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ABSTRACT 

This paper introduces a method to create engine transient 

models that retain the fidelity and non-linearity of complex 

models as well as simplicity and speed of lower fidelity 

linearized models. The method is based on the design of 

experiments (DOE) and neural network methodology to create 

an analytic non-linear model of engine transient operation 

which has the potential to be used in on-board and off-board 

applications. The feed forward neural net models were created 

for a high fidelity model of high bypass turbofan engine (truth 

model). The performance of the neural net models was verified 

against the truth model. The verification results showed good 

agreement between the output of the neural net models and the 

truth model. Initial investigations also showed a significant 

reduction in the model execution time. 

INTRODUCTION  

Engine transient models have many applications in 

design, development, and operation of gas-turbine engines. 

Since some of the important engine performance parameters 

such as thrust, airflow, and stall margin cannot be measured 

directly, an engine model is required to provide knowledge of 

these performance parameters based on the available data. To 

that end, an observer is required to estimate the engine 

performance parameters from known (measured or sensed) 

data. One of the requirements in parameters estimation is the 

need for the model execution speed being comparable to the 

rate at which the parameters are changing in the engine [1]. 

Reference [2] provides a detailed description of the dynamic 

engine models and their on-board and off-board applications 

in different fields such as the control development bench, 

integrated flight/propulsion control evaluation, embedded 

software for flight systems, system model within model based 

control and engine/control model in flight simulation. 

Numerous observation techniques are provided in the 

literature to provide an accurate estimation of the unmeasured 

parameters.  The most well-known approach is based on the 

use of Kalman filter and its extensions. Most of Kalman filters 

used in the parameter estimation are linear; therefore, 

linearization of the engine model around a single or multi 

operating points is needed [3].  

Engine transient operation is highly non-linear and to 

accurately model it, main and secondary effects such as torque 

balance, rotor inertia, flow dynamics, acoustics, heat soakage 

effects and blade tip clearance are considered in the engine 

aerothermal models. Sanghi et al. provided an extensive 

overview of the engine thermodynamic simulation from 1950 

to 2000 [4]. Fawke and Saravanamuttoo created an 

aerothermal engine model for a turbofan engine with  

inclusion of the rotor inertia and components heat capacity for 

the steady-state and transient phases [5]. Stamatis et al. [6] 

used the methodology provided in reference [2] to model a 

turbofan engine and compare the execution time for various 

parameters variation (such as tolerance, implicit or explicit 

implementation and number of fixed updates per time step).  

In general, high fidelity aerothermal models are 

computationally intensive, which may preclude the direct 

application of such models in applications where execution 

time is an important factor. To reduce the execution time and 

increase the speed of dynamics engine models, various 

simplified models have been proposed. Transfer functions and 

state-space models are among these simplified models where 

they are linearized around a single or multiple operating points 

(base-points). These models have good accuracy around the 

base-points, but as the operating condition deviates from these 

points, the linear interpolation between the neighboring points 
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starts to deteriorate the accuracy. The accuracy of these 

models as well as their execution time is a function of the 

number of the base-points. Lichtsinder [7] proposed a method 

to retain the non-linearity of the transient engine model using 

a quasi-linear approach to create a transfer function. A fast 

model for a micro-jet turbine engine was developed using the 

Novel Generalized Describing Function (NGDF) to decouple 

the coupled non-linear ordinary differential equations from the 

algebraic equations using characteristic times and constant 

coefficients. The results showed good agreement between the 

closed-loop simulation of the non-linear model and NGDF 

model when the input signal is of the form of generalized 

quasi-polynomial.  

Another promising method is the use of surrogate models. 

They can represent the complex nature of the engine transient 

operation with relatively simple mathematical models. The 

simple structure of surrogate models makes them potentially 

fast and accurate. They can also provide a differentiable 

analytical form of the engine transient model which is the 

advantage of the surrogate models over the linearized models 

which are not differentiable at base-points. 

