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ABSTRACT 
 This paper presents analytical linearization schemes of a 

reduced order aero-thermodynamic model of the generic back 

end of a turbofan engine. The proposed linearization scheme 

has advantages of flexibility and reusability over the 

commonly used linearization method based on the numerical 

perturbation scheme. Also, a blending algorithm employing the 

distance to the boundary as the weight has been incorporated 

into the linearization scheme to capture the change of the flow 

behaviour near bifurcating boundaries. The proposed 

linearization scheme is developed and applied to a back end 

model of a generic turbofan engine with bifurcations 

corresponding to choked/unchoked boundaries. This model is 

also used for proof of concept validation test. 

 

NOMENCLATURE 

Α   matrix for linearization 

Ai  Area at the i
th
 station 

cp  Specific heat at constant pressure 

Di  Distance to the boundary 

K  Work extraction coefficient 

pa  Ambient pressure 

pi  Static pressure at the i
th
 station 

pt,i  Stagnation pressure at the i
th
 station  

r  Rotor radius 

SISO Single Input Single Output 

Ti  Static temperature at the i
th
 station 

Tt,i  Stagnation temperature at the i
th
 station 

ui  Flow velocity at the i
th
 station  

γ  Ratio of specific heats 

η   Efficiency 

φ   Flow coefficient 

Ψ  Stage loading coefficient 

ω  Rotor speed 

 

INTRODUCTION 
Linear models have historically been very useful in the 

design and analysis of control and estimation algorithms for 

gas turbine engines [1]. Whereas gas turbine engines are 

significantly nonlinear in a large signal sense, their small 

signal response near equilibrium can generally be well 

represented by a set of local perturbation linear models. The 

existence and validity of such linear models enable the use of 

well established approaches for the design and analysis of 

control laws and estimators. This includes classical single 

input/single output control law design, multivariable control 

[2,3], model predictive control [4], and Kalman filter 

estimation [5,6]. As the accuracy and performance of 

controllers greatly depend on the engine model, it follows that 

developing an accurate model that captures the transition of 

different flow characteristics of entire flight envelope is the 

first step in designing a good engine controller.  

A detailed model of the engine is usually developed to 

simulate the engine behavior across the entire operating 

envelope. Although such models are generally not usable in 

real time due to computational and numerical issues, they can 

serve as the basis of simpler, faster models targeted at control 

and health monitoring functions. Control oriented engine 

modeling methods can be broadly classified into two 
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categories: physics based models and data-driven black box 

models. Typically, a physics based approach directly models 

the inter-component aero-thermal properties as well as shaft 

dynamics while employing a map/look-up table type 

representation of the components [7-9]. A limited number of 

correlation parameters derived from test data may also be used 

to fill in missing information. A black-box approach may 

attempt to derive arbitrary mathematical functional 

relationships between input and output data, where the data is 

either obtained via experiment or simulation. Examples of this 

approach include state variable models, neural network based 

engine models, and support vector machine based engine 

models. In practice, a control and/or health monitoring engine 

model may mix these approaches. In any case, the chief 

motivation is to improve the accuracy while minimizing 

computational costs.  

A judicious use of input-output data can yield a data-driven 

model that is more accurate than a simplified physics based 

model. However, the selection of training and validation data 

sets is a key challenge. Another unfavorable aspect is the 

necessity to redevelop the entire model if there is any change 

in even one of the engine components. Moreover, the lack of a 

direct correlation with underlying physics makes it difficult to 

diagnose any erratic behavior. A physics-based modeling 

approach makes it easier to relate observed behavior to the 

underlying processes. Not only can the engine component 

changes be incorporated into a physics-based model with 

minor modifications, the generic nature of such a model makes 

it applicable across a family of engine designs. A key benefit 

lies in the behavior of the model outside the validated domain: 

adherence to physical laws ensures reasonable dynamic 

behavior during untested operating conditions.  

