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ABSTRACT 
 

In the gas turbine industry, computational fluid dynamics 
(CFD) simulations are often used to predict and visualize the 
complex reacting flow dynamics, combustion environment and 
emissions performance of a combustor at the design stage. 
Given the complexity involved in obtaining accurate flow 
predictions and due to the expensive nature of simulations, 
conventional techniques for CFD based combustor design 
optimisation are often ruled out, primarily due to the limits on 
available computing resources and time. The design 
optimisation process normally requires a large number of 
analyses of the objective and constraint functions which 
necessitates a careful selection of fast, reliable and efficient 
computational methods for the CFD analysis and the 
optimization process. In this study, given a fixed computational 
budget, an assessment of a co-Kriging based optimisation 
strategy against a standard Kriging based optimisation strategy 
is presented for the design of a 2D combustor using steady and 
unsteady Reynolds-averaged Navier Stokes (RANS) 
formulation. Within the fixed computational budget, using a 
steady RANS formulation, the Kriging strategy successfully 
captures the underlying response, however with unsteady 
RANS the Kriging strategy fails to capture the underlying 
response due to the existence of a high level of noise. The co-
Kriging strategy is then applied to two design problems, one 
using two levels of grid resolutions in a steady RANS 
formulation and the other using steady and unsteady RANS 
formulations on the same grid resolution. With the co-Kriging 
strategy, the multi-fidelity analysis is expected to find an 
optimum design in comparatively less time than that required 
using the high-fidelity model alone since less high-fidelity 
function calls should be required. However, using the applied 

computational setup for co-Kriging, the Kriging strategy beats 
the co-Kriging strategy under the steady RANS formulation 
whereas under the unsteady RANS formulation, the high level 
of noise stalls the co-Kriging optimisation process.  
 
 
1. INTRODUCTION 
  

     In the early days of gas turbine combustor design, the design 
methodology typically involved using a number of empirical 
relations in combination with semi-empirical techniques 
supported by experiments [1, 2]. The design optimisation 
procedure was largely trial-and-error based where the method 
was to continually test different variants of the combustor until 
a suitable arrangement was found. In order to reach a good 
design this approach was costly and time-consuming [3]. Due 
to advances in computing power and development of CFD 
codes, combustor design and development processes have 
changed significantly, and CFD has now become a valuable 
part of an overall integrated combustor design system [4]. 
However, for combustor design optimisation the use of CFD 
has yet to overcome some obstacles in terms of combustion 
modelling accuracy and validation. It is well-known that an 
aero-engine gas turbine combustor is a complex aero-thermal 
system, consisting of a turbulent reactive flow-field together 
with multiple time-dependent physical-chemical processes, 
which occur at varying time and length scales [5]. Furthermore, 
the comprehensive physics implied by turbulent reacting flows 
involves strongly coupled behaviour between flow-field 
dynamics and combustion mixing processes. Hence, CFD 
simulation of a gas turbine combustor, embracing many 
complex thermal/fluid dynamic phenomena, presents an 
extremely challenging task requiring very fine spatial and 
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temporal resolution of the computational domain and therefore 
very high computational expense [6].  
 
Currently, combustor design and development strategies are 
being made more systematic and efficient using automated 
design tools, numerical analysis techniques and engineering 
know-how. At the design and concept development stage, 
computational fluid dynamics (CFD) simulations are often used 
to predict and visualize the reacting fluid dynamics, combustion 
mixing environment and emissions performance of a combustor 
[7]. Given the complexity in obtaining accurate flow 
predictions and due to the expensive nature of simulations, 
conventional techniques for CFD based combustor design 
optimisation are often ruled out, primarily due to the limits on 
available computing resources and time [8]. Additionally, the 
design optimisation process typically requires a large number of 
analyses of the objective and constraint functions. This 
necessitates a careful selection of fast, reliable and efficient 
computational methods for the optimization process. Currently, 
CFD-based design optimisation tools are mostly available for 
pure aerodynamic design problems [9]. The first attempt to 
introduce optimisation tools to aerodynamic design is 
associated with Lighthill [10]. More complicated and expensive 
CFD driven optimisation methods have appeared subsequently 
[11-13]. Recently, implementation of such optimisation tools to 
3D aerodynamic problems has also been realized with success 
[14, 15]. However this advancement of CFD based optimisation 
tools has so far had a very limited impact on the field of 
combustor design optimisation. This is due to the fact that the 
complexity and associated cost of simulating combustion 
environments constrains the number of high-fidelity 
simulations that can be performed within limited computational 
time. Hence, a methodology that allows for rapid design 
optimisation with limited number of high-fidelity CFD analyses 
is required. For this reason, surrogate-model based optimisation 
methodologies have been proposed [16].  
 
Surrogate-based design optimisation techniques including 
Kriging models have been used previously [17, 18] to 
accelerate the combustor design optimisation process by 
reducing the total number of high-fidelity CFD analyses. Jeong 
et al. [19] demonstrated, the possible approach of Kriging 
surrogate-model based optimisation strategy for a real-world 
combustion engineering application. It utilized a Kriging 
surrogate-model based optimisation strategy to optimize a 
diesel engine combustion chamber geometry. A 95% reduction 
in computational time was reported when using the Kriging 
strategy as compared to a direct search strategy with an 
evolutionary algorithm. Similarly, Duchaine et al. [20] 
presented a preliminary study of the feasibility of a fully 
automated decision-making tool for real aeronautical 
combustor optimisation again using a Kriging strategy. This 
approach proved to be feasible with the available computing 
power. Hence, it is now acknowledged that the Kriging model 
based optimisation strategy can, for certain combustor design 
problems, yield optimum designs within manageable timeframe 

by reducing the total number of high-fidelity CFD analyses that 
are needed. However, successful optimisation still largely 
depends on the total number of optimisation variables, 
objective and constraint functions and computational resolution 
used for each CFD analysis.  
 
