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ABSTRACT 
 
The feasibility of a novel combustor concept (‘g‐load’ 

combustion with trapped‐vortex chamber) to extend the 
premixed lean‐blowout (LBO) limit and to decrease NOx 
emissions was experimentally determined in a scaled‐modular 
rig that simulated a commercial 250 kilowatt microturbine 
combustor.  The effect of a wide range of g‐load’s (770‐5050) 
on the flame regime was identified. The natural gas flame was 
found to be stabilized in the trapped‐vortex cavity (TVC) when 
the equivalence ratio was within a certain range near the lean 
blowout limits. The TVC extended the LBO limits to 
marginally lower mass-based equivalence ratio levels (5%). 
The LBO limits were found to decrease as the g-loads decrease 
and the residence time increases, indicating the increase of 
flame mixing and reaction rates with respect to g‐load is not the 
reason for the extension of LBO limits. The increase of 
residence time of mixture in the TVC was the reason for the 
improvement of LBO limits. The new combustor concept 
would enable operation at lower equivalence ratios, reducing 
the NOx emissions as much as much as 30%. It also showed 
that when the flame is contained in the trapped vortex cavity, 
NOx is reduced compared to baseline combustion concept 
without TVC. 

NOMENCLATURE 
 
Ds = swirler diameter 
g  =  acceleration of gravity 
gload  =  g-load of the fuel/air mixture 
Gm = axial flux of angular momentum 
Gt = axial thrust 
P3 = compressor discharge pressure 
  =  density 
r  =  radius 
rtrap  =  radius at base of the TVC 
Q = volumetric flow rate 

SN  =  Swirl Number 
res = residence time in trap (ms) 
Ti = combustor inlet temperature 
T3 = compressor discharge temperature 
U  =  tangential velocity 
Uz  =  axial velocity 
V = combustor volume 
Vtrap = volume of trap cavity 
Wa = compressor mass flow rate 
 = combustor aero loading 
 

INTRODUCTION 
 
 Lean premixed (LP) combustion in a swirl-stabilized 
combustor is a proven concept for emissions reduction in 
industrial gas turbines.  Gaseous fuel and air are uniformly 
mixed prior to combustion.  The premixed fuel/air reacts at 
fuel lean conditions, reducing the amount of NOx formed from 
the thermal NOx mechanism. 
 In order to minimize the production of thermal NOx, it is 
necessary to design a combustor’s primary zone to react fuel 
and air at a temperature as low as possible.  Minimizing 
emissions necessitates operating near lean blowout 
stoichiometric conditions.  One common approach to avoiding 
lean blowout is to inject a small portion of the fuel flow directly 
into the combustor.  This creates a diffusion flame to locally 
richen the fuel/air ratio.  This increases the static stability or 
lean blowout margin.  This paper’s use of the term “static 
stability” should not be confused with combustion dynamic 
instabilities, which result from the coupling of heat release and 
pressure waves.  The increased static stability from a pilot 
flame bears the cost of higher NOx emissions.  This study 
investigated a method to improve the static stability without the 
use of a pilot diffusion flame. 

The traditional gas turbine flame stabilization mechanism  
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relies on swirl-stabilization, where strong swirl above a swirl 
number of 0.6 is needed to establish a vortex breakdown flow 
structure.  Lefebvre [1] defined swirl number as: 

 
A flow reversal is established behind a center bluff body and a 
dump plane where hot products of combustion are recirculated 
and mixed with fresh mixture.  This highly turbulent flow 
serves to continuously ignite the unburned LP gases flowing at 
the boundaries of the swirling flow, thereby stabilizing the 
flame. 

Classical swirl-stabilized LP combustion with pilot fuel 
stabilization is currently employed in the Flex Energy MT250 
microturbine to achieve low emissions.  To investigate a 
potential improvement to this combustion system, a trapped 
vortex combustion concept with a high g-load was investigated 
in a university laboratory. Trapped vortex combustors (TVC) 
have been investigated by a variety of researchers as a potential 
feature to improve combustion stabilization. This concept 
typically employs a recess or cavity, built either into the wall of 
a duct, or downstream of a bluff body, and equipped with a 
plurality of fuel and air supply holes.  One or more vortical 
structures are established inside the cavity that circulates the 
fuel and air, establishing low velocity and high residence time 
for combustion. A significant advantage of TVC’s is its 
resistance to main flow fluctuations. 

Hsu et. al. [2] reviewed the history of trapped vortex cavity 
research, most of which was focused on the flame stabilization 
in high velocity applications; typically afterburners.  Hsu 
stated that there is little exchange of fluids between the cavity 
and the main stream flow.  They asserted that this would lead 
to poor flame stability in the trap.  Flame stability requires a 
continuous exchange of mass and heat between the cavity and 
the main flow.  Their approach to solving this issue was to 
directly inject fuel and air into the trap cavity.  The lowest lean 
blowout limits corresponded to low air injection rates, which 
the authors attributed mixing and residence time increases. 

