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ABSTRACT

This paper presents an offline fault diagnostics method for
highly degraded industrial gas turbines. The method recasts gas
path analysis to an inference problem using Bayesian networks
where the health condition of each component is quantified in
comparison to an expected value. The health parameters are in-
ferred from available gas path measurements, which are some-
times erroneous due to sensor faults or miscalibration. The sen-
sor errors should be inferred as well as the health parameters.
Thus, typically in gas path analysis the unknowns are more than
the knowns. To address this issue, the present method uses mul-
tiple Bayesian network models each of which contains a subset
of the unknowns. Their results are averaged according to how
much each of the models is supported by the data. Although
this method has been reported successful for the faults affecting
a few unknowns, its results are still less accurate and confident
when it is applied to highly degraded gas turbines. Such gas tur-
bines are likely to have health parameters deviated from the new
and clean condition as well as have component faults and sen-
sor errors. Because of this, the present method must infer too
many unknowns at the same time to result in a solution with high
confidence. In addition, this method cannot differentiate normal
or expected degradation from an actual fault. These issues are
resolved by fusing extra information to the method. First of all,
a sensor calibration report, if available, eliminates the sensor er-
rors from the unknowns. Consequently, the number of possible
subsets decreases, and so does the number of Bayesian models.

Second, a degradation model provides meaningful prior guesses
for the health parameters. It is equivalent to change the point of
reference from a brand new gas turbine to a normally degraded
one. It will be demonstrated that the method accompanying with
the degradation model and the sensor calibration report shows
significant improvement in accuracy and confidence.

NOMENCLATURE
A Coefficient matrix

a Lower bound of a distribution

B Vector of sensor biases

b Upper bound of a distribution

M Categorical variable representing all models

m A particular model in M

n Total number of health parameters and sensor biases

T Ambient temperature

X Vector of health parameters

Y Vector of measurements

ε Vector of random error

γ Binary variable associated withθ
µ Vector of mean values

θ Union of X and B vectors

τ Precision matrix
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INTRODUCTION
As the power generation market becomes competitive,

power plant owners strive to make larger profit with lesser cost
of ownership. Maintenance cost accounts for a large part of the
cost of ownership. The current maintenance strategy for most
machines is preventive in the sense that maintenance actions are
performed along schedules suggested by manufacturers. These
schedules are made by the manufacturers based on historical
data, empirical knowledge, and tests performed along design pro-
cesses [1]. However, these schedules have little to do with the
actual condition of the machine subject to the scheduled mainte-
nance actions. To reduce the maintenance cost it is desirable for
the power plant owners to perform maintenance actions when
they are actually needed. This desire has led to a new mainte-
nance strategy called predictive maintenance with which main-
tenance experts assess the condition of a machine at the current
time, predict the failure time in the future, and decide the best
maintenance action. The first two steps are called fault diag-
nostics and prognostics, respectively. For the predictive mainte-
nance to be successful, it is important for diagnoses to be accu-
rate because not only a wrong diagnosis results in unnecessary
maintenance and consequently high maintenance cost but also
diagnoses are used in prognostics and other tasks downstream.

Fault diagnostics and prognostics are not new concepts in
the gas turbine industry for power plants. A gas turbine is such a
crucial component of conventional combined cycle power plants
that it has been of great interest for power plant operators to es-
timate the condition of a gas turbine from test or operation data.
The condition of the gas turbine is quantitatively represented by,
commonly called,health parameters, which scale gas turbine
performance relative to a baseline, e.g., the performance of a
brand new gas turbine. The health parameters are immeasurable
and can only be estimated from measurable data. Estimation of
the health parameters from test data is often referred to as gas
path analysis (GPA), which was pioneered by Urban [2]. A few
classical approaches for GPA are the method of least squares [3]
and Kalman filters [4]. More recently, several artificial intelli-
gence techniques such as neural networks [5], fuzzy logic [6],
and Bayesian networks [7], [8], [9] have been applied to GPA.

No matter which technique is used, there is a common diffi-
culty in applying these techniques to an assessment of the condi-
tion of a gas turbine. When a health parameter estimator is built
using one of these techniques, the estimator should be general
enough to be applicable to various fault situations. However, a
general estimator is not tailored to each fault situation so that its
result may not be as accurate as the tailored ones. A general es-
timator often gives rise to the so calledsmearing effect [10] in
its results. The smearing effect refers to the spread of inaccuracy
over several irrelevant health parameters.