In this study, an assessment of a co-Kriging based design 
optimisation strategy (CKDOS) is presented for the design of a 
lean burn combustor using steady and unsteady RANS analysis 
of the turbulent combustion. This approach provides a way to 
achieve high-fidelity design optimisation at even more reduced 
cost (compared to traditional Kriging meta-model based 
strategies [19, 20]) by using a more accurate high-fidelity 
model in combination with a less accurate lower fidelity model 
(that is significantly less expensive to evaluate), both models 
being defined over the same design space. Here, a standard 
Kriging based design optimisation strategy is applied to design 
a two-dimensional lean burn combustion chamber using steady 
and unsteady RANS CFD analysis. Then, a co-Kriging strategy 
is applied using either two levels of grid resolutions in steady 
RANS formulation or using steady and unsteady RANS 
formulations on the same grid resolution. 
 

2. COMPUTATIONAL MODEL 
 

 

Fig. 1. Computational domain of the combustor with a flame-
stabilizer step (All dimensions in mm) 

  
        The elementary interaction between a vortex and flame 
often represents a key process in the description of turbulent 
reactive flows [21]. Consequently, the combustor modeled for 
this design optimisation study is the one used by Keller et al. 
[22] in an experimental study of mechanisms of instabilities in 
turbulent combustion leading to flashback. The combustion 
chamber has an oblong rectangular cross section to model the 
essential features of planar flow and was provided with a 
profiled backward-facing step acting as the flame holder. Figure 
1 shows the complete computational domain used for steady 
and unsteady RANS CFD analysis, indicating locations where 
inlet and outlet boundary conditions are specified. Important 
factors considered in the design of this combustion system by 
Keller et al. [22] were thorough mixing of propane and air 
before entering the test section and uniform velocity (flat inlet 
velocity profile) at the entrance to the test section (i.e. 
combustion chamber). Considering the experimental setup of 
Keller et al. [22], the premixing tube is not included in the 
computational model. Instead, the configuration (c.f. Figure 1) 
uses appropriate boundary conditions at the inlet and outlet of 
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the system. Additionally, cooling is provided near the outlet, 
both at the upper and the lower wall, of the combustor. The 
width of the cooling hole is 5 mm and is at a distance of 22mm 
from the outlet of the combustor. The combustion processes 
take place in the combustor at atmospheric pressure and hot 
gases including products exit from the outlet. 
 
2.1 Boundary conditions 
 

Table 1. Key CFD analysis parameters for Ansys Fluent 12.1 
Solver: Pressure based 

Turbulence model: k - ε (standard) 
Transport and reaction:  

Species Partially premixed combustion 
Mixture properties PDF-mixture (propane + air) 
Equivalence ratio 0.86 

Boundary conditions:  
Inlet Velocity-inlet 

Inlet (Momentum) For steady RANS; 
Vin = 13.3 m/s 

 For unsteady RANS; 
User defined function with forced 
sinusoidal fluctuation at inlet, 
with frequency = 175 Hz and 
amplitude = 50% of inlet velocity 
Vin = 13.3 + 6.65*sin(1099.55*t)  
(t = time-step size) 

Inlet (Temperature) 300 K 
Outlet Outflow 

Cooling inlet Velocity inlet; Vin = 13.3 m/s 
Operating pressure: 101325 Pa 

Convergence criteria: 1e-06 (for residuals of continuity, 
x-velocity and y-velocity) 

 
        Appropriate inlet and outlet boundary conditions are 
necessary for the simulation of instability processes [23]. To 
explore the flame/vortex dynamics in the combustor in an 
unsteady turbulent flow, a sinusoidal function (Table 1) is 
imposed at the inlet velocity boundary condition. This 
technique is indeed an easy way to represent the effect of an 
acoustic resonance in the reaction region [24]. The amplitude of 
the forcing fluctuation is 50% at a frequency of 175 Hz, which 
corresponds to the frequency of the humming cycle as reported 
by Keller et al [22]. Table 1 lists some of the key CFD 
parameters employed in the commercial CFD package Ansys 
FluentTM version 12.1.The solver used is pressure based and has 
a second order implicit unsteady formulation for time. The 
standard k - ε model is used for turbulence modeling, with 
standard wall functions in FluentTM. The SIMPLEC pressure-
correction method is used for pressure-velocity coupling. The 
combustion takes place at a lean equivalence ratio of 0.86. 
Fluent’s partially premixed combustion model is used as the 

species model. The model solves a transport equation for the 
mean reaction progress variable Cത, (to determine the position of 
the flame front), as well as the mean mixture fraction ݂ҧ, and the 

mixture fraction variance ݂′ଶതതതത. Ahead of the flame (Cത = 0), the 
fuel and oxidizer are mixed but unburnt, and behind the flame 
(Cത = 1), the mixture is burnt [25]. 
 