Chiras et al. [8] used the data obtained from Rolls Royce 

Spey MK202 engine using inverse repeat maximum length 

binary sequences (IRMLBS) and multi-sine input signals with 

the amplitude of the 10% of the fuel flow  to show that a linear 

frequency-domain model is adequate for small-signal 

dynamics of the engine. They also showed the ability of a 

second order polynomial-based model (NNARMAX model) to 

capture the non-linearity of the engine’s large-signal 

dynamics. In another work, Chiras et al. [9] used recurrent 

feed-forward neural net in NNARMAX concept to model the 

large-signal nonlinear behavior of the same engine mentioned 

above The data were acquired by perturbation of the fuel input 

(multi-sine or IRMLBS) around a number of steady-state 

points. The results showed the superiority of the NNARMAX 

model to the linear model for large input signal variations.  

Luppold et al. [10] offered engine diagnosis methods 

(STORM and e_STORM) that uses actual engine data to 

reduce the model uncertainty and increase the parameter 

estimation accuracy and fault diagnosis capability. They used 

a linear state variable model (SVM) and a Kalman filter to 

estimate the engine health parameters though STORM method 

and to eliminate engine model mismatches they used data 

coming from the engine during the fligh to sequentially build 

an on-line neural network model to compensate for those 

errors. The new modified method is called e-STORM. To 

make the model robust to flight condition variations, they used 

flight segments and flight envelope sections to train the neural 

nets. Shankar and Yedavalli [11] used a radial basis function 

neural network (RBFN) to capture the engine non-linearity 

and degradation of a two-spool turbofan engine. They created 

a hybrid model with combinations of Kalman filter and an 

RFBN model to compensate for the shortcomings of the 

Kalman filter. The RFBN is trained on-line with a growing-

pruning strategy to keep its structure optimized. They showed 

the estimation improvement using the hybrid model against 

using the Kalman filter alone for new and degraded engines. 

The importance of training data for RBFN to improve the 

estimation accuracy was also emphasized by them.  

Combination of fuzzy logic and neural network, results in 

elimination of the weaknesses of each approach and taking 

advantages of both of them. The neural network approach has 

good learning capability while fuzzy logic can handle 

uncertainties. Using the neural network can help to find the 

optimized fuzzy set membership function. A fuzzy relation-

based neural network (FRNN) [12] along with the genetic 

algorithm was used to find the near optimal point for fuzzy 

neural network (FNN) membership function optimization.  

 An area that has not been addressed properly in the 

literature is a methodology to generate a good set of training 

data for the whole operating range and the flight envelope. A 

combination of such a methodology with a method to create 

and train neural network can provide more accurate estimation 

of the observed parameters.  

This paper describes a methodology to create a set of 

feed-forward neural network models for the transient 

operation of a high-bypass ratio turbofan engine for the 

maximum range of the fuel flow variation across the flight 

envelope.  

The rest of the paper is organized as follows: First a 

description of the gas turbine engine transient model and 

application of neural network in their modeling is provided. 

After that, the process to create a data set to train the neural 

network and estimate the outputs of interest from the neural 

network models will be described and the results will be 

discussed. The paper ends with conclusion and suggested 

future work.  

 

GAS TURBINE NEURAL NETWORK MODEL 

The usage, structure, and training of a generic neural 

network to represent a nonlinear function are described in 

detail in Appendix A. The specific application of this 

methodology to gas turbine engine modeling is described 

below.  

The structure of the gas turbine neural network is 

analogous to a state variable model where the state derivatives 

and system outputs are nonlinear functions of the initial state, 

control inputs, and environmental parameters.  The steady-

state neural network captures the nonlinear relationship 

between system outputs and the current state, control inputs, 

and environmental parameters.  The transient neural network 

is a combination of two neural networks:  state derivative and 

system output.  The first network in the transient neural 

network is used to determine the states derivative as shown in 

Eq. (1). The first neural network maps the current states, 

control inputs, engine health parameters, and environmental 

parameters to the states derivative.  The states potentially may 

include shaft speeds, metal temperatures, or blade tip 

clearances.  Engine control inputs could include fuel flow, 

exhaust nozzle area, or guide vane position.  Engine health 

parameters are scalars (component flows and efficiencies) 
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used to either match the raw data or indicate the health of a 

