The top view of the burner is given
on the top right of Fig. 1. In preliminary experiments, it was
observed that the onset of instability causes flame blowout. In
order to facilitate investigation, a fine wire mesh is used to stabi-
lize the flames. The burner tube (C) is 800mmlong with an inner
diameter of 14mmand thickness of 1.5 mm. The burner is con-
nected to a decoupler (D) as shown, which is in turn connected to
a premixing chamber (E) for enhanced mixing of the fuel and air.
The burner is enclosed in a glass duct (B), 800mm long, closed
at the bottom. This glass duct acts as the combustion chamber.
During the experiments, the acoustic modes of the duct get cou-
pled with the heat release rate fluctuations leading to self-excited
oscillations. The volumetric fuel flow rate (V f ) is kept at 64ccm
and 72ccmand the volumetric air flow rate (Va) at 3700ccm,
measured using rotameters with an accuracy of 2%. The corre-
sponding uncertainty in the equivalence ratio is estimated to be
around 2.8%. For the results on bifurcation analysis, reported in
this paper, two cases, with the equivalence ratio,φ , at 0.50 and
0.57, have been studied.

Three pressure microphones (model:103B02, PCB
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piezotronics make), P1, P2 and P3, flush mounted on the
walls of the glass duct, as shown in Fig. 1, were installed to
monitor the unsteady pressure oscillations. The results reported
in this paper are based on pressure time series (p(t)) obtained
from the microphone P1, which is mounted at a distance of
20 cm from the top. A 16-bit analog to digital conversion
card (NI-6143) was used for data acquisition which has a
resolution of 0.15 mV taking the input voltage range as±5V.
The uncertainty in pressure microphone measurement is 0.14
Pa. Two sub-woofers, driven by an amplifier connected to a
function generator, are installed outside the duct, as shown in
Fig. 1, for generating acoustic signals. A microphone (P4)
is mounted close to the sub-woofers to monitor the generated
acoustic signals. The intensity fluctuations (I(t)), which are
proportional to the heat release rate oscillations in the flame,
were detected simultaneously with pressure oscillations using
a photomultiplier tube (model no. H5784, Hamamatsu make)
equipped with a CH* filter (bandwidth 10nm, centered at
431.4 nm). The flame location was measured using a ruler with
least count 1mm.

RESULTS AND DISCUSSIONS
We focus primarily on the dynamics of triggered oscillations

in the bistable region. Kabirajet al. [15] has shown that the
asymptotic states of a thermoacoustic system is not always a limit
cycle, but can include quasiperiodic, period doubled or chaotic
states. In this study, we examine whether the asymptotic state
attained by the thermoacoustic system during the occurrence of
triggering instability is always a limit cycle or if the system can
be triggered to states other than limit cycle.

We know that it is possible to trigger instabilities in a ther-
moacoustic system by introducing a perturbation, in the bistable
region, with a large enough perturbation. Hence, the perturbation
(or the initial condition) given to the system governs the system
evolution. However, unfortunately, in experiments, it is often
quite difficult to introduce well-determined and controlled ini-
tial conditions. As an alternative, in this investigation, we force
the system using sinusoidal acoustic forcing at the observed fre-
quency of self-excited limit cycle oscillations at Hopf point of
our system (f = 563.4 Hz), for a finite interval of time, in the
bistable region. This frequency is close to the second harmonic
of a quarter-wave tube with length corresponding to the length of
the glass duct used in the experiments.

In subcritical Hopf bifurcation, at the Hopf point, the sta-
ble equilibrium fixed point attractor losses its stability and a new
branch - an unstable limit cycle is born. This branch is turned
backwards and exists before the Hopf point, hence, the term sub-
critical bifurcation [3]. A saddle-node bifurcation [3, 16] of the
unstable limit cycle creates a stable limit cycle branch. This
branch can undergo further bifurcations on changing the control
parameter gradually, as reported recently by Kabirajet al. [15].