Design of control systems for linear systems is a well 

established field. As a consequence of Lyapunov’s indirect 

method it is possible to design linear controllers that are 

guaranteed to be stable in the neighborhood of an equilibrium 

point of a non-linear system. In most current generation engine 

controllers, it is typical to divide the operating regime into 

segments or modes and design linear controllers for each of 

these modes. Each controller computes demanded values 

independent of others. The final actuator demands are 

calculated by an appropriate blending of different modes. 

There is thus a need to obtain linear models at specified 

operating points across the envelope of engine operation. 

Given that the detailed engine model cannot be analytically 

represented, one way to obtain linear estimates is via 

numerical perturbation [10-12]. The coefficients obtained in 

this fashion have to be stored in onboard memory. As the 

system can be highly non-linear over the entire envelope, 

linearization has to be carried out at several operating points to 

achieve acceptable level of accuracy. Storage being a 

constrained resource, this leads to a trade-off between 

accuracy and memory use. Of course, any changes to the 

system require a recalculation of the entire set of linear 

coefficients.  

 
Figure 1. Different linearization approach 

 

In the present work, the development of a reduced order 

model followed by analytical linearization of the resulting 

system is proposed as an alternative to the numerical technique 

[Figure 1]. The outcome is a modeling methodology that is 

flexible yet computationally efficient. The paper is organized 

in the following manner. The basic rationales for the modeling 

methodology are first described. This is followed by the details 

of a reduced order model for the back end of a turbofan 

engine. The key features of this non-linear system are explored 

via a computer simulation. The discontinuity in the slope of 

mass flow rate with respect to control inputs divides the 

domain into subspaces. Results show the validity of the 

linearized model in the interior of each subspace. The 

observed large errors in linear estimates when crossing 

subspace boundaries is improved via a novel blending 

approach. The paper concludes with future research topics. 

It may be noted that the proposed methodology is 

illustrated via application to the back end of a turbofan. The 

eventual goal is to extend the model to a complete engine with 

shaft dynamics.  

 

THEORETICAL RATIONALE 
For a nonlinear system with slow and fast dynamics 

represented in terms of slow states x1 ( spool dynamics, metal 

temperature dynamics, etc) and fast states x2 (flow dynamics in 

different components of an engine) of the form 
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Linearization of the above equations about an equilibrium 

solution (x1o,x2o, uo) results in 
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When one considers the flow behavior in the back end of an 

engine, the flow dynamics may be considered to be relatively 
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fast, which are outside the typical bandwidth of an engine 

controller. Hence, the flow dynamics of such a system may be 

residualized, i.e., the dynamic equations associated with x2 are 

treated as algebraic equations. Hence, the residualized form of 

the fast dynamics are given by 

 

0),( ,212 =uxxf o  (3) 

 

The sensitivity of the flow behavior to small control inputs can 

be analyzed using the linearized form of the above equation. It 

is reasonable to assume that when a control perturbation δu is 
applied from an equilibrium condition (x1o, x2o, uo), over the 

small instant of time during which the fast states x2 reach a 

new equilibrium, i.e., x2o+δx2o, the change in slow state x1, 

from its initial equilibrium value x1o, will be very small, and 

hence, may be neglected. Then one can use a linearized form 

of the above equation by treating x1 to be same as x1o for 

analyzing the effects of control perturbation δu on resulting 

flow behavior change δx2o. The linearized form of the above 

equation becomes 
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Or in a matrix form, 

 

0=+ ux δδ BΑ  (5) 

 

The focus of the following sections is to develop an 

analytically linearizable form of flow equations applicable to 

the back end part of a turbojet engine and evaluate the fidelity 

of the linearized equations, especially in the presence of 

component level flow choking due to control perturbations. 

Further, a novel scheme for blending of linearized models 

across component level choking boundaries is proposed and is 

evaluated. 