One of the approaches to reduce the smearing effect in di-
agnoses is to find the best one among multiple models each of
which is tailored to a fault situation. The fault logic [3], a com-

binatorial approach [11], and a bank of Kalman filters [12] are
examples of this multiple model approach. Instead of finding
single best model, Lee et al. [8], [9] used the Bayesian model
averaging (BMA) technique to combine results of multiple com-
peting models.

Most of the above methods compare the performance of a
gas turbine with that of a brand new one. This comparison is ef-
fective as long as the gas turbine is actually new or moderately
degraded. If the gas turbine is highly degraded due to the ac-
cumulation of usage, however, the degradation masks the symp-
toms of faults. Consequently, it is harder to distinguish faults
from the normal degradation. For industrial gas turbines, which
often operate with severe degradation, distinguishing faults from
degradation is greatly important in order to prevent hazardous
events due to undetected faults. In this paper, the authors exam-
ine the offline fault diagnostics method presented in [8], [9] with
highly degraded gas turbines and present the modifications made
to handle such gas turbines.

METHODOLOGY
The method presented in this paper is aimed to perform

GPA of industrial gas turbines using multiple Bayesian networks.
More specifically, the gas turbines of interest are the GE Frame
7FA+e turbines. The Bayesian networks consist of health param-
eters, sensor biases, and measurements. Each network is tailored
to a fault situation. When some measurements become available,
the probability distributions of the health parameters and sensor
biases are determined.

Gas Path Analysis
The major health parameters and measurements available

for a GE 7FA+e industrial gas turbine are listed in Tab. 1. LetX
be a vector of health parameters andY a vector of measurements.
At a steady baseload operating condition, the health parameters
and measurements have a functional relationshipf :

Y = f (X)+ ε (1)

whereε is the vector of random error. The relationshipf can be
linearized at the operating condition and written as

Y = AX + ε (2)

whereA is the coefficient matrix. This linearized relationship
changes as the ambient condition varies. To incorporate the ef-
fect of various ambient conditions, each element ofA is given
as a function of the ambient temperature.ε in this equation in-
cludes not only the random noise but the linearization error as
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well. When the measurement vectorY is subject to the sensor
biasB, Eqn. (2) can be written as follows:

Y = A(T )X +B+ ε . (3)

Y is known in this equation whileX andB are unknowns. For the
industrial gas turbine of interest, according to Tabl. 1, there are
6 knowns and 10 unknowns. This is an underdetermined prob-
lem, which cannot be solved with matrix inversion. Instead, a
probabilistic approach using Bayesian Networks is used for this
paper.

TABLE 1. HEALTH PARAMETERS AND MEASUREMENTS

Health Parameters Measurements

Compressor flow (CF) Generator output (DW)

Compressor efficiency (CE) Compressor discharge temperature (CDT)

Turbine flow (TF) Compressor discharge pressure (CDP)

Turbine efficiency (TE) Exhaust gas temperature (TEX)

Fuel flow (WF)

Air flow (WA)

Bayesian Networks
A Bayesian network is a directed acyclic graph [13] consist-

ing of nodes and edges as shown in Fig. 1. A node represents
a random variable, and an edge shows probabilistic dependency
between two variables. When two nodes are connected with an
edge, the node from which an edge emanates is called apar-
ent, and the other achild. A node without any parent is called a
root node. Each node requires a probability distribution condi-
tioned by its parents. The probability distribution of a root node
is called theprior distribution. A child has a conditional proba-
bility distribution (CPD). When some nodes in the Bayesian net-
work become known, the probability distributions of the other
nodes can be updated using inference algorithms. If Child C is
instantiated and the probability of Parent A is of interest, it can
be calculated from the following equations using Bayes’ theorem
and marginalization:

p(A,B|C) ∝
p(C|A,B)p(A)p(B)

p(C)
(4)

p(A|C) ∝
∫

p(C|A,B)p(A)p(B)
p(C)

dB (5)

FIGURE 1. A SIMPLE BAYESIAN NETWORK

Although Eqns. (4) and (5) are derived upto proportionality, they
still can be determined with the fact that any proper probability
distribution integrates to one.