Beyond the Hopf point, all trajectories originating near the fixed
point attractor spiral out and settle on the nearest attractor [17].
Hence, we have three attractors in the subcritical zone, a fixed
point, a limit cycle and an unstable limit cycle.

In order to identify the bistable region of the system, a sta-
bility map of the system is first constructed. The volumetric air
flow rate (Va) is fixed at 3700ccm. Stability of the system is
then assessed for all flame location values, and volumetric fuel
flow rates (V f ) in the range 56ccm−80 ccm. This corresponds
to a lean fuel-air mixture. The range is chosen to maintain well-
stabilized conical-shaped flames. The stability diagram of the
system is given in Fig. 2. At each fuel-air mixture ratio, the
flame location is gradually varied for both increasing and de-
creasing directions with respect to the open end of the duct. The
system is identified as stable if self-sustained oscillations in pres-
sure and intensity measurements are absent. On the other hand,
the presence of such oscillations indicates instability. The dark
grey shaded region in Fig. 2 marks the linearly unstable regions,
where the system is unconditionally unstable. As this region is
approached from an initially stable state, oscillations arise spon-
taneously as the value of the flame location crosses the boundary
of this region. The point at which this jump in the behavior of
the system is observed, is the linear stability boundary [18] for
the system, corresponding to the particular operating condition
(the Hopf point, [3]). The light-shaded region is linearly stable,
but nonlinearly unstable, as the system is unstable if approached
from an unstable state and stable is approached from a stable
state. This region, is known as the bistable region as two possi-
ble equilibrium states exist - the stable state with no oscillations
and an oscillating state which we call unstable. In this paper we
conduct experimental analysis of this region and discuss the re-
sults from a dynamical systems point of view.

It should be noted that the boundaries drawn are extremely
sensitive to changes in the operating parameters, the magnitude
of noise in the system and any changes in the system configura-
tion. The aim of the present investigation is to study the system
behavior in the bistable region. Establishing the sensitivity of
the stability boundaries to noise and constructing a full stability
diagram for all possible fuel-air combinations will be a topic of
future investigations.

Experiments are performed first atV f = 64ccm. At a flame
location in the bistable region, 5mm from the Hopf point, we
introduce acoustic forcing to the system (f = 563.4 Hz), using
sub-woofers mounted outside as shown in Fig. 1. This forcing
excites a single acoustic duct mode and also the flame surface
area oscillations. The system evolution is reported in terms of
reconstructed phase portraits [19] from pressure (from micro-
phone P1, Fig. 1) and intensity measurements. Phase portrait
is extremely helpful in understanding the evolution of any dy-
namical system and the embedding theorem [20] enables one to
reconstruct the phase portrait from data acquired experimentally.
We will discuss briefly about phase space reconstruction from
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FIGURE 2: STABILITY DIAGRAM OF THE SYSTEM FOR
AN AIR FLOW RATE (Va = 3700CCM). FLAME LOCA-
TION xf MEASURED FROM THE OPEN END OF THE
DUCT. SHADED REGION IS UNSTABLE IRRESPECTIVE
OF THE STATE IT IS APPROACHED FROM. DOTTED RE-
GION CORRESPONDS TO THE BISTABLE OR SUBCRIT-
ICAL ZONE. OTHER FLAME LOCATIONS ARE STABLE.
SYSTEM REMAINS STABLE BEYOND THE RANGE OF
FLAME LOCATION VALUES SHOWN IN THE PLOT.