 

SIMPLIFIED REPRESENTATION OF THE BACK END 
 As the engine goes through startup procedure, the turbine 

and propulsive nozzles may go from an unchoked flow regime 

to a choked flow regime. The choke point is a function of 

system geometry as well as work extracted across the turbine 

stages. A relevant simplified model should be able to capture 

the unchoked to choked transition as well as the flexibility of 

the turbine versus propulsive nozzle choking. The performance 

of a turbine stage is usually represented in terms of a map that 

relates outlet stagnation pressure and component efficiency to 

inlet stagnation pressure and mass flow rate [13-15]. One 

advantage of the simplified model presented here over a map 

type representation is the ability to explicitly capture choked-

unchoked flow conditions. 

  

 
Figure 2. The proposed model description of generic 

back end model of a single spool turbofan 
 

As the rotor dynamics are significantly slower than gas 

dynamics, following the previous section the gas dynamics can 

be residualized. This leads to a set of nonlinear static equation 

that can be solved for gas states, given rotor dynamics and 

control inputs. Again following the theoretical rationale, 

equilibrium values for the rotor state can be used to calculate 

the quasi-steady values of the gas states.  

Turbine-Nozzle Model 
  In the present work, the turbine component is represented 

by a combination of a throat area and a work-extraction plane. 

The work extraction plane is not unlike the usual component 

map. Work and efficiency are specified as a function of the 

flow coefficients and formally expressed as, 

 

)(φη f=  (6) 

)(φψ g=  (7) 

 

It is assumed that flow characteristics remain on the subsonic 

branch of the aerodynamic solution. The flow is assumed to be 

isentropic with the efficiency equation encapsulating all the 

loss generating mechanisms. 

 The propulsive nozzle is modeled as a simple converging 

nozzle. The overall system can be viewed as a converging-

diverging duct, a work extraction and loss generation plane, 

and a converging duct. This is illustrated via Figure 2. The 

inputs to this system are the total inlet stagnation pressure 

(pt,45) and the nozzle area (A8). The boundary conditions are 

given by the ambient pressure and cross-sectional areas at 

stations 47 and 5. The outputs of the system are mass flow rate 

( m& ), exit velocity (u8), total temperature after work extraction 

(Tt,50) and total pressure after work extraction (pt,50). 

In general, the extraction plane equation can be of any 

complex form. However, for the purpose of this paper, a 

simple yet functionally relevant relationship is assumed. The 

turbine efficiency is assumed to be a constant. Whereas this is 

not true across the engine operating envelope, it may be a valid 

Turbine Nozzle 

Work Extraction Plane 

ap45,45, , tt Tp
8A5A47A

45 47 48 7 85
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approximation locally. Based on the known behavior of a 

single stage, a linear relationship between stage loading and 

flow coefficient is assumed for the work extraction. With these 

assumptions, equations (6) and (7) yield the following 

equations for stagnation temperature and pressure drop across 

the extraction plane. 
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It is emphasized that these simplifying assumptions do not lead 

to a loss of generality. A complex work and efficiency to flow 

rate relationship would increase the complexity of the solution 

procedure used for the non-linear model simulation but would 

not fundamentally change the linearization process.  

 
Figure 3. Mass flow rate contour plot 

 
Figure 4. Thrust contour plot 

 The simplified, physics based back-end model is described 

by a set of non-linear equations, included in their entirety as 

Appendix A.  

 

Features of the Nonlinear System 

The system of nonlinear equations representing the 

simplified model have been simulated via MATLAB for a 

range of nozzle exit area and inlet stagnation pressure inputs. 