component.  The environmental parameters could include 

altitude, Mach number, and ambient temperature.   As shown 

in Eq. (2), the derivative of each state is then explicitly 

integrated over a specified time-step.  These new state values 

as well as the current control inputs and environmental 

parameters are inputs to a neural network mapping state 

values, control inputs, and environmental parameters to the 

system responses as shown in Eq. (3).   

 ),,,( ttttt zpuxfx   (1) 

 txxdtxxx tt
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t

tt1t  



                  (2) 
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Health parameters, although generally considered a state, 

are modeled as steady-state and therefore no derivatives for 

these parameters have to be tracked.  From a neural network 

simulation perspective, health parameters are analogous to a 

control input. The inclusion of health parameters increases the 

number of inputs to a neural network model as well as adds 

another layer of nonlinearity.  An accurate transient model 

must be able to account for this nonlinearity since all engines 

at some point in time have degraded performance.  As a 

general rule of thumb for neural networks, as the number of 

inputs to the model increases, the number of training points 

increases too. 

GENERATING TRAINING DATA FOR NEURAL 
NETWORK 

For any type of neural network, both training and 

verification data are needed to train the network.  The training 

data is required to ensure minimal model-fit error (MFE) 

while verification data is needed to ensure minimal model-

representation error (MRE). When generating training and 

verification data points, it is important that all the points 

sufficiently cover the entire design space.   

Design Space Sampling 

Design space sampling can be regarded as the most 

important step of the neural network methodology because 

accuracy of the neural networks depends on how many points 

are selected for neural network training and how these points 

are distributed throughout the design space. The process of 

selecting these points and creating a training set from them is 

called design of experiments (DOE). In this section design 

space sampling methods are explained for both steady-state 

and transient operations.  

     Steady-State Training   
     The DOE parameters used here are inputs to the truth 

model which are altitude, Mach number, ambient temperature, 

and power setting. Limits on altitude, Mach number, and 

ambient temperature are determined based on the 

representative flight envelope given in Fig. 1 and Fig. 2.  

The type of design space sampling method used for 

steady-state operation is Latin hypercube sampling [13]. The 

Latin hypercube can adequately sample the interior of the 

design space; however, it has the inherent disadvantage of 

poor sampling of the extremes of the design space. In this 

study, the design space is formed by the combination of the 

flight envelope parameters and fuel flow. The latin hypercube 

samples the interior of this design space to create a DOE. The 

value of the fuel flow is bounded between the minimum and 

maximum level of achievable fuel flow (engine power) at the 

given flight conditions. The points created by the Latin 

hypercube are used for training the neural networks.  

Moreover, additional random points are needed to test the 

prediction capability of the neural networks at points other 

than the training points. Eventually, Latin hypercube points 

and random points are fed into the model to track the 

responses.     
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Figure 1. REPRESENTATIVE FLIGHT ENVELOPE - 
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Figure 2. REPRESENTATIVE FLIGHT ENVELOPE - 
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     Transient Training 
     The DOE parameters for the transient operation are 

altitude, Mach number, ambient temperature and fuel flow 

profile. The Latin hypercube samples the interior of the design 

space for altitude, Mach number and ambient temperature. In 

contrast to steady-state operation, the fuel flow in the transient 

operation is not a single value. It is a control input profile that 

represents the variation of the fuel flow as a function of time. 

     Relative to steady-state operation, generating training data 

for transient operation is more challenging because the engine 

state is often correlated with the control input which is the fuel 

flow in this case.  If these inputs are independently generated, 

there will be many unrealistic combinations which result in 

unacceptable results; therefore, an additional step in 

generating training data is required to assure that these points 

are not included in the training set. To address this issue, 

before running the transient operation, a steady-state case is 

run at the maximum power setting at each point to find the 

maximum achievable fuel flow rate at the given flight 

conditions. Then, the maximum fuel flow rate value and flight 

conditions are fed into the transient model with a random 

ramp input with the upper and lower bounds equal to zero and 

one. The fuel flow rate profile is obtained by multiplying each 

point in the ramp input to the obtained maximum fuel flow. 