time series data.
The embedding theorem [20] facilitates the construction of

multivariate phase space from scalar observations. In experi-
ments, discrete time series sampled at finite intervals of time of
a particular variable from the system is available. According to
the theorem, it is possible to unfold the geometric structure of
the multivariate phase space of the system in a space created out
of vectors obtained from the experimental time series. To elabo-
rate, the scalar measurementss(n), n= 1,2,3, . . . can be used to
create a vector ind dimensions:

y(n) = [s(n),s(n+ τ),s(n+2τ), . . . ,s(n+(d−1)τ)], (1)

wheres(n), s(n+ τ), s(n+ 2τ) . . . are called time lagged vari-
ables. τ is the time delay andd is the embedding dimension.
This vector represents a point in the phase space. The matrix
y(n) gives the coordinates of points in the phase space that rep-
resent the reconstructed attractor. We will require a) the time
delay (τ) between the vectors and b) the appropriate embedding
dimension (d) for representing the actual system in the recon-
structed phase space [19, 20]. The details of this technique are
not presented here and can be found in [19]. The average mutual
information [19] from the time series data and the false nearest
neighbor method [19] has been used for each result to get the
appropriate time delay (τ) and embedding dimension. All the
results reported here have a time delay,τ = 5 and have been re-
ported in a three dimensional space.

Since, the acoustic forcing is applied with frequency same
one of the duct acoustic modes (the second harmonic), due to
resonance, the pressure amplitude of oscillations within the duct
are observed to grow. After a predetermined duration of time,
the forcing is stopped and the system evolves on its own. The
dynamics of the system then depends on the control parameter
value and the amplitude gained by the oscillations by the end of
the forcing. If a threshold amplitude is crossed in this process,
self-sustained oscillations are set up in the system, otherwise,
resonant growth is followed by a decay in the amplitude of oscil-
lations.

To understand subcritical Hopf bifurcation and transition
from stable equilibrium state to oscillatory state within the sub-
critical zone, we will introduce concepts from the dynamical sys-
tems theory. From the reconstructed phase space, Fig. 3a, it is
seen that the reconstructed trajectories of the system evolve from
a steady equilibrium state (fixed point), as marked in Fig. 3, and
spirals out towards the inner black loop due to resonant ampli-
fication. The inner loop corresponds to the obtained threshold
amplitude of oscillations that system needs to cross in order to
get triggered. Forcing is discontinued at the time correspond-
ing to the time taken by the trajectories to reach the inner loop.
The system evolves on this threshold loop for a while before spi-
ralling out again towards the self-sustained limit cycle state - the
outer black loop in Figs. 3a & b. If forcing is ceased earlier,
or if it is continued for a longer time, oscillations will decay to
the steady state or immediately grow exponentially to the self-
sustained state. The same behavior is seen in the phase portrait
reconstructed from flame intensity time series (Fig. 3b).

In the case just discussed, the bistable region was found to
be limited to 5mm(Fig. 2). This restricts the number of flame lo-
cations that can be investigated for triggering. To overcome this
limitation, we perform experiments with a different set of oper-
ating conditions (Va = 3700ccm,V f = 72 ccm). The bistable
region for this set of operating conditions is wider with respect
to the parameter space, allowing us to observe the differences
in triggering amplitudes at different flame locations. In addi-
tion, self-sustained instabilities that emerge in the system at the
Hopf point are period-2 oscillations instead of limit cycle oscil-
lations. The time period of oscillation, for the case of a period-2
oscillation is doubled when compared to limit cycle oscillations
(hence, the name period-2). The Fourier spectrum, correspond-
ingly, contains a subharmonic frequency and in the phase space
representation, the attractor will be a doubled looped structure.
This period-2 oscillation is a result of a period-doubling bifurca-
tion that must have occurred in the parameter space prior to the
Hopf point. Further analysis of the bistable region is required to
illustrate the system dynamics within this region.

Similar experiments as discussed above are conducted in the
bistable region forV f = 72 ccmat four different flame locations
in the bistable region. The threshold amplitudes are obtained for
each flame location along with the amplitude of triggered oscil-
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FIGURE 3: TRIGGERING TO LIMIT CYCLE OSCIL-
LATIONS. FIGURES a, a.i AND a.ii CORRESPOND TO
PHASE PORTRAIT, POWER SPECTRA AFTER FORCING IS
STOPPED AND POWER SPECTRA FOR SELF-SUSTAINED
OSCILLATIONS FROM PRESSURE TIME SERIES. FIG-
URES b, b.i AND b.ii SIMILARLY ARE OBTAINED FROM
FLAME INTENSITY TIME SERIES.