2.2 Mesh sensitivity study 
 

 

Fig. 2. Outlet temperature profiles as captured by different mesh 
sizes using steady RANS 

 
Table 2. Mesh size and steady RANS analysis details 

Mesh ~ Cell count ~ Run-time 
(mins) 

No. of iterations for 
solution 

1 11000 10 1000 
2 46000 30 4500 
3 190000 210 13000 
4 420000 1080 28000 
5 800000 2400 40000 

 
         For determining the effect of mesh size on the CFD 
solution for the configuration shown in Figure 1, five multi-
block structured meshes of increasing cell counts were 
constructed using GAMBITTM version 2.3. A Y+ value of ~30 
is maintained for meshes 1 and 2, where for meshes 3, 4 and 5 
the Y+ value is less than five as a result of the finer resolution. 
Table 2 lists the cell counts of all meshes along with the 
computation time and iterations required to evaluate a 
converged reactive steady RANS solution using eight processes 
in parallel on a cluster using Intel quad core processors with 
2.8GHz clock rate. Figure 2 shows the comparison between the 
predictions obtained from the five different meshes (c.f. Table 
2) in terms of temperature profiles at the outlet plane of the 
combustor (c.f. Figure 1). As seen in Figure 2, the agreement 
between meshes is good near the walls of the combustor. Away 
from the walls, grid independence is approached by mesh 3, 
though it is not 100 % conclusive near the centerline of the 
combustor. Due to the significant increase in the computational 
expense produced by refining the mesh further (c.f. Table 2) 



 4  Copyright © 2011 by ASME  

and from an engineering point of view of design optimisation, 
mesh 3 is deemed suitable  for further CFD analysis and design 
optimisation. The solution obtained using mesh 1 is used as the 
low-fidelity solution for the co-Kriging optimisation strategy. 
 
2.3 Time-step size sensitivity study 
 

 

Fig. 3. Area-weighted average temperature (Ta) fluctuations  at 
the outlet as captured by different time-step size URANS 

simulations 
        

Fig. 4. Reactive flowfield settlement into meta-stable state as 
captured by time-step size 1e-05 URANS simulation 

 
After investigating the effect of different mesh sizes on the 
outlet temperature profile using steady RANS, the combustor 
with cooling holes (c.f. Figure 1) is investigated using URANS 
on mesh 3, with the sinusoidal velocity variation at the inlet. 
The URANS simulation is run using different time-step sizes 
for 10 cycles of the sinusoidal forcing function in order to 
understand the effect of simulation time-step sizes on the 
average outlet temperature prediction patterns. Figure 3 shows 
the variation of area-weighted average temperature (Ta), as 
captured by different time-step size URANS simulations, at the 
outlet of the combustor. The coarser time-step size simulations 
are not able to capture the humming instability cycle in the 
reactive flow-field. The coarsest time-step size at which the 
URANS simulation successfully captures the humming cycle is 

1e-05s. As shown in Figure 4, after the initial transient, the 
flow-field settles in to a repetitive cycle of temperature 
fluctuations by the end of ninth inlet velocity cycle, with a peak 
temperature value of ~ 1800K and minimum of ~ 1200 K. The 
URANS simulation is further run with finer time-step sizes of 
5.7e-06s and 1e-06s, and these results agree closely with the 
simulation results for 1e-05s in the tenth cycle. Thus, the 
average outlet temperature variation predicted by URANS 
become independent of the simulation time-step size at 1e-05s, 
as further refining the simulation time-step size does not change 
the results significantly. Hence, a simulation time-step size of 
1e-05s is used for further URANS analysis.  
 
 
3. COMBUSTOR FLOWFIELD ANALYSIS 
 

In steady RANS analysis, the flame front stabilization 
mechanism and the regions of burnt/unburnt mixture is of 
primary interest. In contrast, the unsteady RANS analysis is 
dominated by flame dynamical response to flow perturbations 
upstream. The objective here is to establish a suitable 
description of combustion and flame propagation in the 
combustor rather than to compute the reactive flow in all its 
complexity. Hence, a two-dimensional approach is used for the 
purpose of reproducing the basic features of the reactive flow 
downstream of the flame stabilizer step (c.f. Figure 1) including 
the recirculation zone, flame – recirculation zone interaction 
and the flame-front wrinkling process. 
 
3.1 Steady RANS analysis 
 

 

 
 

 
 

Fig. 5. Position of the flame front inside the combustor as 
captured by steady RANS 

 

Statistically, steady turbulent flames require flame stabilization 
mechanisms [26]. The recirculation zone behind the step 
provides the low-speed region necessary for flame stabilization. 
Figure 5 shows the position of the flame front inside the 
combustion chamber, for the baseline design used for the 
optimisation study. As the Reynolds number of the flow is in 
the turbulent regime, the mixture burns only in the location 
where the turbulent flame speed ST is able to sustain the 
mixture velocity ݑ , i.e. the region behind the step. Therefore the 
chamber behind the step is separated into unburnt and burnt 
mixture regions by an interface, where combustion has started 
but not yet fully established. Above this surface (Cത = 0), the fuel 
and oxidizer mixture is mixed but unburnt, and below this 
surface (Cത = 1), the mixture is completely burnt [25].  

