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ABSTRACT 
During the lifetime of a gas turbine, its gas path 

components deteriorate gradually and sometimes serious 
problems happened. Direct physical and indirect model based 
methods can be used in health monitoring systems for gas 
turbines.  

The gas turbine under study is run as part of a combined 
cycle generation unit, sited in the BAO Steel Power Plant. The 
basic health monitoring system is based on vibration signal. 
After the vibration monitoring system failed to detect foreign 
object damage (FOD) fault, a health monitoring system based 
thermodynamic model is tried to explain quantitatively why the 
performance degradation happened, with the foreseeable usage 
as part of the online health monitoring system. 

The present work is based upon component level nonlinear 
gas turbine model, so errors caused by linearization can be 
avoided. The component level model of gas turbine is built as 
dynamic model, and the off-design performance of gas turbine 
is evaluated as the steady-state solution of the dynamic model. 
A dynamic tracking filter, which tracking field measurements 
with PI control loops, is incorporated into the gas turbine 
dynamic model. Output of the dynamic tracking filter is called 
correction factors, which are used as multiplicative corrective 
values of component performance parameters (i.e., flow or 
efficiency) in the gas turbine model.  

With dynamic tracking filter and aero-thermal dynamic 
model, the model based fault diagnosing of gas turbine is 
implemented as a three step process. As a case study, several 
measurement data sets are tried to detect and isolate FOD fault 
happened. The result demonstrates that a model based gas path 
analysis can detect and isolate fault even when no vibration 
level alarm is reported. 

INTRODUCTION 
During the lifetime of gas turbines, various gradual and 

abrupt performance degradations may happen. By health 
monitoring and fault diagnosis system, the working status of 
gas turbines can be deduced from field measurements, and 
proper countermeasures can be taken. Direct physical and 
indirect model based methods can be used in health monitoring 
systems. Mathematical modeling of the normal and faulty 
operations facilitates the detection of performance degradation. 

Research and development of gas path analysis (GPA) 
methods is initiated by Urban in the late 1960’s [1]. From the 
linear GPA developed by Urban, various GPA methods are 
developed, including nonlinear GPA, optimal estimation based 
on linear model, nonlinear model based methods, neural 
networks, rule based expert system, and rule based fuzzy expert 
system [2]. Some popular soft-computing methods are also 
tried in the related works [3] [4]. 

The common feature of neural network methods and rule 
based methods is the absence of gas turbine model, only the 
relations between symptoms and fault are needed. But the 
accumulation of knowledge by experience and field data is not 
an easy job. It is interesting to note that sometimes 
mathematical models of faulty engine are used to explore the 
symptom-fault relations [4]. 

The fault detection and diagnosis method presented in this 
paper is a kind of nonlinear model based method. The nonlinear 
model based methods in the literature tend to utilize various 
optimization processes to match field measurements with 
model results [2] [5]. By incorporating dynamic tracking filter 
into a component level gas turbine model, the present work 
shows that matched performance parameters can be found by 
simulating the dynamic model. This can greatly reduce the time 
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and effort to develop a health monitoring system of gas 
turbines.  

The gas turbine under study is part of a combined cycle 
generation unit, sited in the BAO Steel Power Plant. The basic 
health monitoring system is based on vibration signal. After the 
vibration monitoring failed to detect foreign object damage 
(FOD) fault, a health monitoring system based thermodynamic 
model is sought to explain quantitatively where and how the 
performance degradation happened, with the foreseeable usage 
as part of the online health monitoring system. 

NOMENCLATURE 
 

BFG 
F 
FOD 
HRSG 
LHV 

blast furnace gas 
function 
foreign object damage 
heat recovery steam generator 
low heating value 

P pressure, Pa 
SE correction factor of efficiency, -- 
SW correction factor of flow, -- 
T 
u 

temperature, K 
control variable 

W mass flow rate, kg/s 
X performance parameters 
Z measurement parameters 
  

Greek 
α  empirical coefficient for pressure drop 
 
Subscript 

0 reference value 
1 inlet 
2 outlet 
f field measurement 

 

PROBLEM DESCRIPTION 
The gas turbine under study is part of combined cycle 

power generation unit. It is of model GT11N2-LBTU, 
retrofitted from GT11N2 by ABB and KASAKI for burning 
blast furnace gas (BFG). The gas turbine is connected to steam 
turbine with a 3611:3000 ratio gear box. The steam turbine is 
connected to power generator through flexible coupling. The 
heat recovery steam generator (HRSG) is triple-pressured 
without reheat, natural-circulated. 