lations. This information when plotted gives us Fig. 4. As the
control parameter (the flame location) is varied, self-sustained
oscillations spontaneously arise at the point marked by a filled
rectangular marker,xfH = 13.6 cm, the Hopf point, from a set
of 20 readings, the standard deviation in the Hopf point location
was found to be 0.455mm. In the reverse direction, system jumps
to steady non-oscillatory state at flame location,xf = xfSN. This
flame location is the point where the saddle-node bifurcation of
the unstable limit cycle branch must have occurred. These two
points mark the extremities of the bistable region. The arrows
indicate a jump in the system behavior. Empty circles in the fig-
ure denote the threshold amplitudes obtained at different flame
locations and filled circles represent the amplitude of triggered
self-sustained oscillations, the two filled circles for each flame
location represents the local maxima of the measured pressure
time series.

Table 1 gives the threshold amplitudes as a percentage of
the triggered oscillations. In Fig. 4, hand drawn curves have
been drawn connecting the experimentally obtained points to get
an idea of the trend followed by triggering amplitude using res-

FIGURE 4: BISTABLE REGION FORVa = 3700 CCM AND
V f = 72 CCM. FILLED CIRCLES INDICATE THE AM-
PLITUDE OF SELF-SUSTAINED OSCILLATIONS. DOUBLE
DOTS INDICATE PERIOD-2 OSCILLATIONS. EMPTY CIR-
CLE REPRESENT THRESHOLD AMPLITUDES REQUIRED
FOR TRIGGERING. FILLED RECTANGLE MARKS THE
HOPF POINT. HAND DRAWN CURVES CONNECT THE
EXPERIMENTALLY OBTAINED POINT. ARROWS INDI-
CATE JUMP IN THE SYSTEM BEHAVIOR.

TABLE 1: THRESHOLD AMPLITUDES FOR TRIGGERING
AS GIVEN IN FIG. 5. THE THRESHOLD AMPLITUDE IS
STATED AS THE PERCENTAGE OF SELF-SUSTAINED OS-
CILLATION AMPLITUDE.

Image Flame Location (xf ) Threshold amplitude (%)

a 10.4cm 46.0

b 11.4cm 30.8

c 11.9cm 25.6

d 12.1cm 12.1

onant forcing. Since, the triggering amplitude cannot be pin-
pointed exactly, a band has been drawn instead of a sharp line.
Furthermore, the triggering amplitude inherently depends on the
type of forcing or disturbance given to the system [4].

Time traces from pressure microphone P1 ( see Fig. 1) cor-
responding to triggering at the four flame locations is given in
Fig. 5a-d. The grey shaded region in the figure corresponds to
the time duration for which sinusoidal resonant forcing is pro-
vided. The amplitude of pressure oscillations remains constant
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FIGURE 5: PRESSURE TIME SERIES FOR TRIGGERING
INSTABILITY VIA RESONANT FORCING AT DIFFERENT
FLAME LOCATIONS (REFER TABLE 1). SHADED RE-
GIONS CORRESPOND TO THE DURATION OF FORCING.

for a few cycles and grows exponentially towards period-2 oscil-
lations. Reconstructed phase portraits and power spectra corre-
sponding to Fig. 5c are given in Fig. 7. The period-2 nature of
triggered oscillations is evident from the power spectra of pres-
sure and intensity time series (Fig. 7a.ii & b.ii) which contains
the dominant frequencyf and its subharmonicf/2. In the phase
portraits (Fig. 7a & b) three outer loops are seen. This is because
the system first goes to limit cycle oscillations (single loop) and
immediately becomes a period-2 oscillations (refer Fig. 6). The
frequency component of the signal in Fig. 7a.i & b.i again indi-
cates that system dynamics fills more than two dimensions.