Flame-front Cooling inlet
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Fig. 6. Outlet temperature profile of the combustor  

(steady RANS) 
 
Thus, due to a high mixture velocity in the upper part of the 
chamber behind the step, much of the mixture escapes unburnt 
from the combustor. Figure 6 shows the temperature profile at 
the outlet of the combustor. Due to the entrance of cooling air 
through the holes, near the outlet, the burnt mixture convecting 
downstream from the step interacts with the cooling air and 
flows over it. Thus, the outlet temperature in the burnt mixture 
region near the lower wall of the combustor is low, and rises 
significantly away from the lower wall (c.f. Figure 6). The 
temperature is maximum (~2100 K) in the burnt mixture 
region, reduces in the interface region and is lowest in the 
unburnt mixture region. The temperature of the mixture which 
escapes unburnt from the combustor remains at the inlet 
temperature level of 300 K. 
 
3.2 Unsteady RANS analysis 
 

Flame-vortex dynamics behind a backward-facing step has 
been examined experimentally and numerically previously. 
However, definitive conclusions regarding the flame-vortex 
dynamics have not yet been reached [27-29]. In most cases, it 
has been observed that under unstable operating conditions, as 
determined by the mixture equivalence ratio and Reynolds 
number, one or more large vortices periodically convolute the 
flame front during part of the instability cycle which leads to 
oscillations in the heat release rate. In a study by Ghoniem et al. 
[30], experimental evidence supporting the role of unsteady 
vortex shedding and flame-vortex interactions in sustaining the 
combustion instability were provided. The interaction of a 
premixed flame with the transient vortical structures in a 
turbulent flow has a profound effect on the flame front [31, 32], 
governed primarily by the turbulent mixing zone behind the 
trailing edge of any bluff-body flame holder, and by the 
recirculation zone immediately behind its base.  
 
As mentioned above in section 2.1, a sinusoidaly varying inlet 
velocity is used to generate a humming instability phenomenon, 
which is ascribed to the interaction between flame-front and the 
trailing vortex pattern of the turbulent shear layer behind the 
step. In order to understand how the flame interacts with the 

recirculation zone and flow-field behind the step, images of 
flame dynamics are produced at certain intervals of time over 
one cycle of the sinusoidal forcing function.  
 

 
 
 

 

 

 

 

 

 

 

 

 

Fig. 7. Pulsed flame front captured by URANS over one 
excitation cycle (Vin = 13.3 m/s, Tin = 300 K, Φ = 0.86, 

excitation amplitude = 50%, frequency = 175 Hz) 
 
Figure 7 shows the images of the high frequency humming 
cycle captured using URANS at cycle points corresponding to 
Figure 8. Burnt and unburnt mixture regions in the flow-field 
downstream of the step are clear to see in Figure 7. The 
pulsation creates organized structures behind the step. At point 
A in the cycle, the formation of wake vortex V2 occurs near the 
edge of the step, which wrinkles the flame. Downstream, the 
previous wake vortex V1 as shown in Figure 7A is moving near 
the outlet which convolutes the flame around it. Near the upper 
cooling hole, trapped burnt mixture is seen due to the earlier 

Trapped burnt mixture 

A

V1V2

B
V2  Cooling holes

C V2  Leading edge of 
convoluted flame

Leading vertical flame front
D

V2 

E V3 
V2 
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interaction between incoming cooling jet and moving flame 
front.  

 
Fig. 8. Inlet velocity sinusoidal forcing function cycle (Vin = 13 

m/s, T = 0.0057s and Amp = 50%) 
 

As the velocity reaches its maximum at cycle point B, the 
growing recirculation vortex V2 of the burned gases causes the 
previous vortex V1 (as shown in Figure 7A) to be pushed 
downstream, while vortex V2 increases in size. As the flame 
front convolutes now around vortex V2, the flame front ahead 
of the vortex V2 reaches the wall of the combustor, burning 
more of the mixture before reaching the outlet. At cycle point 
C, as the velocity decreases from its maximum value, vortex V2 
continues to grow in size as it moves downstream.  The flame 
advances in to the combustor forming two fronts, a leading 
vertical front that accelerates forward on the top half of the 
combustor, and a horizontal front that extends back to the step. 
Vortex V2 pushes the unburnt mixture trapped between the 
convoluted fold of the flame surrounding it and the leading 
curved flame front moving ahead of it vertically as shown in 
Figure 7C. At point D, the velocity reaches its minimum value, 
due to which the flame front is lifted behind the step as vortex 
V2 grows and stretches further downstream with its leading 
edge folded more as compared to cycle point C. Due to the 
reduced velocity of the mixture; the flame propagates upwards 
near the wall of the combustor. The leading vertical flame front 
is pushed further downstream as it reaches the upper wall of the 
combustor, burning all the mixture leaving the combustor. At 
cycle point E, the velocity rises again to its original value. A 
new vortex V3 is again formed at the step edge with the 
previous vortex V2 convecting further downstream. Again, near 
the upper cooling hole, trapped burnt mixture is observed due 
to the interaction between the incoming cooling jet and moving 
flame front. This marks the end of the humming cycle. This 
process is sustained in a meta-stable mode over a long period of 
time. The average outlet temperature variation (c.f. Figure 4) is 
synchronized with this humming cycle. 
 
Figure 9 shows the outlet temperature profile variation at 
different time intervals of the humming cycle. Each profile 
corresponds to a cycle point in Figure 8. At point A (start of the 
humming cycle), most of the mixture escaping from the lower 
half of the combustor is completely burnt and is at high 
temperature ~2100 K, whereas, in the upper part, the mixture is 
mostly partially burned, and at a lower temperature. At cycle 
point B, due to high velocity, most of the mixture escapes 

unburnt from the upper part of the combustor which explains 
the sudden drop in the temperature profile in the upper part. 
 