To conduct GPA derived in the previous section using a
Bayesian network, the dependencies between the health param-
eters, sensor biases, and measurements as given as Eqn. (3)
are transformed to a graph as shown in Fig. 2. Whereas each
health parameter affects all measurements, each sensor bias af-
fects only its corresponding measurement. However, a bias in
CDP or TEX can affect all other measurements as well because
they are used for controlling the industrial gas turbine. To com-
plete this Bayesian network, each node needs its probability dis-
tribution. Let us assume that the conditional probability ofY
given X andB, p(Y |X ,B), follows a multivariate normal distri-
bution N(µ ,τ) whereµ is the mean vector andτ the precision
matrix. If the mean of the random errorε is assumed to be zero,
the mean vectorµ is written as

µ = AX +B. (6)

The precision matrixτ can be either a known constant or a vari-
able. Whenτ is considered as a variable, a prior probability dis-
tribution has to be assigned to it. The health parameterX is as-
sumed to be any value in the range of interest. It is also assumed
that no particular value is more likely than others in the range.
This notion can be expressed with a uniform distributionU(a,b)
wherea andb are the lower and upper boundaries. With the same
reason the biasB is assumed to follow a uniform distribution as
well. Choice of prior probability distributions will affect the sen-
sitivity and accuracy of diagonsis from the Bayesian network.

Multiple Model Approach
The Bayesian network shown in Fig. 2 has all major health

parameters and sensor biases. It is so general that it can be used
in any fault situations. On the other hand, it is not as precise as
the Bayesian network tailored to the particular fault situation it
is trying to diagnose. For example, consider a gas turbine whose

3 Copyright c© 2011 by ASME



FIGURE 2. BAYESIAN NETWORK FOR GE 7FA+E GAS TUR-
BINES

sensors are working properly. The Bayesian network tailored
to this gas turbine is the one without all the bias nodes. This
tailored Bayesian network results in more precise results than
the general one. On the other hand, this tailored network cannot
be general. If it is used in other fault situations, it will result in
wrong solutions.

To resolve this generality and preciseness issue, a multiple
model approach is proposed in [8]. Depending on the fault situa-
tion, some of the health parameters and sensor biases are neces-
sary in the network, and the others are not. As the fault situation
changes, the necessary and unnecessary nodes change as well.
To implement the inclusion and exclusion of a node numerically,
a mixture of two uniform distributions is assigned toX andB.
Let us refer to the union ofX andB asθ . The mixture is referred
to as thespike and slab distribution [14] and shown in Fig. 3.
The mixture ratio is controlled by an auxiliary binary variable
γ associated toθ . Whenγ is zero,θ follows the spike, which
is centered at a prescribed value. The spike is so thin thatθ is
nearly deterministically the prescribed value. Whenγ is one,θ
follows the slab, which bounds the range of interest. In contrast
to the previous case,θ can be any value in the range and has to
be included in the network.

When the total number of the health parameters and sensor
biases isn, 2n different networks can be built using all possible
subsets of the health parameters and sensor biases. Categorical
variableM is introduced to represent these 2n network models.
Unless there is a sufficient reason to favor one model over an-
other, it is reasonable to use a non-informative prior [15]; each
model is equally probable. Thus, a categorical distribution with
2n categories is assigned to the model variableM such that the
probability ofM being a particular modelm is as follows:

p(m) =
1
2n . (7)

The assumption of equally probable models is equivalent to as-

FIGURE 3. SPIKE AND SLAB DISTRIBUTION

signing

p(γ = 0) = p(γ = 1) =0.5. (8)

M andγ are added to the network in Fig. 2, and the resulting
Bayesian network is shown in Fig. 4. OnceY is instantiated, i.e.,
some measurements become available, the probabilities of other
nodes can be updated. The posterior probability ofθ , p(θ |Y ),
can be expanded using marginalization as follows:

p(θ |Y ) = ∑
m∈M

p(θ |Y,m)p(m|Y ). (9)

p(θ |Y,m) is the posterior ofθ when the model variableM is
equal tom. p(m|Y ) is a number between zero and one, and the
summation ofp(m|Y ) over all models is equal to one. There-
fore, Eqn. (9) is merely the average of the posterior ofθ from
each model,p(θ |Y,m), using the model posteriorp(m|Y ) as a
weighting factor. Calculating the posterior ofθ using Eqn. (9)
is calledBayesian model averaging [16]. Equation (9) can be
further derived using Bayes’ rule as follows:

p(θ |Y ) = ∑
m∈M

p(Y |θ ,m)p(θ |m)

p(Y |m)
p(m|Y )