An example of the random ramp inputs used in generating the 

input is shown in Fig. 3. The flight conditions and the fuel 

flow rate input are fed into the transient model to acquire the 

responses at these conditions. These runs yield the training 

points for the neural networks obtained at each time step 

through the transient operation. Initially the data of all the time 

steps are recorded. The result is a very large data set which 

significantly increases the training time of the neural 

networks; therefore, a data reduction scheme is performed to 

eliminate some of the data points to reduce the size of the data 

set to a manageable number of points.   

As it is the case in the sampling of steady-state operation, 

random points are needed to test the prediction capability of 

the neural networks in transient operation. 

Altitude, Mach number and ambient temperature are 

chosen randomly and the random ramp input is generated in 

the same way that is described before and fed into the transient 

model with the flight conditions. The neural network results 

are compared with the truth model results to assess the 

accuracy of the model at random ramp inputs. 

 

RESULTS  

Model Description and Automated Environment 

The engine model used to create DOE and random points 

for steady-state and transient operations is an educational 

aerothermal model. It is a twin spool separate flow high-

bypass ratio turbofan. The model is constructed using the 

NASA numerical propulsion system simulation (NPSS) code. 

In this research, only shaft dynamics is included in the 

transient model. 

0 5 10 15 20 25 30 35
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time [Sec]

N
o
rm

a
liz

e
d
 F

u
e
l 
F

lo
w

 R
a
te

 
Figure 3. RANDOM RAMP INPUT 

 

Sampling the design space and executing these points 

would be very intensive if they were done manually; therefore, 

the process is automated using Model Center software. Model 

Center is developed by Phoenix Integration Inc. for process 

integration and design optimization purposes. The sampling 

steps explained in previous section are implemented in the 

integration environment so the entire process can be executed 

numerous times with minimal effort.   

The data points are used to train the neural networks for 

steady-state and transient operations. The static feed-forward 

neural net (FFNN) with one hidden layer is selected and 

trained for single time step. Details about the selected type and 

structure of the neural net, its activation function and the 

rationales behind this selection are provided in Appendix A. 

Neural Network Training Results 

The steady-state network without health parameters was 

trained on 10500 data points with an additional 2625 points 

used for verification.  To assess the prediction accuracy of the 

neural nets at the training points and random points, the 

histogram of the model prediction error at the training points 

and random points are investigated. The former is called 

model fit error (MFE) and the latter is called model 

representation error (MRE).  For all the parameters simulated, 

the MFE and MRE demonstrate the normal distribution of 

errors with the standard deviation of the MFE and MRE are of 

the same order of magnitude, with the MRE typically being 

slightly larger.  In general, the standard deviations of the MFE 

or MRE are not greater than 0.3% with thrust having the 

largest error.  Pressures and temperatures often have errors 

less the 0.1%.  Figure 4 shows the MFE and MRE of net thrust 

for the steady-state neural network. 

For transient operation, the neural networks without 

health parameters were trained with 37769 single time step 

training points and 7540 single time step verification points, 

which is a few times greater than the steady-state training data 

size.  This is because of the inclusion of the transient data, 

which greatly expand the required design space to be sampled.   
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Figure 4.  STEADY-STATE MFE AND MRE FOR NET 
THRUST 

 

Figure 6 shows the MFE and MRE of the net thrust for the 

transient operation.  The standard deviation of the MFE and 

MRE are of the same order of magnitude.  There is also an 

increase in the standard deviation of the MRE to 0.42% 

relative to 0.3% standard deviation of the MRE of the steady-

state case.   