The results in form of contour plots of mass flow and thrust are 

presented in Figures 3 and 4, respectively. The independent 

variables in these plots are nozzle exit area to turbine throat 

area ratio and inlet stagnation to outlet (ambient) pressure 

ratio. Contour plots have been found to be a valuable tool in 

the visualization of system characteristics as one or more of 

the input parameters are varied. The nonlinear solution is 

subject to bifurcation around choking of the turbine and the 

nozzle. Flow can either be subsonic or choked at each 

component level and the mass flow rate is dictated by the 

choked component. The contour plots clearly indicate three 

distinct subspaces represented by different slopes in the mass 

flow rate and the thrust. These subspaces are the subsonic 

regime, the nozzle choked regime, and the turbine choked 

regime as illustrated by red, blue and yellow shades, 

respectively. In addition, three boundaries (denoted as B1, B2, 

and B3 in Figures 3 and 4) representing the bifurcation in flow 

characteristics are superimposed on the contour to indicate 

when the nozzle and/or the turbine are choked. 

As the engine goes through a startup procedure, the 

turbine-nozzle subsystem transitions from a highly nonlinear 

system to an essentially linear system. This transition occurs as 

the relationship between the mass flow rate and the pressure 

ratio drop across the turbine becomes linear when either the 

turbine or the nozzle is choked. This change in behavior is a 

key challenge in control design. This feature can be observed 

in Figure 3, the contour plot of mass flow rate. For a fixed 

nozzle exit area, the spacing between two consecutive contour 

levels is unequal on the left of the B2 boundary. When the 

system is operating at higher pressure ratios, to the right of this 

boundary, the contours are uniformly spaced, again for a fixed 

area ratio.  

The nozzle is not the only component that is expected to 

choke at higher pressure ratios. If the nozzle area is much 

larger than the equivalent throat area of the turbine, the turbine 

may choke first. This boundary is represented by the curve B1 

in Figure 3. Again, to the right of the boundary B1, as 

expected, the contour levels are uniformly spaced, relative to 

pressure ratio for a fixed area. The third boundary of this 

system, marked B3, separates turbine choked and nozzle 

choked subspaces. As this boundary is crossed from region 3 

to region 2, due to an increase in the exit area of the variable 

nozzle, mass flow becomes independent of nozzle area. The 

overall thrust for this simplified system still has a small 

dependence on the nozzle area, as evident in Figure 4. This is 

mainly due to the continued dependence of exit velocity on the 
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nozzle area, with a minor contribution from the differential 

pressure.  

 

 

LINEARIZATION 
The solution of the nonlinear set of equations is 

computationally expensive. As mentioned before, sensitivity of 

the flow behavior to small changes in control can be computed 

via the linearized counterpart. The nonlinear system exhibits 

distinct subspaces that correspond to choking and unchoking 

of the various components. As the set of equations describing 

each subspace is different, the resulting set of linearized 

equation is also different for the different subspaces. These 

analytically linearized equations for the matrix A, the matrix of 

linear coefficients, are included in Appendix A.  

When the operating point is restricted to any one subspace, 

the non-linear system is smooth and hence the matrix A is a 

continuous function of its independent variables. It is thus 

expected that in the interior of each subspace, the respective 

linear systems would yield good estimates of perturbed states 

for given control variations. A comparison of the non-linear 

simulation results to the corresponding linear system shows 

that this is indeed true. Figure 5 shows the results 

corresponding to a pressure ratio sweep. At each operating 

point, defined by a given area and pressure ratio, a control 

perturbation of a 5% increase in pressure and a 2% decrease in 

nozzle exit area is applied. The figure shows all the four 

outputs: stagnation temperature and pressure drop across the 

turbine component due to a change in turbine work, mass flow 

rate and the flow velocity at the nozzle exit plane. The error is 

defined as the difference in the linear estimates and the true 

nonlinear values of the perturbed system outputs, normalized 

with respect to the true values.  

As long as the operating point is away from subspace 

boundaries, the linear estimates of the change in turbine work, 

mass flow rate and exit velocity match the true values. There is 

a large error as the system goes from subsonic to choked 

turbine operating conditions. 

Whereas the current example corresponds to a relatively 

large change in the input variable, the large error near a 

subspace boundary is observed for any magnitude of the 

change. The large error region gets wider or narrower as the 

percentage change in control inputs is increased or decreased. 