The BFG is a kind of low BTU fuel, with low heating 
value (LHV) ranging from 3100 kJ/Nm3 to 3500 kJ/Nm3. The 
BFG from blast furnaces is turbocharged after cleaning to spray 
into the gas turbine’s combustor. The turbocharger is composed 
by low-pressure axial compressor with all stators variable, 
high-pressure centrifugal compressor and intercooler. The gas 
turbine has a 16-stage axial compressor; the first three stages 
have variable stator. The combustor has a single can burner. 
The turbine has four axial stages. At design point, the output 

power of the gas turbine is 144 MW with 3611 RPM rotating 
speed. 

More than ten years have passed since the generation unit 
came into commercial operation in 1997. Gradual and abrupt 
performance deteriorates are observed.  

In May 2009 the gas turbine was rebalanced due to 
increased vibration levels on both bearing pedestals. On June 
02, 2009, a sudden increase of the vibration level on both 
bearings was observed. Since the amplitude of the vibration 
was well below the alarm level, the unit could be operated 
without any limitations. The scheduled A-Inspection started on 
Sep. 15, 2009. The damages in the turbine were detected during 
a borescope inspection on Sep. 18, 2009. Open engine 
inspection is conducted per the power plant’s request, the root 
cause of damage is foreign object damage caused by screw bolt 
of BFG strainer entered the turbine through combustor. 

Before the vibration signal abnormality was detected, the 
thermal efficiency of the generation unit is about 2% lower 
than normal. The authors are invited to analyze the reason of 
the performance degradation. A qualitative analysis, which is 
much simpler than that presented in this paper, was performed. 
The conclusion that fault may happen in gas turbine was 
feedback, but the power plant was not convinced. While 
pressured by the requirement of continuous consumption of 
BFG to prevent environmental pollution, decision was made to 
keep the generation unit operating. The damage was 
unavoidably increasing until shutdown inspection. A more 
convincing diagnosing study is initiated with focus on model 
based diagnosing method. The ultimate goal is a new online 
health monitoring system. 

MODEL BASED FAULT DIAGNOSING METHOD 
Direct observation of measurement parameters of gas 

turbine compared with some reference values may disclose the 
condition of gas turbine. However, a change of the gas turbine 
condition generally involves a drift on nearly all of the 
measurements at the same time; so the identification of the 
underlying component fault turns out to be difficult. Moreover, 
the measurements are corrupted by random errors for which the 
amplitude is comparable with the drifts induced by the faults of 
interest [6]. 

To tackle with these problems, gas path analysis assumes 
that if some physical problems happened in gas path 
components, the performance parameters, such as compressor 
flow capacity, compressor efficiency, combustor efficiency, are 
affected at first. Then the measurement parameters, such as 
rotation speed, compressor exit temperature, turbine exit 
temperature, are affected [1] [2]. So the health conditions of 
components can be evaluated by the changes of performance 
parameters, not the direct observation of measurement 
parameters. 

Aero-thermal simulation models of gas turbines are used to 
build the functions between measurement parameters and 
performance parameters. Generally the independents of the 
function are performance parameters, so inverse functions are 
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needed with known field measurements to get the performance 
parameters. 

A convenient and often used way of characterize the 
condition of each component of gas turbine is embedding 
correction factors of flow (SW) and correction factors of 
efficiency (SE) into the simulation model [7][8]. The correction 
factors of flow and the correction factors of efficiency are 
defined as multiplicative corrective factor as followed: 

0)/()/( PTWSWPTW ⋅=   (1) 

0ηη ⋅= SE     (2) 
Linear and nonlinear simulation models can be used to 

estimate these correction factors. It is shown in [8] that use of 
linear methods may lead to substantial inaccuracies of 
significant parameters. Nonlinear model of gas turbine is used 
in the present work, partly because a nonlinear dynamic model 
is available from related works.  

The nonlinear dynamic model represents functional 
relationship between measurement parameters and performance 
parameters, correction factors and inputs 

    ),,,,( tF SESWuXZ =          (3) 
The solution of SW and SE in Equation set 3 can found by 

optimization algorithm. Besides conventional optimization 
algorithms, genetic algorithm and other newly developed 
algorithms can be used. Usually Euclidean norm of all 
measurement parameters under consideration is taken as the 
optimization target to consistently control the errors [2]. 