The dynamical properties of a nonlinear system and changes
in the dynamics as a result of bifurcations can be studied in a vec-
tor space formed by the state variables of the system [16] - the
phase space. A system withn degrees of freedom can be repre-
sented in ann-dimensional phase space constructed by the state
variables . The phase space is filled by trajectories that denote the
evolution of the system starting from a point in the phase space
- the initial condition in terms of state variables. Every point in
the phase space is a possible initial condition. Embedded in this
phase space are sets of points called attractors. Trajectories are
attracted towards these attractors and eventually evolve on them,
once transients have died. Hence, there exists a set of points

0 0.5 1 1.5

0

250

−250

T ime (s)

P
r
e
s
s
u
r
e

(P
a
)

0 0.03

0

250

−250

T ime (s)
p(t)p(t + τ)

p
(t

+
2
τ
)

0 0.03

0

250

−250

T ime (s) p(t)p(t + τ)

p
(t

+
2
τ
)

FIGURE 6: DETAILED ANALYSIS OF FIG. 5C. OSCIL-
LATIONS FIRST GET TRIGGERED TO A LIMIT CYCLE
STATE AND THEN IMMEDIATELY GOES TO A PERIOD-2
STATE. A, B REPRESENT THE TIME SERIES AND PHASE
PORTRAIT OF THE LIMIT CYCLE STATE AND C, D ARE
OBTAINED FROM A PERIOD-2 STATE OF THE TRIG-
GERED OSCILLATIONS. THE THIN HORIZONTAL LINES
IN FIGURES A AND C PASS THROUGH THE LOCAL MAX-
IMA AND MINIMA OF THE SIGNAL. FOR A PERIOD-2
STATE THREE LINES ARE GIVEN INDICATING ONE LO-
CAL MAXIMA LINES AND TWO LOCAL MINIMA VAL-
UES ARE POSSIBLE.

in the phase space such that trajectories originating from those
points settle on one of the attractors present in the phase space.
This set forms the basin of attraction for that particular attrac-
tor [16]. Figure 8 illustrates the concept of attractors and their
basin of attraction in a 3-dimensional phase space. It can be seen
that the evolution depends on the direction in which disturbance
has been given and the amplitude. If the given disturbance is
such that the system has entered the vicinity of the dark region
of the Fig. 8, then the system eventually will settle to the attrac-
tor A2 and if the disturbance is such that instead of falling in the
dark region it falls in the grey region then it eventually settles to
the attractor A1. In a real system, there could be other attractors
embedded in the phase space. The dark patch in the Fig. 8 is the
basin of attraction of the attractor A2 and the grey is the basin
of attraction for A1. The boundary which separates the basins of
attraction is called basin boundary. The Fig. 4 is the obtained
result of the present study which explains that there is existence
of more than two attractors in the subcritical zone.

Phase space representation of results as discussed in this sec-
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FIGURE 7: TRIGGERING TO PERIOD-2 OSCILLATIONS.
FIGURES a, a.i AND a.ii CORRESPOND TO PHASE POR-
TRAIT, POWER SPECTRA AFTER FORCING IS STOPPED
AND POWER SPECTRA FOR SELF-SUSTAINED OSCILLA-
TIONS FROM PRESSURE TIME SERIES. FIGURES b, b.i
AND b.ii SIMILARLY ARE OBTAINED FROM FLAME IN-
TENSITY TIME SERIES.

tion reveals the interesting dynamics in the bistable region. The
extent of the bistable region is highly dependent on the system
and the operating conditions. Additionally, the stability bound-
aries are strongly affected by the presence of noise and other dis-
turbances in the system. Having said that, it is still possible to
study the general properties of the bistable region in thermoa-
coustic systems. For the model thermoacoustic setup discussed
here, we observe that for two different operating equivalence ra-
tios, the self-excited oscillations at the Hopf point exhibit two
different dynamics - limit cycle and period-2 oscillations. The
limit cycle is a result of a subcritical Hopf bifurcation and the
period-2 oscillation results from a standard period doubling bi-
furcation [3,17]. For the same system as discussed here, it is pos-
sible that the system undergoes further bifurcations to chaotic os-
cillations as reported in Kabirajet al. [15]. In practical systems
with a higher degrees of freedom and several control parame-
ters, it is expected that such behavior will be more significant
and complex.