Fundamentally, the error arises due to a discrete change in the 

linearized system equations across a subspace boundary. For a 

control input that leads to a subspace transition, neither set of 

linearized equations is strictly correct. It may be possible to 

mitigate the impact of this large error by limiting the 

permissible control changes to small values near subspace 

boundaries. However, a promising approach based on blending 

the output of multiple linearizations near the boundary has 

been developed as part of the current work and is presented in 

the following section. 
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Figure 5. (a) Linear vs. nonlinear solution going from 

the subsonic regime to the turbine choked regime 

(b) % error of the linear solution 
 

BLENDING ACROSS THE SUBSPACE BOUNDARIES 
The simulation results of the non-linear representation of 

the turbine-nozzle system show that it has three distinct 

subspaces. The flow in the entire system is subsonic, the 

turbine is choked or the propulsive nozzle is choked. The 

boundaries separating the subspaces correspond to unique 

operating conditions in which either one or both the 

components just get choked. Near the boundaries, as the 

results of the previous section show, the linearized estimate 

can strongly deviate from the true value of any of the output 

variables. 

To mitigate this error, a strategy to detect boundary 

crossing has been developed here. Given that the linear models 

are discontinuous across subspace boundaries, the linear 

estimate is computed as a weighted sum of two linear 

estimates, one for each subspace. A key requirement to 

efficiently implement this blending approach is the availability 

of analytical expressions that define each boundary. This 

requirement is satisfied in this work as the analytical 

linearization scheme offers the analytical expressions of each 
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boundary. In the conventional numerical linearization scheme, 

it would be difficult to obtain the analytical expressions. For 

the turbine-nozzle subsystem used in this work, equations for 

each of the three boundaries are developed utilizing basic flow 

properties. A blending algorithm that utilizes these boundary 

equations to improve linear estimates near the subspace 

boundaries is detailed and evaluated. 

The boundary between the subsonic flow (Region 1) and 

turbine choked (Region 2) represents the scenario where the 

flow through the nozzle is still completely expanded and the 

Mach number at the turbine throat reaches unity. When both 

these conditions are imposed on the general set of equations, 

an equation for the boundary can be written as, 
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This boundary is a function of the turbine work, available inlet 

stagnation pressure and enthalpy, as well as the geometric 

parameter, turbine throat to nozzle area. The nozzle area ratio 

essentially determines whether the nozzle or the turbine 

components will get choked once critical pressure ratios are 

reached. The boundary B2 between the subsonic flow and the 

nozzle choked regions represents the scenario when the 

pressure after the turbine is just sufficient to choke the nozzle. 

Again the flow is fully expanded to the ambient at the nozzle 

exit. The relevant analytical expression is given by:  
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At the boundary of nozzle choked and turbine choked 

subspaces, both the components are just choked. An equation 

for the boundary B3 can thus be obtained by equating the 

choking mass flow rates through the two components. The 

resulting expression is  
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The boundary B1 and B3 share first few terms because both of 

them are obtained by equating the mass flow rate of the turbine 

choked region with mass flow rate of the nozzle either when it 

is choked or subsonic. 

It may be noted that all the three boundaries are dependant 

on the turbine work. Boundary B1 and boundary B3 also 

depend on the nozzle to turbine throat areas. Further, each 

boundary has a spurious branch, which is part of the 

theoretical solution, but not applicable to the turbine-nozzle 

system. As an example, part of the boundary B1 corresponds 

to the supersonic solution. Similarly, for a part of boundary 

B3, the available inlet pressure is lower than a critical value, 

and hence, neither the turbine nor the nozzle can be 

realistically choked. Care must be taken to neglect these 

spurious branches on the numerical implementation of the 

blending algorithm. 

Blending Algorithm 
 The blending algorithm is a simple 2-step approach. Detect 

if a boundary would be crossed for a given control input and if 

so calculate the weights for the corresponding linear systems. 