To be consistent with the dynamic gas turbine model, 
dynamic tracking filter is selected to compute the correction 
factors SW and SE in time domain. As circled by the red 
dashed line in Figure 1, the dynamic tracking filter is driven by 
errors of simulation results with regard to field measurements. 
The PI controllers continuously change the values of the 
correction factors until the errors are small enough [9]. 

For the present study, only steady-state solutions of the 
correction factors are needed. The correction factors can be 
solved in a pseudo-dynamic ways, which means the dynamic 
process to approach the steady-state is not important if the final 
steady solution is assured.  

 
 
   
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Operating principle of dynamic tracking filter 
 

The steady-state values of the correction factors can also 
solved in an iterative way. When all derivatives of state 
variables are equal to zero, the Equation set 3 is degenerated 
into nonlinear algebraic equation set. The resulting nonlinear 
algebraic equation set is solved numerically with Newton-
Raphson algorithm, but sometimes matrix singularity problem 
may cause trouble. 

The dynamic tracking filter shown in [9] is generally a 
MIMO control system. It is decentralized into standalone PI 
control loops for this case study, and the pairing problem of 
standalone PI control loops is dealt with intuitively. For each PI 
control loop, the measurement parameter directly related in 
physics to the correction factor is selected as the feedback 
variable. For example, the thermal efficiency of compressor has 
direct impact on its exit temperature, while the flow capability 
has direct effect on its exit pressure through volume effect. The 
nonlinear dynamic model will spread out the effect of any 
correction factor changes.  

The dynamic tracking filter can be design as a MIMO 
control system. That means combined error of measurement 
parameters may be used to drive the PI control loop. Two PI 
control loops may also be driven by single error. The only limit 
is stability of the model with these control loops. This could 
eliminate the under-determined problem or over-determined 
problem in matrix inversion operation involved method, such 
as linear gas path analysis.  

MODELING WITH LIMITED DATA 
The nonlinear model used in the fault diagnosing is a 

component level model, which means the system model of gas 
turbine is composed of modules representing components like 
compressor, combustor and turbine. Each module is composed 
of general thermodynamic equations, conservative laws, and 
performance maps peculiar to a specific engine. The so called 
“volume method” is used to build the dynamic model [10]. The 
volume method facilitates non-iterative algorithm of 
simulation, making it more suitable for online usage. 

The effect of flue gas flow in HRSG on turbine back 
pressure is discussed briefly. The flow of flue gas in HRSG is 
modeled as ordinary channel flow, and the pressure drop 
characteristic is modeled as 

2
11

1

21 )/( PTW
P

PP
⋅=

− α           (4) 

Whereα express the empirical coefficient. 
A measurement data set under normal operating condition 

is selected as reference, which is shown in Table 1.  
Due to various reasons, the component performance maps 

are unavailable with only a few exceptions. A well known fact 
is that performance maps are similar in shape; their differences 
can be described by linear transformation, such as translation 
and scaling [11][12]. The well-known GasTurb software 
provides tools for preprocessing of compressor maps and 
turbine maps [13]. 
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Table 1.  Measurements at reference day (Sep/13/2008) 
  

Parameter Unit Value 
Ambient temperature 0C 29.65 
Power demand of unit MW 120.00 
BFG flow rate kNm3/h 368.00 
BFG LHV MJ/Nm3 3.20 
BFG temperature into combustor 0C 289.00 
BFG pressure into combustor MPa 1.31 
Compressor inlet pressure 
(absolute pressure) 

kPa 100.35 

Compressor inlet temperature 0C 28.80 
Compressor exit pressure MPa 1.22 
Compressor exit temperature 0C 409.00 
Turbine exit pressure kPa 1.00 
Turbine exit temperature 0C 533.50 

 
The nonlinear dynamic model is built on MSC.EASY5, 

which is a commercial general purpose modeling and 
simulation software package. The compressor map and turbine 
map needed are generated by scaling the data files publicly 
available.  

Fine tuning of performance maps are through simulating 
the dynamic model with dynamic tracking filter. The correction 
factors of flow and efficiency as part of simulation result are 
used to further scale the compressor map and turbine map. The 
finely scaled performance maps are input into the model, with 
all flow and efficiency correction factors are reset to one. The 
referred mass flow rate and efficiency interpolated from the 
performance maps and correction factors are listed in Table 2. 
Now, the dynamic model with all flow and efficiency 
correction factors being set to one represents the gas turbine 
under reference condition. This finishes the first step of model 
based diagnosing process. 