Another approach of looking at the results is through the
idea of basins of attraction. The phase space of the dynamical

FIGURE 8: A SKETCH OF BASIN OF ATTRACTION
IN PHASE SPACE, A1 AND A2 ARE DIFFERENT AT-
TRACTORS, THEY ARE SURROUNDED BY THEIR OWN
BASIN OF ATTRACTION, THE LINE BOUNDING THE
EACH BASIN OF ATTRACTION IS CALLED SEPARATRIX.
Adapted from Hilborn [17].

system as explained above has regions which attract the system
dynamics - the attractors, each having its own basin of attrac-
tion and a basin boundary. For the results reported here, the sys-
tem has basins of attraction belonging to three stable attractors
namely, the fixed point, limit cycle oscillation and period-2 os-
cillation. Depending on the operating conditions and amplitude
of oscillations present, the system goes to one of the attractors.
Again, larger and more complex systems can be expected to have
a more complicated phase space structure. This has direct bear-
ing to the implementation of control approaches and the safe op-
erating range of thermoacoustic systems.

Although the structure of the phase space is responsible for
the asymptotic states assumed by the system, the transition sce-
nario from a fixed point to another attractor, within the bistable
region, is observed to be same for the two different cases seen
here. On introduction of the acoustic forcing, the oscillation am-
plitude grows and depending on the amplitude level at the time
forcing is ceased, system goes to a self-excited state or back to
the fixed point state. A special case occurs when the amplitude
is just at the threshold level. The oscillations then continue at the
same amplitude level for a certain time, before growing towards
one of the stable attractors (limit cycle or period-2, in the cases
presented here).

An analogy could be drawn between the observations in the
obtained results and the scenario of bypass transition to turbu-
lence observed in hydrodynamic flows [12,13]. Zinn & Lieuwen
[21] (page 19, 2nd paragraph) remarked that “Although large-
amplitude disturbances are generally required to initiate unsta-
ble oscillations in nonlinearly unstable systems, a system may be
nonlinearly unstable at low-amplitude disturbances that are of
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the order of background noise level. This scenario is somewhat
analogous to the hydrodynamic stability of a laminar Poiseuille
flow, which is linearly stable but becomes increasingly suscepti-
ble to destabilization by nonlinear mechanisms with increasing
Reynolds numbers.” For hydrodynamic flows, the basins of at-
traction of the chaotic attractor, corresponding to turbulence and
the fixed point attractor, corresponding to the laminar state are
separated by a basin boundary. Similarly, the oscillatory limit
cycle state and the fixed point steady state are separated here by
an unstable limit cycle. The unstable limit cycle lies on the sur-
face of the basin boundary and is like a separatrix which sep-
arates the two basins of attraction [22]. If initial perturbations
take the system across the basin boundary, into the basin of at-
traction of the stable limit cycle oscillations, system evolves to
the self-sustained oscillatory state. If the initial condition falls
within the basin of attraction of the stable fixed point state, os-
cillations decay to zero. A similar explanation has been given by
Juniper [11] for the occurrence of triggering instability in ther-
moacoustic systems. In the subcritical region, thermoacoustic
systems have two competing attractors - the fixed point and the
self-sustained oscillatory state, separated by anN− 1- dimen-
sional basin boundary surface, whereN is the number of degrees
of freedom of the system.