 
Fig. 9. Outlet temperature profile of the combustor 

corresponding to humming cycle points (c.f. Figure 8) 
 
At point C, due to the vertically lifted flame front, the incoming 
mixture is completely burnt before reaching the outlet, hence 
resulting in a relatively uniform temperature profile at the outlet 
across the centerline. At cycle point D, the vertical flame front 
moves forward but due to a lower inlet velocity, the cooling jet 
bubble flows further away from the combustor wall reducing 
the amount of burnt mixture leaving the outlet, thus reducing 
the outlet temperature near the upper and lower walls.  
 
Experimental Data (Keller et 

al., 1982) 
Unsteady 2D-RANS  Data 

 

 

 

 

 

 

 

Fig. 10. Humming cycle captured by unsteady RANS in 
comparison with experimental data of Keller et al. [21]  

(Time interval between frames: 1ms) 
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At cycle point E, the inlet velocity increases, pushing the 
vertical flame front ahead and suppressing the cooling jet 
bubble flow. The temperature profile for cycle point E matches 
closely with that of temperature profile at cycle point A. 
 
Figure 10 shows the comparison of the URANS prediction with 
the experimental data of Keller et al. [22] on the same geometry 
configuration (c.f. Figure 1). The results are in good agreement, 
qualitatively, in the near step region where the wake vortex is 
formed and periodical flame convolution occurs. Away from the 
step, the flame structure is less accurately captured as the 
URANS averages instantaneous flame front fluctuations and 
shows only the mean value. Also, the mesh size used for the 
reactive URANS simulation is not fine enough to accurately 
capture the flame front. An appropriate large eddy simulation 
(LES) on a fine mesh is required in order to capture all details 
of the flame front propagation and fluctuations, and is not 
within the scope of the current analysis.  
 
 
4. OPTIMISATION PROCESS PARAMETERS 
 
4.1 Geometric design and parameterization 
 
The construction of the 2D profiled backward-facing step 
combustor is carried out using CATIA (Computer Aided Three 
Dimensional Interactive Application) version V5R18. The 
flame stabilizer step is constructed and parameterized using an 
interpolating type cubic spline. The advantages of using a 
spline are its smoothness and parameterisation properties which 
allow for control point based shape variation [33]. 
 

 
 

Fig. 11. Flame-stabilizer step design parameterization using 
spline control points 

 
Figure 11 shows a closer view of the flame stabilizer step (i-ii-
iii) baseline geometry.  Points i, ii and iii are connected by a 
spline curve of which control points i and iii are fixed. 
However, the angle θ at point iii is not fixed. At control point ii, 
the x-coordinate is fixed at a distance of 95.5mm from the inlet 
of the chamber and the y-coordinate is variable. Thus, the curve 
is defined by these two dimensions, namely, Y at control point 
ii and θ at control point iii. The baseline spline is defined at Y = 
17.5 mm and θ = 90 degrees. Thus, two variables [Y and θ] are 
used to change the shape of the flame-stabilizer step and thus 
influence the flame/vortex interaction processes downstream. 
 
4.2 Objective function evaluation 

Figure 6 shows the outlet temperature profile of the combustor 
with cooling holes as captured using steady RANS. Much of 
the mixture that enters the combustor escapes unburnt in the 
upper half of the combustor behind the step. The objective of 
the optimisation process is to increase the amount of mixture 
burning before it leaves through the outlet, thus increasing the 
combustor’s overall efficiency. 
 

 
Fig. 12. Comparison between steady RANS and time-averaged 

unsteady RANS baseline design outlet temperature profile 
against target outlet temperature profile 

 
Figure 12 shows the comparison between the steady and time-
averaged unsteady RANS outlet temperature profile of the 
baseline flame stabilizer step geometry along with a target 
outlet temperature profile. The target outlet temperature profile 
is developed such that it is more symmetrical about the 
centerline of the combustor, which represents an approximate 
position of the flame front inside the chamber, above which the 
mixture is unburnt and below which the mixture is burnt. The 
aim of the optimization process is to minimize the difference 
between the design and target profiles as shown in Figure 12.  
This is done by changing the shape of the flame-stabilizer step 
i.e. changing the design variables Y and θ (c.f. Figure 11) until 
a design is found that minimises the root mean square deviation 
(RMSD) of the difference between the design outlet 
temperature profile and the target outlet temperature profile. If 
vector P represents an individual design outlet temperature 
profile and vector T represents the target outlet temperature 
profile, then; 
 
For, T = [T1, T2, T3 …… Tn] and P = [P1, P2, P3 …… Pn]; 
 
where, n = number of points in the profile; 
 

RMSD (T, P) = ඥܧܵܯሺܶ, ܲሻ = ට
∑ ሺ்ିሻమ

సభ


       (1) 

 
For unsteady RANS, 10 cycles of the inlet velocity sinusoidal 
fluctuation (5700 time-steps) at a time-step size of 1e-05s are 
computed. Over the 10th cycle of fluctuation, the outlet 

ii 
i 

(X, Y) 

iii 

θ 
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temperature profile is recorded at each time-step, hence 
recording 570 temperature profiles the cycle.  
 

 ܲ ൌ  
∑



௧
   , where t = 570                                       (2) 

 
To calculate the RMSD, all temperature profiles (over the 
humming cycle) are averaged over the final cycle using 
Equation 2, and the time-averaged profile is then measured 
against the target temperature profile using Equation 1. 
 