For the single spool gas turbine under studying, the 
measurement parameter and correction factor pairs listed in 
Table 3 is selected in the way stated in last section. The PI 
control loops are added to the dynamic model one by one in 
trial-and-error way. The proportional gain and integral gain are 
selected to insure that negative feedbacks are imposed on the 
dynamic model. 

Until now, the compressor and turbine performance map is 
only validated at reference condition. For other working 
conditions, the compressor and turbine performance map 
assumed may drift from the real ones.  When gas turbine is 
run as part of combined cycle power plant, the variable inlet 
guided vane (VIGV) and variable stator vane (VSV) of 
compressor are adjusted to keep the temperature of flue gas 
within specified range, with the aim to operate the whole power 
generation unit more efficiently and safely. The operation of 
VSV and VIGV will change the compressor performance map, 
as shown in Figure 2 [10].  

Instead of point-by-point correcting the performance maps, 
the modification to performance maps are lumped to the 

correction factors. That means the combined effect of 
performance map drift and VIGV/VSV manipulation is 
represented by the correction factors. Simple correction factor 
analytical functions are sought to represent these effect. 

Because the VIGV/VSV manipulation is scheduled linearly 
with regard to ambient temperature and power demand, it 
should be reasonable assumption that normally correction 
factors are linear functions of ambient temperature and power 
demand. 

 
Table 2.  Performance parameter at reference day 

(Sep/13/2008) 
  

Performance parameter  
Compressor referred 
mass flow rate 

Value [kg/s] 288.75 
Correction factor 1.00 

Compressor 
efficiency 

Value 0.80 
Correction factor 1.00 

Turbine referred mass 
flow rate 

Value [kg/s] 519.75 
Correction factor 1.00 

Turbine efficiency Value 0.92 
Correction factor 1.00 

 
Table 3. Pairs of measurement parameter and correction factor 

used in PI control loops 
 

Measurement parameter Correction factor 
Compressor exit pressure Compressor referred mass 

flow rate 
Compressor exit 
temperature 

Compressor efficiency 

Turbine exit pressure Turbine referred mass flow 
rate 

Turbine exit temperature Turbine efficiency 

 

 
 

Figure 2. Effect of VIGV angle [10] 
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The measurement data set obtained at another normal day 
is listed in Table 4, the performance parameters and corrections 
factors obtained from model simulation are list in Table 5. 

It can be seen from Table 4 and Table 5 that when the day 
becomes cold (the ambient temperature is 3.80C), the 
compressor flow capacity is decreased intentionally to maintain 
relatively high temperature of flue gas entering the HRSG. The 
compressor efficiency is lower due to partially closed 
VIGV/VSV. However, the increment of steam turbine 
efficiency should surpass the decrement of gas turbine 
efficiency, so the overall efficiency of combined cycle would 
be better. The effects of VIGV/VSV manipulation on turbine 
flow capacity and efficiency are minor; this seems due to the 
fact that the turbine is most probably choked. 

For the two measurement data sets available, the power 
demand of the generation unit is the same, so the normal 
correction factors can only be estimated as the linear regression 
function of ambient temperature for the time being. For 
example, the normal correction factor function of compressor 
efficiency is defined as 

 7549.0)7549.00.1(
8.365.29

8.3
+−×

−
−

= ambTSE   (5) 

 
Table 4.  Measurements at another normal day (Jan/13/2009) 

  
Parameter Unit Value 
Ambient temperature 0C 3.80 
Power demand of unit MW 120.00 
BFG flow rate kNm3/h 358.50 
BFG LHV MJ/Nm3 3.15 
BFG temperature into combustor 0C 282.00 
BFG pressure into combustor MPa 1.29 
Compressor inlet pressure 
(absolute pressure) 

kPa 103.10 

Compressor inlet temperature 0C 3.35 
Compressor exit pressure MPa 1.21 
Compressor exit temperature 0C 369.50 
Turbine exit pressure kPa 1.00 
Turbine exit temperature 0C 524.00 

 
Table 5.  Performance parameter for another normal day 

(Jan/13/2009) 
  

Performance parameter  
Compressor referred 
mass flow rate 

Value 274.41 
Correction factor 0.83 

Compressor 
efficiency 

Value 0.61 
Correction factor 0.75 

Turbine referred 
mass flow rate 

Value 524.52 
Correction factor 1.00 

Turbine efficiency Value 0.92 
Correction factor 1.00 

FAULT DIAGNOSING 
Measurement data set at abnormal day (thermal efficiency 

of the whole generation unit is about 2% lower than normal) 
are listed in Table 6. The power demand is unchanged, so the 
effect of power demand on normal correction factors is 
neglected. The correction factors obtained from simulation of 
the dynamic model is listed in Table 7, compared with values 
calculated by the normal correction factor functions.  