= ∑
m∈M

p(Y |θ ,m)p(θ |m)
p(m)

p(Y )

∝ ∑
m∈M

p(Y |θ ,m)p(θ |m)p(m), (10)

wherep(m) is the prior probability of the model variableM being
a particular modelm. Becauseθ , Y , andM constitute a serial
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M

γ

τ θ

Y

M ~ Categorical Distribution

γ|M ~ Deterministic

θ|γ~ (1-γ)U(X0-δ, X0+δ) + γU(a,b)

Y|θ,τ ~ N(μ,τ)

FIGURE 4. MULTIPLE BAYESIAN NETWORKS IN SINGLE
GRAPH

connection, andθ is in the middle of the serial connection,Y is
independent ofM givenθ [13]. Therefore, the first factor in Eqn.
(10) can be written as

p(Y |θ ,m) = p(Y |θ)

=
∫

τ
p(Y |θ ,τ)p(τ)dτ. (11)

The second factorp(θ |m) can be written using marginalization
as follows:

p(θ |m) = ∑
γ∈{0,1}

p(X |γ)p(γ |m). (12)

A degree to which each model is supported by data is deter-
mined by the model posteriorp(M|Y ), which can be expressed
with the CPDs using Bayes’ rule and marginalization as follows:

p(M|Y ) ∝ p(Y |M)p(M)

∝
∫

θ
p(Y |θ ,M)p(θ |M)dθ

∝
∫

θ
p(Y |θ)p(θ |M)dθ . (13)

p(Y |θ) and p(θ |M) are given in Eqns. (11) and (12), respec-
tively. Public domain software WinBUGS [17] is used for calcu-
lating Eqns. (10) and (13).

Unresolved Issues
The Bayesian multiple model approach has been proven ef-

fective when the machines it is analyzing are new and clean and

do not have significant degradation [9]. Table 2 below shows the
results of using the Bayesian multiple model approach on data
representing a new and clean gas turbine with a compressor flow
fault. The model with compressor flow variable with a slab dis-
tribution best matches the data with a probability of 30%. The
probability of this model is distinctively higher, at least five times
than the others.

TABLE 2. MODELS WITH HIGHEST PROBABILITY - NEW
AND CLEAN WITH COMPRESSOR FLOW FAULT

Model
Number

Probability
Cumulative
Probability

Variables With Slab Distribution

XCF XCE XTF XTE BCDP BTEX BDW BCDT BWF BWA

513 30.08 30.08 X

641 6.70 36.78 X X

545 5.58 42.35 X X

577 5.45 47.80 X X

521 4.85 52.65 X X

517 4.00 56.65 X X

673 2.60 59.25 X X X

514 2.38 61.63 X X

705 2.20 63.83 X X X

529 1.95 65.78 X X

As the unit operates over time, the compressor flow, com-
pressor efficiency, and turbine efficiency decrease because of
component degradation while the turbine flow increases as a re-
sult of the increase of the turbine nozzle flow area. Figure 5
shows the general expected gas turbine component degradation
in the context of Bayesian multiple model approach. If the spike
distribution is centered around one, the model that represents the
degraded turbine is one where the compressor flow, compres-
sor efficiency, turbine flow, and turbine efficiency have slab dis-
tributions. As more variables have have non-informative prior,
diagnoses using such model becomes less accurate with a sig-
nificantly lower confidence. Table 3 shows the results of using
the Bayesian multiple model approach on data representing a de-
graded gas turbine with a compressor flow fault. Compared with
the new and clean diagnosis from Tab. 2, no model is distinc-
tively more likely than others. Moreover, the model that repre-
sents the actual status of the turbine, model 961, has the second
highest probability. Compressor discharge pressure appears fre-
quently in the diagnoses because it is highly confounded with
compressor flow and turbine efficiency.