 
5. KRIGING BASED DESIGN OPTIMISATION 
 
5.1 Optimisation methodology 

 
Fig. 13. Optimisation strategy based on Kriging response 

surface model 

Amongst various response surface models (RSM) available 
such as simple polynomials or radial basis functions, Kriging is 
the method chosen here for constructing a surrogate model. 
Besides providing good estimates of complicated landscapes, it 
also provides an error estimate of the predictor [34]. Kriging, 
an interpolation method first developed by, and named after, 
Danie Krige [35], is a set of geostatistical techniques which 
may be used to estimate unknown values from the data 
observed at known locations. Introduction to the methodology 
along with the prediction process is provided by Jones et al. 
[36] whereas detailed derivation of the method is given by 
Sacks et al. [37]. Figure 13 shows a traditional Kriging 
response surface model based design optimisation strategy with 
N Design of Experiments (DoE) points and M update points per 
update cycle. Starting with an initial set of 6 Latin Hypercube 
DoE points, the resulting objective function values are used to 
construct a Kriging surrogate model. As the surrogate model 
accuracy is limited due to a relatively small initial sample, the 
accuracy of the model is increased by adding further update 
points. 
 
In each update cycle, the surrogate model is searched using a 
genetic algorithm (GA) followed with a dynamic hill climbing 
(DHC) algorithm to find a series of three update points per 
update cycle [38]. For an efficient optimisation strategy, both 
exploration and exploitation of the design space is necessary in 
order to search globally interesting configurations and improve 
the quality of the RSM but at the same time using the already 
known information to rapidly converge to a global optimum. 
Hence three update points are found per cycle each using a best 
predicted criterion, a Kriging prediction error criterion and one 
using a expected improvement criterion, which in itself is a 
balanced exploration/exploitation criterion [17]. Three resulting 
CFD evaluations are then carried out in parallel in each update 
cycle and the evaluated designs are then added to the existing 
database of results so as to update the Kriging model. The 
response surface is re-built and searched again. This process is 
continued until the RSM is converged or the computational 
budget gets exhausted.  
 
5.2 Results and discussions 
 
Figure 14 shows the comparison of Kriging RSM captured 
using a fixed computational budget of 51 CFD runs (six initial 
points sample and 15 update cycles of three designs each) 
against a Kriging RSM of 100 CFD runs using a 10x10 regular 
grid data points, using steady and unsteady RANS 
computational models. Figure 14(a) and Figure 14(b) shows the 
Kriging response surfaces for steady RANS analysis. As shown 
in Figure 14(a), the Kriging surface fits mostly smoothly over 
the evaluated 10x10 grid of CFD data points indicating a low 
level of numerical noise in the data. As shown in Figure 14(b), 
the Kriging based optimisation strategy accurately captures the 
underlying response and the shape of the surface is closely 
reproduced after 15 update cycles. It shows a hill of high 
objective function values at lower design parameter values of Y 
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and θ, signifying a region of bad designs. The region with good 
designs consists of a valley surrounding the hill at higher values 
of Y and θ. Figure 14(c) and Figure 14(d) shows the Kriging 
response surfaces obtained using the unsteady RANS analysis. 
As seen in Figure 14(c), the Kriging surface does not fit 
smoothly over the evaluated 10x10 grid of CFD data points 
indicating a rather high level of numerical noise in capturing 
the unsteady humming cycle for different designs of flame-
stabilizer step. It shows two basins of potential good designs 
with a ridge in between created due to a few points which have 
unreasonably high objective function values pulling up the 
surface. As shown in Figure 14(d), in this case the underlying 
response is not well captured using Kriging based optimisation 
strategy. This is due to existence of high level of noise causing 
the optimiser to heavily regress the data [39]. It avoids the CFD 
data points with lower objective function values and constructs 
the response surface passing through majority of high objective 
function value data points. 
 

Figure 15 shows the optimisation search histories for the steady 
and unsteady RANS models using 6 Latin Hypercube DoE runs 
followed by 45 update point runs. The effect of different initial 
samples on the optimisation histories is also investigated. Each 
optimisation is carried out three times, with different random 
number seeds used to construct the Latin hypercube for the 
DoE each time. All three optimisation histories along with their 
mean are plotted in Figure 15. Figure 15(a) shows the 
optimisation search histories, for the steady RANS model. 
Figure 15(b) shows the zoomed version of Figure 15(a). As 
seen in Figure 15(b), different initial DOE’s lead to different 
optimisation search histories as information available at 
different locations in the design space causes different 
behaviour in the Kriging response surface model convergence. 
The search histories for DoE 1, DoE 2 and DoE 3 converge at 
the 16th, 9th and 21st CFD analysis respectively. However, the 
DoE 1 search history converges to the best objective function 
amongst the three. 
 