The health parameters in Table 7 is simply defined as 

 
normalSE
SEH =       (6) 

This means that the deviation of H from 1.0 signs 
something wrong. 

As can be seen from Table 7, the simulated correction 
factor of compressor SE matched very well with normal values, 
but simulated turbine SE is obviously lower than normal value. 
This is a clear indication of a faulty turbine. This finishes the 
last step of model based diagnosing process.  

So if the model based gas path analysis were available, the 
FOD fault could have been detected and isolated when thermal 
parameters showed abnormality (March/25/2009), before 
vibration level abnormality could be observed (June/02/2009). 

 
Table 6.  Measurements at abnormal day (March/25/2009) 

  
Parameter Unit Value 
Ambient temperature 0C 12.31 
Power demand of unit MW 120.00 
BFG flow rate kNm3/h 381.87 
BFG LHV MJ/Nm3 3.22 
BFG temperature into combustor 0C 286.33 
BFG pressure into combustor MPa 1.32 
Compressor inlet pressure (absolute 
pressure) 

kPa 101.70 

Compressor inlet temperature 0C 12.30 
Compressor exit pressure MPa 1.21 
Compressor exit temperature 0C 379.49 
Turbine exit pressure kPa 1.34 
Turbine exit temperature 0C 522.60 

 
Table 7. Health parameters at abnormal day (March/25/2009) 

  
Performance 
parameter 

Correction factor Health 
parameter Simulated Normal 

Compressor 
referred mass 
flow rate 

1.04 0.89  

Compressor 
efficiency 0.94 0.93 1.00 

Turbine referred 
mass flow rate 1.13 1.00  

Turbine efficiency 0.92 1.00 0.93 
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It is obvious from Table 7 that both the simulated 
correction factor of compressor SW and turbine SW are larger 
than normal values. This is because the turbine exit pressure in 
Table 6 is much larger than that in Table 1 and Table 2. This 
means larger pressure drop in Equation 4, and then a larger 
mass flow rate passing through turbine. The conservation of 
mass flow applied in the dynamic model would ask for more 
mass flow from upstream of turbine. The increase of BFG fuel 
flow rate partly make up for it, but most increased mass flow 
comes from compressor. So larger values of compressor SW 
and turbine SW is the direct result of exceptionally large 
turbine exit pressure. This is why the SWs are not taken into 
consideration as health parameters in Table 7. If output power 
of gas turbine is known, the SWs can be solved much precisely. 
But for combined cycle unit, total output power of unit is 
measured instead of that of gas turbine. 

 

DISCUSSION 
For this case study, robustness of the decentralized PI 

control loops is validated by simulation runs. To make sure the 
above diagnosing process works reliably, the stability of the 
dynamic model with dynamic tracking filter is analyzed. The 
variation of measurement parameters are assumed small, so the 
whole model is properly approximated as linear control system. 
The proportional gain and integral gain of all PI control loops 
are selected so that all eigenvalues of the linear control system 
have negative real part. The resulting absolute values of the 
proportional gain are all around 0.01, and absolute values of 
the integral gain are all around 0.001.The stability of the four 
measurement parameters listed in Table 3 are evaluated by 
Bode plot with MSC.EASY5 software package. The stability 
margin is defined as: 

lueNominal_va
tLower_limiUppermarginStability_ /

=  (6) 

Where the upper/lower limits are the limit values keeping 
the linear control system stable.  

The large stability margin shown in Table 8 is probably the 
result of small value of proportional gain and integral gain. 
Similar results are obtained for the other two measurement data 
sets, so scheduling of PI loop gains is not necessary for this 
case.  

For offline diagnosing, only steady-state solutions are 
required, so tracking performance of PI control loops is not 
important. For online diagnosing, trade-off between tracking 
performance and stability margin may need. 