Table 4 shows the results of Bayesian model averaging
(BMA) using Eqn. (9) for the cases on a new and clean machine
and a degraded machine. The results forXCF , XCE , XT F , andXT E

for all these cases are shown compared with the expected values
, new and clean for the first case and degraded for the second
case. The expected values of sensor biases are zero. For both
cases, the -2% shift in CF was correctly estimated. However,
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FIGURE 5. DEGRADED GAS TURBINE IN BAYESIAN MULTI-
PLE MODEL CONTEXT

TABLE 3. MODELS WITH HIGHEST PROBABILITY - DE-
GRADED WITH COMPRESSOR FAULT

Model
Number

Probability
Cumulative
Probability

Variables With Slab Distribution

XCF XCE XTF XTE BCDP BTEX BDW BCDT BWF BWA

737 7.40 7.40 X X X X

961 6.68 14.08 X X X X

609 6.63 20.70 X X X

709 6.22 26.93 X X X X

613 5.08 32.00 X X X X

741 3.50 35.50 X X X X X

745 3.43 38.93 X X X X X

969 3.30 42.23 X X X X X X

865 3.13 45.35 X X X X

993 2.75 48.10 X X X X X

BMA on a unit with large degradation detected a shift in TF and
TE from expected. Moreover, the confidence of the diagnosis de-
creases significantly with standard deviations on some variables
increased by a factor of five. Thus, as the unit degrades in time,
the accuracy and confidence of the diagnosis decreases.

For a new and clean gas turbine, without any prior informa-
tion it is valid to assume that the health parameters are equal to
one and that none of the sensors is biased, and the spike distri-
bution is located accordingly. However, a highly degraded gas
turbine operates outside of the spike region even when the gas
turbine is not experiencing any fault. The inaccurate diagnosis
with low confidence is due to the use of slab distributions on
multiple variables.

In addition, the diagnosis cannot differentiate between
degradation and fault. Figure 5 shows that both a compressor

TABLE 4. SUMMARY OF DIAGNOSIS

with either normal degraded flow or with a fault that causes a
reduction in the airflow lie in the slab region. From the perspec-
tive of the Bayesian multiple model diagnostics, the same model
represents both cases. The fault may not be detected, and the gas
turbine may be kept operating without any maintenance action.
The value of the diagnosis is greatly diminished.

Proposed Solution
One of the strengths of Bayesian networks is its flexibility to

allow the integration of other observations into the algorithm to
enhance or improve its diagnosis. As an engineer performs diag-
nostics on a gas turbine, other observations are available which
may either change the perspective of the engineer or allow the
engineer to eliminate certain potential faults. Such observations
can be, but are not limited to, a fleet or unit degradation model,
historical data, sensor calibration reports, vibration data, or phys-
ical observations on the gas turbine. To address the previously
discussed issues, this paper proposes the integration of other ob-
servations into the Bayesian multiple model scheme in order to
improve the diagnosis confidence. This paper will focus on the
integration of a degradation model via onsite monitoring or his-
torical data and sensor calibration reports into the Bayesian mul-
tiple model diagnostic algorithm for gas turbines.

Bring In More Information. By integrating a degrada-
tion model, the prior assumptions of the component performance
are changed such that the diagnosis method only needs to de-
tect deviations from the expected performance. Figure 6 shows
the general expected gas turbine component degradation in the
context of Bayesian multiple model diagnostics when a degrada-
tion model is integrated. The spike distribution shifts from being
centered around one to being centered around the expected level
of component degradation. This is analogous to changing the
perspective such that a diagnosis is made in comparison with a
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normaly degraded gas tubine instead of a new and clean unit.

There have been attempts to build physics based models
of component degradation. However, the attempts had limited
success in terms of accuracy. This limitation leads to empiri-
cal based techniques of which there are two general concepts:
fleet based or unit based model. A fleet based model incorpo-
rates all, or a subset, of the historical data of a fleet, potentially
including fired hours, variation in operation type, and variation
in operating environment. These models provide a broad high
level estimate of the degradation, but often can have large un-
certainties [18]. When an event occurs for which diagnostics is
required, the engineer would input the known operating hours as
well as the operating environment, and the model would output a
estimate of the component degradation with a confidence bound.
From the perspective of Bayesian multiple model approach, this
estimate would represent the spike distribution for each compo-
nent as shown in Fig. 6.

FIGURE 6. DEGRADED GAS TURBINE IN BAYESIAN MULTI-
PLE MODEL CONTEXT WITH SHIFT IN SPIKES

A unit based model can be developed using similar tech-
niques as the fleet based model or using a filtering technique such
as a Kalman filter [19]. The sources of the uncertainty in the fil-
tering based model are reduced to sensors and the model, with
the large unit-to-unit variation eliminated. When an event occurs
for which diagnostics is required, the engineer would input the
last known ‘healthy’ data point as the probabilistic estimate of
the component degradation.