 

 
(a) Steady RANS Kriging RSM over 10x10 grid data 

 

 

(c) Unsteady RANS Kriging RSM over 10x10 grid data 
 

 
(b) Steady RANS Kriging RSM over fixed budget 

 
(d) Unsteady RANS Kriging RSM over fixed budget 

 
 

Fig. 14. Comparison of Kriging RSM captured using fixed computational budget of 6 DoE + 15 update cycle runs against Kriging 
RSM of 100 CFD runs using a 10x10 regular grid data points 



 10  Copyright © 2011 by ASME  

 

(a) Steady RANS model 
 

 

(c) Unsteady RANS model 

 

 

(b) Zoomed image of (a) 

 

 

(d) Zoomed image of (c) 
 

Fig. 15. Optimisation search histories over a fixed computational budget of 6 DoE + 15 update cycle (45 update points) runs 
 
The total computational time required for convergence of the 
mean i.e. for 21 design iterations comprising of 6 DOE runs 
evaluated in parallel and five update cycle runs (each with 3 
update points evaluated in parallel) is approximately 21 hours. 
Equivalent plots for the unsteady RANS simulations are shown 
in Figure 15(c). Figure 15(d) shows the zoomed version of 
Figure 15(c). As seen in Figure 15(d), the Kriging based 
optimisation strategy is not able to improve on the data 
obtained from the three initial sample points. Due to the high 
level of noise in the data capturing the humming cycle (c.f. 
Figure 14(c)), the Kriging prediction surface is heavily 
regressed and constructed at higher objective function values, 
thus avoiding data points with lower objective function values 
(c.f. Figure 14(d)). All further update points over the next 15 
update cycles evaluated by the optimizer lie away from the 
global optimum, thus indicating a stalled update process. 
Amongst the three different DoE’s DoE 2 leads to the best 
objective function for the unsteady RANS model. Table 2 
summarizes the results of two Kriging based design  

 
optimisations (c.f. Figure 15) using steady and unsteady RANS 
analysis. 
 

Table 2. Details for baseline and optimum designs  

Method Design Y (mm) Theta (deg) RMSD 
Steady 
RANS 

Baseline 17.5 90 817.69 
Optimum 25.82 149.9 337.25 

Unsteady 
RANS 

Baseline 17.5 90 407.34 
Optimum 20.81 86.1 361.8 

 
 
6. CO-KRIGING BASED DESIGN OPTIMISATION 
 
6.1 Optimisation methodology 
 
Co-Kriging is an extension to the original form of Kriging [36], 
which correlates multiple sets of data. CFD simulations can be 
often run at different levels of complexity, e.g. using two 
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different levels of mesh resolution, such that there is a 
relatively accurate but slow analysis along with a fast but 
inaccurate analysis. However, in the context of design 
optimisation, these fast approximations, though somewhat 
inaccurate, may well include important flow-field features and 
can be used for design search investigation. To improve the 
efficiency of high-fidelity surrogate based design optimisation 
systems (c.f. Figure 13), a greater quantity of fast (or cheap) 
analyses can be used in combination with a smaller number of 
expensive accurate analyses, in a multi-fidelity co-Kriging 
methodology, to enhance the accuracy of the high-fidelity 
function surrogate model at a lower computational cost [40, 
41]. Detailed derivation of the co-Kriging model and related 
discussion can be found in Forrester et al. [17]. 
 

 
 

Fig. 16. Optimisation strategy based on co-Kriging response 
surface model 

 

Figure 16 shows a co-Kriging response surface model based 
design optimisation strategy with NC (cheap) and NE 
(expensive) DoE points and UC (cheap) and UE (expensive) 
update points per update cycle, where NC > NE and UC > UE. 
Starting with an initial set of six cheap and three expensive 
Latin Hypercube DoE points, the resulting objective function 
values are used to construct a co-Kriging response surface 
model. The three expensive DoE points are the subsets of six 
cheap DoE points. To increase the accuracy of the response 
surface model further update points are selected as mentioned 
previously in section 5.1. However, out of these three update 
points, only two expensive update point evaluations are carried 
out, one using the best predicted point and other using the 
Kriging prediction error criteria. Hence a ratio of 3 (UC):2(UE) 
is maintained for the 15 update cycle runs. Further investigation 
of the optimality of this ratio is required. 
 
6.2 Co-Kriging using steady RANS on two grid resolutions 
 
To obtain multi-fidelity data, reactive solutions on two 
computational grids were obtained using steady RANS 
analysis. The cheaper low-fidelity data are obtained using a 
coarse mesh model (mesh 1), consisting of 11000 cells, while 
the expensive high-fidelity data are obtained using a fine mesh 
(mesh 3) consisting of 190000 cells. 

 
Fig. 17 Kriging response surfaces (overlapped) captured by 
low-fidelity and high-fidelity models over 10x10 grid data 

 
Figure 17 shows the comparison of Kriging prediction surfaces 
as captured by low-fidelity and high-fidelity models over a 
10x10 grid of CFD data points. The low-fidelity model 
accurately predicts the response at lower values of Y and θ as 
compared to the high-fidelity model prediction. However, at 
higher values of Y and θ, the low-fidelity model under-predicts 
the value of the objective function relative to the high-fidelity 
model. The co-Kriging model is then applied to the steady 
RANS solutions on these two different meshes noting that the 
RSM’s are topologically very similar. As investigated earlier in 
the Kriging based optimisation strategy, the effect of different 
initial DoE’s on the co-Kriging optimisation search histories is 
also investigated. 
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Fig. 18. Kriging and co-Kriging strategies optimisation search 

histories over a fixed computational budget of DoE + 15 update 
cycles using three different initial samples 