Similar to the steady-state results, temperature and 

pressure neural networks had the smallest magnitude of 

standard deviation of MFE and MRE. 

In addition to the single time-step MFE and MRE 

analysis, the transient neural networks require an open loop 

signal analysis where the single time steps neural nets are 

integrated over the whole transient time to determine the 

engine transient outputs as a function of time. Such a step is 

required to capture the error of the model in transient 

operation. This additional analysis is required because error 

can propagate at each time-step resulting in an increased error 

at the end of the simulation time.  Additionally, it is important 

to ensure that none of the models diverge over time. To study 

this error, open loop verification runs were generated at 

different operating points in the flight envelope.  These points 

are highlighted in Fig. 1 and Fig. 2. 

The errors between high fidelity aerothermal model and 

neural networks prediction for a few selected operating 

conditions for a given step fuel input signal are shown in Figs. 

7, 8, and 9 for selected model outputs.  It can be seen that the 

neural network predictions are within 2% of the high fidelity 

model predictions. An exception can be seen in the net thrust 

(FN) results which show a short period of time when the 

absolute error value exceeds 2%. Looking at the other 

responses, it can be seen that at the initial point of the transient 

operation, the neural network model has the largest deviation 

from the high fidelity model. This time corresponds to a time 

when the rate of change of fuel flow is maximum. 

There is also a steady-state error for W25R and FN; 

however, these errors are small and less than one percent. It is 

noted that as the operating points approach the edges of the 

flight envelope the accuracy of the model starts to deteriorate. 

The reason is the poor Latin hypercube sampling capability of 

training points near the design space edges. 

 

 
 

Figure 5.  TRANSIENT MFE AND MRE FOR NET THRUST 

NEURAL NETWORK OPEN LOOP RESULTS 

CONCLUSIONS 

Static feed-forward neural networks have been trained 

using a Latin hypercube sampling to create a transient engine 

model across the flight envelope. The model consists of neural 

net models of derivative of the state variables (shaft dynamics) 

and engine outputs of interest. The results show good 

prediction accuracy of the models for the interior points across 

the flight envelope when they are compared to the results of 

the higher fidelity aerothermal model. Initial investigations 

showed that replacing the high fidelity aerothermal model 

with neural net models reduced the execution time. The model 

accuracy is strongly dependent on the training data quality and 

the way they have been created. The model can be potentially 

used for on-board and off-board applications. 

The advantage of the method is the simplicity of structure 

of its neural networks when they are compared to more 

complex ones such as recurrent (Hopfield) neural networks. 

Such complex structure can also increase the execution time. 

The cost of the simplicity of the models used in this study is 

the reduction of the time horizon to the single time step which 

potentially affects the accuracy. 

The accuracy of the model can be improved by improving 

the quality of the training data, especially by sampling more 

points at the extremes of the flight envelope where the Latin 

hypercube sampling has poor performance. Combination of 

different sampling methodologies can address this issue. 
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F
re

q
u
e

n
c
y
 

F
re

q
u
e

n
c
y
 

 

MFE Mean = 0.0079104 
MFE St Dev = 0.44056 

 

MFE Mean = 0.0079104 
MFE St Dev = 0.44056 

 

Representative 

 Sampling 

 Point 

 

 

F
re

q
u
e

n
c
y
 

F
re

q
u
e

n
c
y
 

 
MFE Mean = 0.0045951 
MFE St Dev = 0.28626 

 

MFE Mean = 0.0078861 
MFE St Dev = 0.29712 

 

Representative 

 Sampling 

 Point 

 

 



   

   Copyright © 2011 by ASME    

  
6 

 
Figure 7. T4 TRANSIENT PERCENT ERROR VS. TIME 

 

 
Figure 8: W25R TRANSIENT PERCENT ERROR VS. TIME 

 

 

NOMENCLATURE 

x  System state variable 

u System input 

P Health parameter 

z Environmental parameter 

y Actual system output 

ŷ Predicted system output 

e Error between actual and predicted outputs 

Xi Neural network input 

wi Hidden node wieighting factor 

bi,d Neural network intercept terms 

ci Hidden node coefficient 
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APPENDIX A. 