Reduction of Number of Models. In addition to inte-
grating degradation models which shift the estimate of the spike
distribution of health parameters, there are observations about
the ’health’ of the sensors that can be integrated. In its previ-
ous form, the Bayesian multiple model approach tests whether
each and every sensor has a bias. However, observations can
be made by engineers which would lead the engineer to trust
a given sensor measurement, or quantify what the bias is. Of-
ten, calibration reports are available to engineers on certain sets
of sensors. Analogous to the integration of degradation models,
these calibration reports provide an estimate on the magnitude of
the bias in each sensor. Also, by integrating sensor calibration re-
ports when available, the diagnostic method does not need to test
for the presence of an unknown systemic bias on a given sensor.
From the Bayesian multiple model perspective, the inclusion of
calibration reports has a two-fold effect on a given sensor mea-
surement: 1) Shift of the spike distribution and 2) elimination of
the need for a slab distribution.

TEST CASES
The developed method is applied to two test cases which

show the advantages of using a degradation model and sensor
calibration reports. The measurements in the following situations
are simulated using the Gas Turbine Performance (GTP) soft-
ware developed at GE [20]. A notional turbine with a significant
number of fired hours is used for the test cases. An approximate
model of the component health parameters as a function of fired
hours was used to model the degradation [21]. As the number
of fired hours increases, the confidence bound of the predicted
value of the health parameters increases as a result other unmod-
eled operation parameters [18]. When a health parameter has a
value of one, this means that the performance of the correspond-
ing component is the same as a new and clean unit. All sensor
biases are expressed as percentages of the values at the design
condition except for the temperature sensor biases, which are in
deviation from design condition.

Highly Degraded Unit With Compressor Flow Fault
In this case, there is a compressor flow fault of 2%. Hence

the value of the compressor flow is 2% less than the value ob-
tained from the degradation model. All the other components are
assigned values based on a highly degraded turbine. This case is
not indicative of actual situations seen in the field, but it provides
a good measure of the changes to the diagnosis as a degradation
model is integrated. The analysis is carried out with ten data
points. To capture the effect of daily temperature variation, each
data point represents the performance of the gas turbine at a dif-
ferent ambient temperature.

Table 5 shows the results of this test case of a highly de-
graded gas turbine with a compressor flow fault with the degra-

7 Copyright c© 2011 by ASME



dation model. Model 513 is the most probable with a probability
of 23.45%, which is distinctively higher than the others. Indeed,
it is the right diagnosis because model 513 has a slab distribution
on only XCF and represents the actual fault case. This is a sig-
nificant improvement from the case without a degradation model
in Tab. 3. The inclusion of the degradation model increases the
confidence in the most probable model by a factor of three in this
case.

TABLE 5. MODELS WITH HIGHEST PROBABILITY - WITH
DEGRADATION MODEL

Model
Number

Probability
Cumulative
Probability

Variables With Slab Distribution

XCF XCE XTF XTE BCDP BTEX BDW BCDT BWF BWA

513 23.45 23.45 X

577 8.08 31.53 X X

641 7.25 38.78 X X

521 5.08 43.85 X X

545 4.85 48.70 X X

517 3.45 52.15 X X

673 3.45 55.60 X X X

585 2.85 58.45 X X X

769 2.78 61.23 X X

529 2.15 63.38 X X

Table 6 shows the results of Bayesian model averaging
(BMA) using Eqn. (9) for the cases without and with a degra-
dation model. The table also shows the results of running the
“truth” model (model 513) which had only a spike distribution
on XCF . Since the “truth model” represents the actual case, the
results from running only this model should provide the high-
est levels of confidence as shown in the standard deviation val-
ues. The results forXCF , XCE , XT F , andXT E for all these cases
are shown compared with the expected values from the degra-
dation model. The expected values of sensor biases are zero.
For all the three cases, the -2% shift in CF was correctly esti-
mated. However, BMA without the degradation model detected
non-neglibible shifts in TF and TE. By including the degrada-
tion model, the estimated shifts in TF and TE became neglibible.
Moreover, the confidence of the diagnosis increased significantly
with standard deviations on some variables reduced by a factor
of five. Thus, by integrating a degradation model in a Bayesian
network of a highly degraded gas turbine, the network can de-
tect both the presence of and the magnitude of a CF fault while
reducing the chances of making incorrect diagnoses.