Haynes et. al. [3] investigated a TVC in a can-annular gas 
turbine application.  They combined both traditional swirl-
stabilization with an annular TVC.  Their trap cavities could 
be fueled as either a diffusion flame or with premixed fuel and 
air.  Two different sized traps were tested.  The largest trap 
provided superior lean stability, while the smaller trap 
minimized NOx production at higher power, richer conditions.  
The lowest NOx performance was with a premixed fuel mode. 

Edmonds et. al. [4], [5], investigated a premixed trapped 
vortex cavity anchored behind a bluff body at elevated 
pressures.  Their trap was independently supplied with fuel 
and air.  They desired a stable vortex in their TVC with 
minimal vortex shedding.  However, for flame stabilization in 
the TVC to work correctly, they noted that lateral mixing from 

the TVC region into the main flow is required.  Edmonds 
found that CO emissions were reduced as a result of flame 
holding features that promoted interaction between the 
premixed main flow and the TVC products of combustion. 

Researchers of TVC’s share similar conclusions that a 
good design requires both a stable vortex and a fluid exchange 
mechanism between the trap and the main flow.  The concept 
investigated herein combines a trapped vortex combustor with a 
high g-load fluid exchange mechanism.  The term “high g-
load” refers to combustion taking place where a large body 
force, established by fluid rotation and centrifugal effects, 
serves to promote fluid exchange into and out of a trapped 
vortex cavity. 

Lewis [6] studied the effect of combustion in the presence 
of a large centrifugal force.  Lewis measured the propagation 
rate of the flame, as measured with ionization probes, and 
showed that their observed flame propagation rate can exceed 
values of turbulent flame speed.  He used the term “bubble 
velocity” to describe the very rapid speeds of the flame 
propagation in the presence of a centrifugal force.  He 
attributed the high velocities with the force acting against a 
density difference (buoyancy) between the unburned reactants 
and burned products of combustion.  He normalized the 
centrifugal force relative to the gravitational constant, hereafter 
referred to as g-load.  Lewis measured an increase in bubble 
velocity from a g-load of 500 to 3500 g’s for premixed 
propane/air and lean mixtures of hydrogen/air.  However, 
above 3500 g’s, the flame propagation rate markedly decreased.  
The maximum bubble velocity at 3500 g’s was approximately 3 
to 4 times higher than turbulent flame speeds of propane/air 
mixtures [6]. 

Zelina et. al. [7] used an unsteady, laminar CFD simulation 
of a hydrogen flame to support the buoyancy mechanistic 
explanation of Lewis.  G-loads of 10 g’s and 500 g’s were 
analyzed.  The 10 g case demonstrated uniform, laminar flame 
propagation.  The 500 g case showed a non-uniform flame 
front propagating approximately five times faster.  Their 
simulation supported the idea that a density gradient in the 
presence of a g-load would promote movement of burnt 
products of combustion into unburned regions. 

The Combustion Branch of Wright Patterson Air Force 
Base has investigated leveraging the high stability of a TVC 
combined with the mixing and exchange mechanisms of high-g 
loads with the Ultra Compact Combustor (UCC) concept [7]-
[9].  They directly injected liquid fuel (JP8+100) and air into a 
TVC with high g-loads.  They measured high levels of heat 
release rates and combustion efficiency.  They acknowledged 
the important issue of understanding how much main air was 
entrained into the cavity, stating that this entrainment will 
impact stability and operability in the cavity at low power, lean 
conditions.  Importantly, high g-loads were shown to reduce 
the stability of the cavity combustion, resulting in richer LBO 
mixtures.  Similar results will later be shown in this study. 

Zelina [8] interestingly found different flame regimes with 
respect to flame location with cavity equivalence ratio.  
Equivalence ratio in this paper is defined as the fuel/air mass 
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designed test rig.  The CFD was also used to estimate the 
residence time of the flows inside the trap cavity. 

Maps of flame regime were identified over the range of 
operating conditions.  It was found that the flame resides in 
the trapped‐vortex cavity when the equivalence ratio is within a 
certain range near the lean blow out (LBO) limits. The 
existence of TVC extends the LBO limit to lower equivalence 
ratio for all cases up to 5% when compared with cases without 
TVC. The LBO limits were found to be narrowed as the g‐loads 
increased, indicating the increase of turbulent velocity with 
respect to g‐load as found in Lewis is not the reason for the 
extension of LBO limits when the TVC is used as a part of the 
combustor.   Also, it was found that the LBO limits decrease 
as the residence time increases for all vanes, suggesting the 
improvement of LBO limits is mainly due to the increase of 
residence time of mixture in the TVC. 

The residence times of this study were based on CFD 
simulations.  Detailed measurements of the actual exchange of 
reactants into and products out of the TVC are recommended 
for future investigations, especially as related to the g-load 
within the trap cavity. 

Actual NOx emission measurement results show that NOx 
concentration does not change more than 6% of the mean value 
as the mean velocity is varied from 20 to 30 m/sec.  

Based on the investigation results, the effect of g‐load on 
the flame regime was identified. The novel combustor design 
concept which used a trapped vortex chamber extended the lean 
blowout limits to marginally lower levels (5%). This will 
enable operation at lower equivalence ratios, reducing the NOx 
emissions.  It showed that when the flame regime includes 
combustion in the trapped vortex cavity, NOx is reduced 
compared to the baseline combustion concept. 
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