NEURAL NETWORK METHODOLOGY TO MODEL 
DYNAMIC SYSTEMS 

A neural network is a network of simple units which 

together can model very complex behaviors [14]. The neural 

network methodology is based on mimicking the function of 

the brain of biological systems as it is described below. 

Neural Network Anatomy 

In a simplified description, the brain of a biological 

system consists of connection of million brain cells called 

neuron in the form of a network. Each cell receives signals 

from others through a numerous branches called “dendrite” 

and can send signal to other cell through a single branch called 

“axon”. Neurons can be excited by receiving an electrical 

signal that is above the threshold from the neighboring 

neurons through the dendrites and excite the next neighbor 

using electrical signals through their single axon. The 

interconnections of these cells results in a complex behavior of 

the brain. Similar to the biological brain, a mathematical 

model of neurons and their connection is developed to model a 

complex and non-linear behaviors. The building block of a 

neural network is a node or neuron which can receive multiple 

inputs. Input values are sent to an activation function and the 

activation function provides an output value to the next node 

or the output layer.  

The connection of inputs and outputs of nodes can create 

a network called neural network. While it is not necessary for 

the connections to be in any specific order, for the sake of 

simplicity, the neural networks are commonly structured in a 

way to have a layer of inputs, single or multiple layers of 

nodes which are called hidden layers and an output layer. The 

input layer receives the inputs and sends them to the nodes in 

the first hidden layer. In simple neural nets there is no 

connections between nodes in each hidden layer and 

connections are only from the outputs of one hidden layer to 

the nodes in the next hidden layer. The outputs of the nodes of 

the last hidden layer are sent to output layer to combine to a 

single output value (Fig. 9).   

Different type of activation functions are defined for the 

neural nets. In feed-forward neural networks (FFNN), the 

activation function is a deterministic function. The most 

commonly used functions for non-discrete sets are sigmoid or 

tangent hyperbolic functions as they are provided in Eq. (4) 

and Eq. (5). 
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Figure 9.  NEURAL NETWORK STRUCTURE 

 

In FFNN, the inputs are multiplied to weighting factors 

and their sum is sent to an activation function as shown in Eq. 

(6).  
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In radial basis function neural networks (RBFNN), the 

activation function is defined as a probability function which 

provides a probability value based on the distance of the input 

values to pre-defined values from a data-set. These pre-

defined values are considered to be the nodes in an RBFNN. 

In both FFNN and RBFNN models, the output of the 

activation functions of all nodes are sent to the output layer to 

combine to a single value as demonstrated in Eq. (7).  
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RBFNN can handle the larger range of variability and 

may be used for online training, but compared to feed-forward 
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neural networks, they need a large number of nodes to provide 

an accurate prediction. A neural network with a single hidden 

layer using sigmoid or hyperbolic activation function can 

model any continuous function [15]. 

Training Neural Network 

To determine the optimum values of the inputs weighting 

factors, hidden node coefficients and intercept terms, a data set 

(training set) with enough data points is required. An 

optimization scheme determines the value of weighting factors 

that minimize the sum square of errors between the predicted 

and actual values as shown in Eq. (8). With enough training 

points, the model can be used to predict the output of any 

input combination inside the training range with good 

accuracy. Increasing the number of neurons can also increase 

the prediction accuracy of the model; however, for higher 

number of the neurons a larger training data set is required. 

Attention must be paid to avoid over-fitting the weighting 

factors in which case they provide accurate results for the 

training set, but starts to deteriorate the prediction results of 

inputs other than the training set.  
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The mathematical process of training the neural net is 

straightforward but creating an appropriate data set to train the 

parameters has significant effects on the accuracy of the 

outputs. Identifying the valid range of inputs, selecting a 

correct method of sampling the data and filtering unrealistic 

combinations that can contaminate the training set play a 

pivotal role to have a good training set.  