Highly Degraded Unit With CDP Sensor Bias
After the implementation of the degradation model, the ad-

vantage of the sensor calibration report is demonstrated in this
case. Here instead of a CF fault, there is a CDP sensor bias

TABLE 6. SUMMARY OF COMPRESSOR FAULT DIAGNOSIS

of 2%. All the other variables are assigned values based on a
highly degraded turbine. Since the CDP measurement is used to
control the gas turbine, an unknown bias in CDP would cause a
shift in the performance of the gas turbine. This case will high-
light how the Bayesian multiple model approach can be used to
aid the engineer doing performance analysis in differentiating an
unknown sensor bias from a gas turbine fault. To illustrate this
point, three sub cases were analyzed: no sensor calibration infor-
mation available, calibration reports for all sensors except CDP,
and calibration reports for all sensors. When available, the cal-
ibration reports indicated no bias in all the sensors other than
CDP and a 2% bias in CDP. The second sub case, although not
completely realistic, demonstrates how the diagnosis improves
as models are removed from the network. Similar to the degra-
dation model example, the third sub case will demonstrate how a
shift in the spike distribution of a sensor improves the diagnosis.
For all three sub cases it was assumed that there were 10 data
points available for each.

Tables 7 illustrates the results of the sub case when no sen-
sor calibration information is available. In this case, the Bayesian
network correctly finds that model 33, which has a slab distribu-
tion for BCDP and spike for all others, is the most probable model.
The probability of the most probable model is 23.78% which is
slightly more than two times greater than the second most proba-
ble model which has both a spike distribution for bothBCDP and
TF. Given that all the models with sensor biases other than CDP
have low probabilities, it can be assumed that these sensors can
be trusted. This assumption is analogous to sensor calibration
reports on those sensors indicating no biases.

Table 8 illustrates the results of the sub case where calibra-
tion reports for all sensors except the CDP sensor are available.
Similar to the case with no sensor information, the Bayesian net-
work correctly finds that model 33, which has a slab distribution
for BCDP and spike for all others, is the most probable model
with a likelihood of 49.25%. This model is now three times more
likely than the second most likely model which again has both a
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TABLE 7. MODELS WITH HIGHEST PROBABILITY - NO SEN-
SOR INFORMATION KNOWN

Model
Number

Probability
Cumulative
Probability

Variables With Slab Distribution

XCF XCE XTF XTE BCDP BTEX BDW BCDT BWF BWA

33 23.78 23.78 X

161 11.00 34.78 X X

97 6.83 41.60 X X

41 4.53 46.13 X X

105 3.73 49.85 X X X

37 3.55 53.40 X X

545 3.23 56.63 X X

49 3.13 59.75 X X

225 2.60 62.35 X X X

169 1.98 64.33 X X X

spike distribution for bothBCDP and TF. However, the probabil-
ity of this model as well as that of the third most likely model,
which has again has both a spike distribution for bothBCDP and
TE, both increase by around 6% from their values in the previous
sub case. To verify the presence of a TF or TE fault, the gas tur-
bine has to be shut down, and the casing has to be opened, which
is a quite expensive job. Instead, the performance engineer can
simply request a calibration report on the CDP measurement.

TABLE 8. MODELS WITH HIGHEST PROBABILITY - ALL SEN-
SOR INFORMATION EXCEPT CDP KNOWN

Model
Number

Probability
Cumulative
Probability

Variables With Slab Distribution

XCF XCE XTF XTE BCDP BTEX BDW BCDT BWF BWA

33 49.25 49.25 X

161 16.38 65.63 X X

97 13.13 78.75 X X

545 6.00 84.75 X X

225 3.50 88.25 X X X

289 3.35 91.60 X X

673 2.13 93.73 X X X

417 1.55 95.28 X X X

609 1.53 96.80 X X X

353 1.50 98.30 X X X

As the calibration report on the CDP sensor becomes avail-
able, the performance engineer runs the Bayesian network again
to refine its solution. Consider the calibration report indicating
a 2% bias in the CDP measurement. To accommodate this in-
formation, the spike distribution of CDP bias was shifted to 2%.
Because the CDP bias is already considered in its probability
distribution, the “truth” model for this case is the one with a
spike distribution for every variable. Table 9 illustrates the result
from the case when the calibration information of all sensors is
available. The Bayesian network correctly finds, again, the truth