In the proposed approach, both of the steps involve calculating 

the distance to the boundary before and after the controlled 

inputs are applied. Geometric considerations allow one to 

deduce the change of subspace; specifically the distance to the 

boundary must change sign when a boundary is crossed. As the 

contour plots show (Figure 3 and 4), the operating point may 

be close to multiple boundaries. The boundary most likely to 

be active is the one that is closest. This can either be 

determined from the nonlinear solution, or better directly from 

the boundary equations. 

 The availability of analytical boundary conditions allows 

for a quick calculation of the distance to the boundary. The 

distance to the boundary before the application of control 

perturbation can be directly calculated by evaluating the left-

hand side of the relevant boundary equation. To calculate the 

distance after the perturbation, the variables in the boundary 

equation take their values from the results predicted by the 

linear system of equations. This implies that the distance after 

the perturbation is an approximation, but the results show that 

it provides acceptable estimates. 

In Figure 6, D1 represents the distance to the boundary 

before the perturbation and D2 represents the distance to the 

boundary after the perturbation. If the product of D1 and D2 is 

positive then flow properties of both before and after the 

perturbation are located in the same region and no crossing of 

the boundary is detected. The boundary of interest has been 

crossed when the product of D1 and D2 is negative. When the 

product of the D1 and D2 is zero, the flow is right at the 

boundary and the flow characteristics are satisfied by using 

either Region 1 equations or Region 2 equations. 

As suggested earlier, if a boundary crossing is detected, a 

possible solution is to reduce control step sizes to ensure that 

the boundary is not transgressed. However, the blended output 

can provide accurate linear estimates and hence deemed 

superior. The blended output uses the distance to the boundary 

as weights in a weighted average approach. As an example, 

blended mass flow rate can be written as 
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where the regions 1 and 2, and the distances D1, D2 are as 

illustrated in Figure 6.  
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Figure 6. Description of boundary crossing 
 

 

 
 

Figure 7. Blending algorithm at the boundaries 
 

Figure 7 outlines the general structure of the blending 

algorithm using the weights used in this work. It is to be noted 

that this algorithm requires the computation of outputs in the 

both sub-regions for the combined answer. 

The robustness and stability near the neighborhood of the 

boundaries are subject to more rigorous analysis. The 

bifurcating behavior observed is similar to the linear parameter 

varying dynamical system. Balas and Wolodkin et al have 

applied the parameter dependent control design to the turbofan 

engine [16,17]. The parameter dependent control is not the 

scope of this paper; however, in the future work, similar 

theoretical analysis can be applied to the current model.  

The blending approach has been implemented and verified 

against the true, nonlinear estimate of output perturbations. 

The results show that this simple approach can provide 

significant improvements in the linear estimates near the 

subspace boundaries. 

The results for a 5% increase in inlet pressure and a 2% 

decrease in nozzle exit area are presented in Figure 8. This 

case corresponds to the results in Figure 5 i.e., equilibrium 

area-ratio leads to the crossing of boundary B1 between 

subsonic to turbine choked subspaces. As evident from a 

comparison of the two figures (Figures 5 and 8) the blended 

results show a significant improvement over the baseline. As 

expected, this error decreases with a decrease in control 

perturbation.  
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Figure 8. (a) Linear vs. nonlinear solution going from 

the subsonic regime to the turbine choked regime 

(b) % error of the linear solution 
 

To demonstrate the efficacy of the blending approach 

across all boundaries, the different cases have been simulated.  

Figure 9 contains the results for the case when the subsonic to 

nozzle choked boundary is crossed, whereas Figure 10 relates 

to the case where the nozzle-choked to turbine choked 

boundary comes into play. 

The results in Figure 9 correspond to a 5% increase in inlet 

pressure ratio and a 2% decrease in the nozzle exit area. In the 

context of a control system, theses changes would occur in a 

single time-step and hence represent a large gradient in the 

control input. It is emphasized that this rate is expected to be 

an upper bound on realistic control changes. In this case, the 

error in turbine work and mass flow rate as predicted by the 

unblended linear system is relatively low. The blended output 

offers a minimal improvement over the baseline approach. 