The sensitivity of health parameters to changes in 
measurement parameters is examined. The results are showed 
in Table 9. Here the sensitivity is defined as the ratio of 
fractional change in health parameter to fractional change in 
measurement parameter. It can be seen from Table 9 that the 
efficiency health parameters are sensitive mostly to component 
exit temperature, but the compressor flow capability is mostly 
sensitive to turbine exit pressure, and vice versa. Switching pair 

correspondence has been tried, however stability problem 
appears. There is some trade-off work to be done here. 

The impact of measurement noise on diagnosing capability 
is examined though simulation. The measurement noise is 
assumed to be Gaussian random noise added to nominal values 
listed in Table 6. A Gaussian random number generator is used 
to produce a time series representing the ratio of noise 
magnitude to nominal value. The Gaussian distribution has a 
zero mean and 0.05 standard deviation. As an example, the 
noise component is add to turbine exit temperature, whose 
nominal values is 522.60 0C, with other inputs keeping constant 
as listed in Table 6. The turbine exit temperature input and the 
two health parameter outputs are shown in Figure 3. It can be 
seen from the figure that when turbine exit temperature varies 
within range ±30C, the turbine health follows with variation 
range ±0.03. The quality of the turbine health output is enough 
for visual check, proper filtering of the output is appropriate for 
computer programs. For the compressor health, high frequency 
variation is smoothed out by inertias in model. This and other 
dynamic simulations also verify the potentiality of online 
monitoring with the dynamic model. 

Compared with other model based diagnosing methods 
with tracking filters, the dynamic tracking filter has the 
advantage of easy to understand and implement.  

 
Table 8. Stability margin of measurement parameters at 

abnormal day (March/25/2009) 
  

 Lower 
margin 

Lower 
freq. 

Upper 
margin 

Upper 
freq. 

Compressor 
exit pressure 

0.00 None 15.59 0.00 

Compressor 
exit 
temperature 

0.00 None 2.28 0.03 

Turbine exit 
pressure 

0.00 None None None 

Turbine exit 
temperature 

0.00 None None None 

 
Table 9. Sensitivity of health parameters at abnormal day 

(March/25/2009) 
  

 Comp. 
exit 
pressure  

Comp. 
exit 
temp. 

Turb. 
exit 
pressure 

Turb. 
exit 
temp. 

Compressor 
SW 0.22 0.00 0.71 -0.46 

Compressor 
SE 0.61 -1.07 0.00 0.00 

Turbine SW -1.00 0.10 0.39 -0.25 
Turbine SE -0.28 0.36 -0.46 -0.79 
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Figure 3. Effect of measurement noise on health parameters 
 

The aero-thermal models based method shows some 
advantage over vibration analysis in this present work, but an 
ideal health monitoring system should combine the aero-
thermal models based method and the vibration signal based 
ones. For example, in the case of FOD to turbine, the vibration 
signal from rear bearing pedestals together with gas path 
analysis would give more robust conclusion. 

CONCLUSION 
The present work shows how a nonlinear dynamic model 

with dynamic tracking filter could be used to diagnosing a gas 
turbine, which is a part of combined cycle power generation 
unit.  

By incorporating dynamic tracking filter into component 
level gas turbine dynamic model, the model based fault 
diagnosing is implemented as a three steps process. The first 
step is to match the field measurements with the simulation 
results of the gas turbine at one normal working condition by 
dynamic tracking filter. The correction factors represent 
multiplicative errors between assumed component performance 
maps (i.e. flow and efficiency) and the real ones. After the 

component performance maps are scaled properly, the 
correction factors are reset to one, which represent reference 
condition of gas turbine. At the second step, the deviations of 
component performance characteristics caused by compressor 
VSV and VIGV manipulations with regard to ambient 
temperature and power demand are represented by the 
correction factors, also solved by simulation of the dynamic 
model controlled with dynamic tracking filter. In this way, the 
normal off-design performances are represented by normal 
correction factors functions, of which the independent variable 
is ambient temperature and power demand. The third step is the 
fault diagnosing step. The measurement data set in doubt is fed 
to the gas turbine dynamic model with dynamic tracking filter. 
The correction factors simulated are compared with the value 
of normal correction factor functions. The deviation of the 
correcting factors of turbine efficiency from normal value 
suggests that some problems happened in the turbine in the 
case studied. 

Although the measurement data sets available is very 
limited, the initial result is encouraging. More data sets and 
simulations are needed to validate the method statistically 
before it can be applied on site as part of online health 
monitoring system. 
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