model with the highest probability, which is increased by 7.3%
from the case where no CDP information was known. In addition
to the increased confidence of the right diagnosis, the Bayesian
network finds a TF fault less likely by 6.25% compared with the
previous case making the most likely model now four times more
likely than the second most likely model. The probability of a
TE fault remains nearly same. With the sensor calibration report
included in the analysis, along with the degradation model, the
diagnosis becomes much more confident from about 7% in Tab.
3 to 56% in Tab. 9.

TABLE 9. MODELS WITH HIGHEST PROBABILITY - ALL SEN-
SOR INFORMATION KNOWN

Model
Number

Probability
Cumulative
Probability

Variables With Slab Distribution

XCF XCE XTF XTE BCDP BTEX BDW BCDT BWF BWA

1 56.55 56.55

65 13.55 70.10 X

129 10.13 80.23 X

513 6.28 86.51 X

257 3.93 90.44 X

193 3.48 93.92 X X

577 1.95 95.87 X X

641 1.30 97.17 X X

321 0.93 98.10 X X

385 0.55 98.65 X X

Table 10 shows the results of Bayesian model averaging
(BMA) using Equation (9) for the CDP bias sub cases when no
sensor information was available and when all sensor calibration
information was available. The table also shows the results of
running the ”truth” model (model 1) which did not test for the
slab distribution for all sensor biases and shifted the CDP bias
spike to the biased value. Since the ”truth” model represents the
actual case, the results from running only this model should pro-
vide the highest levels of confidence as shown in the standard
deviation values. The results for CF, CE, TF, and TF for all these
cases are shown compared with expected values from a degrada-
tion model. The expected values of sensor biases were 0, except
for the CDP bias for the 2nd and 3rd sub case which expected a
2% bias in CDP. All three sub cases detect a large bias in CDP.
However, the sub case with no sensor information known had a
significantly lower confidence in the diagnosis of the CDP bias.
Additionally there was a small TF fault detected in this case. The
confidence of the diagnosis with all sensor information known is
very close to the sub case of the ”truth” model. This example
shows that by integrating a calibration in a Bayesian network of
a highly degraded gas turbine, the network can detect both the
presence of and the magnitude of a CDP bias while reducing the
likelihood of incorrect diagnosis.
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TABLE 10. SUMMARY OF CDP DIAGNOSIS

CONCLUSIONS AND FUTURE WORK
This paper presents the advantages of using additional in-

formation such as a degradation model and a sensor calibration
report in the offline fault diagnostics process for industrial gas
turbines in a steady state. The cases analyzed include a gas tur-
bine with a compressor flow fault and a gas turbine with a CDP
sensor bias. The present method successfully detects and iden-
tifies the magnitudes of the compressor flow fault and the CDP
sensor bias with a limited number of data points. As the compres-
sor degrades over time, it is sensible to analyze the diagnostics
from the perspective of where it is expected to operate instead
of analyzing from the stand point of a new and clean gas turbine.
The results indicate that the confidence of the diagnosis is greatly
improved when a degradation model is used. With the help of a
degradation model, we can clearly differentiate between a fault
and degradation in the gas turbine. Further, using a sensor cal-
ibration report reduces the number of models to be tested and
hence the results show an improvement in the confidence of the
analysis.

The future scope of the research includes enhancing the ac-
curacy of the diagnostics by testing it for other fault situations
and sensor biases. In addition to verifying the performance on
other computer simulated fault cases, future work will focus on
validating the diagnostic performance on real-life cases. A chal-
lenge here is identifying cases where a known fault or event has
occurred. Potential validation cases for an industrial gas turbine
could be events such as a compressor water wash or a hot gas path
outage. In addition to verification and validation tests, the fidelity
of the model can be enhanced, by including secondary flow faults
in the analysis. This would allow engineers to study the sensitiv-
ity of the secondary flow assumptions in the diagnostics. The ad-
dition of secondary flows in the analysis may require integrating
other data such as vibration data and wheel space temperatures.
Since the multiple Bayesian network approach is so flexible, it
can leverage new tools, methods, and sensors developed for the

state-of-the-art gas turbines, to enhance the diagnostics.
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