 
Figure 18 compares the optimisation search histories for the 
high-fidelity model based Kriging optimisation strategy and the 
multi-fidelity model based co-Kriging optimisation strategy 
over a fixed computational budget of 6 DoE points followed 
with 15 update cycles. The total number of hi-fidelity function 
evaluations using co-Kriging strategy is 33, whereas using the 
Kriging based strategy, 51 hi-fidelity function evaluations are 
carried out. As noted before (c.f. Figure 15a), the mean of the 
hi-fidelity Kriging strategy converges after 21 hi-fidelity 
function calls. Here the mean of the co-Kriging strategy also 
converges after 21 hi-fidelity function calls. However, in 
addition to the computational time of 21 hi-fidelity function 
calls during co-Kriging strategy, 24 lo-fidelity function calls 
have also been carried out. Even though the lo-fidelity model is 
fast to evaluate, it still adds to the overall computational time. 
Thus in terms of total computational time, the high-fidelity 
model based optimisation strategy finds the mean optimum 
faster, in approximately 21 hours, compared to the co-Kriging 
based optimisation strategy, which finds the mean optimum in 
approximately 22 hours. However, the best objective function 
value design configuration is found by the co-Kriging 
optimisation strategy using DoE 1. Table 3 summarizes the 
results of the Kriging and co-Kriging based optimisation 
strategy using different mesh resolution steady RANS analyses.  
 

Table 3. Details of optimum designs for Kriging and co-
Kriging based strategies using steady RANS model 

Design Y(mm) Theta(deg) RMSD 

Baseline  17.5 90 817.69 

Best Kriging   25.82 149.9 337.25 

 Best co-Kriging   25.43 150 336.21 

 
 
6.3 Co-Kriging using steady and unsteady RANS solutions 

Multi-fidelity data can also be obtained using two different 
methodologies on the same computational grid. In this method, 
reactive solutions were obtained using steady and unsteady 
RANS analyses, both on the same grid (mesh 3). The cheaper 
low-fidelity data is obtained using the steady RANS model, 
while the expensive high-fidelity data is obtained using the 
unsteady RANS model. 

 

Fig. 19. Kriging response surfaces (overlapped) captured by 
low-fidelity and high-fidelity models over 10x10 grid data 

 
Figure 19 shows the comparison of the Kriging predictions 
surface generated for the low-fidelity and high-fidelity models 
over a 10x10 grid of CFD data points. The low-fidelity and 
high-fidelity model differ significantly in the landscape 
orientation and are opposite to each other particularly at lower 
and higher values of Y and θ. Also, as discussed in section 5, 
the low-fidelity model response surface is smooth and consists 
very less computational noise in the data, whereas, the high-
fidelity model response surface is heavily regressed as it 
consists of high level of noise in the data (c.f. Figure 14c). The 
observed noise in the unsteady RANS data is due to the 
averaging process of the temperature profile during the 
unsteady humming cycle and needs a robust filter setup so as to 
obtain a smoother response. 
 

Fig. 20. Kriging and co-Kriging strategies optimisation search 
histories over a fixed computational budget of DoE + 15 update 

cycle runs using three different initial samples 
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Figure 20 shows the optimisation search histories for the high-
fidelity and multi-fidelity strategies over a fixed computational 
budget of 6 initial DoE point followed by 15 update cycles. As 
seen in Figure 20, the mean of the co-Kriging strategy is above 
the mean of the Kriging strategy. Both the strategies fail to 
further improve the best design obtained within the DoE, 
indicating a stalled update process resulting from a high level 
of noise in the unsteady simulation data.  
 

7. CONCLUSION 
 

          A two-dimensional combustor with a backward facing 
flame-stabilizer step has been modeled using steady and 
unsteady RANS formulations. For the steady RANS 
simulations, a flame-front is established behind the flame-
stabilizer step in the region with low mixture velocities. The 
behaviour is very different in the unsteady RANS case, since an 
unsteady high frequency humming cycle instability is generated 
behind the step by imposing a sinusoidal velocity fluctuation at 
the combustor inlet. 
 
Both the steady and unsteady flow conditions have been studied 
using Kriging and co-Kriging strategies, constrained by a fixed 
computational budget. With the steady RANS model, the 
Kriging prediction captures the shape of the objective function 
landscape accurately within the given computational budget, 
whereas with unsteady RANS model, the Kriging prediction 
fails to capture the shape of the landscape due to a high level of 
noise in the data which is due the averaging process of the 
temperature profiles generated during the unsteady humming 
cycle. 
 
A co-Kriging strategy has been outlined and assessed on two 
approaches: one using two levels of grid resolutions in a steady 
RANS formulation and the other using steady and unsteady 
RANS formulations on the same grid. However, the use of the 
co-Kriging strategy to correlate sparsely sampled high fidelity 
data with relatively densely sampled low fidelity data fails to 
outperform Kriging strategy based on high fidelity data alone, 
given the same computational budget. Ongoing work is 
focusing on formulating and applying different co-Kriging 
strategies and developing a methodology to efficiently filter out 
the noise and reduce regression in the unsteady CFD Kriging 
model to obtain more reliable response surfaces. 
 

NOMENCLATURE 
 
Cത : Mean reaction progress variable 
݂ҧ : Mean mixture fraction 

݂′ଶതതതത : Mean mixture fraction variance 
Φ : Equivalence ratio 
Ta  : Area-weighted average temperature 
Y+ : Dimensionless wall distance 
 

CFD : Computation Fluid Dynamics 
DHC : Dynamic Hill Climbing 
DoE : Design of Experiments 
GA : Genetic Algorithm 
LES : Large Eddy Simulation 
MSE : Mean Squared Error 
RANS : Reynolds-averaged Navier Stokes 
RMSD : Root Mean Square Deviation 
RSM : Response Surface Model 
URANS : Unsteady Reynolds-averaged Navier Stokes 
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