However, exit velocity predicted by the single linear system is 

very inaccurate, with a nearly 300% relative error. This is 

perhaps expected, as the underlying change in the physical 

behavior is directly related to the nozzle getting choked. It is 

interesting to note that the blended estimate of exit velocity is 

almost identical to the true value.  
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Figure 9. (a) Linear vs. nonlinear solution going from 

the subsonic regime to the nozzle choked regime (b) 

% error of the linear solution 
 

The results in Figure 10 have been obtained by applying a 

2% change in the nozzle exit area as the system sweeps over a 

range of pressure ratios. The blended estimates for this case 

offer a significant improvement in all the four outputs in the 

vicinity of the underlying boundary.  

In all the results presented, it may be observed that the 

error in the linear estimates away from the subspace 

boundaries is generally lower when either of the two 

components is choked. This is consistent with the essentially 

linear behavior of the system when either the turbine or the 

nozzle is choked. 

CONCLUSION 
 Control synthesis and stability analysis technologies are 

grounded in linear system theory. A detailed engine model is 

usually linearized via numerical perturbation methods. In this 

paper, an alternate approach that involves the development of 

physics based simplified/reduced order models followed by 

analytical linearization of the resulting nonlinear system has 

been investigated. The proposed approach has been applied to 

the backend of a turbine engine, i.e. a turbine nozzle system 

driven by high pressure air. It is proposed that, for the present 

purpose, a turbine can be modeled as a combination of a 

convergent-divergent nozzle coupled with a work extraction 

plane.  

2 4 6 8
0

0.2

0.4

0.6

0.8

p
t,45

/p
a

δ
 T

5
0

 

 

2 4 6 8
0

500

1000

1500

p
t,45

/p
a

δ
 p

5
0

 

 

2 4 6 8
−2

−1.5

−1

−0.5

0

p
t,45

/p
a

δ
 m

d
o
t

 

 

2 4 6 8
0

50

100

p
t,45

/p
a

δ
 V

8

 

 

nonlinear

linear

linear−blended

 

2 4 6 8

0

50

100

p
t,45

/p
a

%
 E

rr
o
r 

in
 δ

 T
5
0

 

 

2 4 6 8

0

50

100

p
t,45

/p
a

%
 E

rr
o
r 

in
 δ

 p
5
0

2 4 6 8

0

50

100

p
t,45

/p
a

%
 E

rr
o
r 

in
 δ

 m
d
o
t

2 4 6 8
−1000

−500

0

500

p
t,45

/p
a

%
 E

rr
o
r 

in
 δ

 V
9

linear

linear−blended

 
Figure 10. (a) Linear vs. nonlinear solution going 

from the nozzle choked regime to the turbine choked 

regime   
(b) % error of the linear solution 

 

 The simulation results of the nonlinear model highlight the 

key control issues of the system. The operating envelope is 

divided into subspaces with different flow features. More 

significantly, the transition from one subspace to another, 

while continuous, is not smooth. This leads to large errors in 

the linear estimates of the system outputs. However, a novel 

blending algorithm which can be efficiently implemented can 

significantly improve on the baseline estimates. In general, it 

may be noted that analytical linearization technique could 

provide a superior frame work for model based control. 

 Two key requirements of the proposed methodology are as 

follows: 1) a simplified model that can be expressed 

analytically, and 2) the ability to capture the boundaries 

between discrete subspaces in an analytical form. 

 This paper lays out the foundation of a physics based 

analytical linearization technique that shows promise towards 

the development of physics based linear engine models. As the 

eventual goal is to adapt the proposed methodology in a 

dynamic model, the methodology will be extended to include 

the compressor and combustor components. The coupling with 

a dynamic model of the shaft speeds merits further 

investigation.  
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APPENDIX A: List of Equations 
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