The characteristics of the disturbance introduced to the sys-
tem within the bistable region determines the threshold ampli-
tudes required for triggering in addition to deciding the attractor
that attracts the system dynamics. This is in accordance with
the above discussion on the basin of attraction. Wickeret al. [4]
had discussed their numerical analysis on triggering instability in
rocket motors with a similar conclusion. This inherent property
of dependence on the type of disturbance could be because of the
complex structure of the basin boundary. If the basin boundary
is a hypersurface enclosing a finite region in the phase space cre-
ated out of state variables and containing the fixed point attractor,
the direction and magnitude of the initial condition vector will
determine if the system is taken out of the basin boundary of the
fixed point. Depending on the structure of the basin boundary,
certain directions might be more favourable (in terms of ampli-
tude required for transition) and hence, a lower magnitude of per-
turbation will be required when compared to initial conditions in
other directions.

In this study, the system is forced using a single frequency
acoustic excitation. Equivalently, the phase space representation
(Fig. 3 and Fig. 7) shows the evolution to be localised on a plane
(a dimensionality of two). Through several experiments we have
determined the amplitude which is just enough for the system
to evolve to self-sustained oscillations - either a limit cycle or
a period-2 oscillation. The frequency of forcing was chosen as
the second harmonic of the duct since it was found to be most
effective in establishing interaction between flame oscillations
and acoustics of the duct. The point where forcing is ceased is
the initial condition from where the system evolves on its own.

Before getting attracted towards the limit cycle or period-2 os-
cillation, oscillations stay at a constant amplitude for a certain
interval of time (oscillations at the threshold or the inner loops in
Fig. 3 a & b and Fig. 7 a & b). The superharmonics observed
in the power spectrum while the oscillation is at the threshold
amplitude indicate that the dimensionality of the system during
that time interval is higher than two. This state corresponds to an
unstable attractor towards which the system is initially attracted
before going towards a stable attractor. Additionally, the fact that
this unstable attractor has a dimension higher than two indicates
that the basin boundary is a structure more complicated than a
simple loop.

CONCLUSION.
In the present study, experimental investigation of the

bistable region in a simple laminar ducted premixed flames, with
respect to the flame location has been conducted. Resonant
acoustic forcing is used to drive oscillations in the system. The
evolution of the system after the external forcing is discontin-
ued is recorded in terms of pressure and heat release rate through
flame intensity time series data. In the bistable region for our
system, it was observed that instability could be triggered in the
system, which is linearly stable, if oscillations are forced beyond
certain threshold amplitude.Two cases with different equivalence
ratios were chosen for experiments. In the first case, we found
that limit cycle oscillations emerged in the system as the control
parameter crossed the Hopf point. The triggered oscillations also
were limit cycles oscillations. Whereas, in the second case, the
self-sustained oscillations at the Hopf point and the triggered os-
cillations in the bistable region were period-2 oscillations. The
threshold amplitudes for triggering thermoacoustic oscillations
via resonant acoustic forcing is determined for the latter case for
different flame locations and a bifurcation plot for the bistable
region is constructed.

This study, if seen from a dynamical systems’ perspective,
probes into the subcritical zone through a specific section in the
phase plane which is determined by the sinusoidal acoustic forc-
ing provided. This forcing takes the system towards the unstable
limit cycle which lies on the basin boundary between the fixed
point attractor and the stable limit cycle attractor. From the phase
space and power spectrum, it is clear that the phase space trajec-
tories evolve on a surface which is closely, but not exactly aligned
with the unstable limit cycle loop. In the bistable region as the
flame location is changed, the extent of the unstable limit cycle
loop changes. The shape and extent of the corresponding basin
boundary is also expected to change as the flame location is var-
ied. The basin boundary could be a complex structure, whereas,
the unstable limit cycle is a loop on that basin boundary. Inves-
tigation in the bistable region by using different shapes of per-
turbations will help to explore the overall structure of the basin
boundary. Further investigations with focus on flame dynamics
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will help to understand the thermoacoustic interactions in greater
detail.
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NOMENCLATURE
I Flame intensity fluctuations.
Va Volumetric air flow rate,ccm.
V f Volumetric fuel flow rate,ccm.
f Frequency,Hz.
p Pressure fluctuations,Pa.
φ Equivalence ratio.
s General time series.
τ Time delay used for phase space reconstruction.
t Time,s.
xf Flame location,cm.
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