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ABSTRACT 
Estimation of engine parameters such as thrust in test cells 

is a difficult process due to the highly nonlinear nature of the 
engine dynamics, the complex interdependency of thrust and 
the engine’s health condition, and factors that corrupt thrust 
measurements due to test stand construction.  Because the 
frequency content of the corrupting dynamics is close to the 
engine’s dynamics, filtering the thrust signal is not sufficient 
for extraction of the true dynamic content.  A configurable 
thrust estimation system is developed for accurate data 
reduction which provides “virtual” measurements of thrust and 
other necessary parameters at steady state and during 
aggressive engine transients.  The thrust estimation framework 
consists of a representative nonlinear engine model coupled 
with an adaptive structural dynamics model.  To account for 
discrepancies between the physics-based model and the true 
engine, a hybrid model using a novel neural network (NN) 
enhancement to a physics-based engine model is presented that 
reduces certain modeling errors between the engine model and 
the physical plant.  This includes engine-to-engine variation, 
engine degradation and any essential neglected dynamics.  To 
fuse the model and sensor measurements, this hybrid model is 
used within a constant-gain extended Kalman filter batch 
estimator which is able to reconstruct the true dynamic 
performance of the engine using noisy or corrupted sensor 
measurements and control inputs.  The Kalman filter estimates 
measured and unmeasured parameters and state variables such 
as engine component deterioration parameters and effective 
flow areas. 

INTRODUCTION 
Owing to the strict demands on performance, the 

certification process for military engines is highly involved 

because of the severe operational maneuvers and transients that 
will be encountered during combat.  Millions of dollars are 
spent on acceptance testing of military engines to examine 
thrust ratings, transient response, thrust specific fuel 
consumption (TSFC), etc.  The costs and duration of these tests 
ultimately impact the cost-of-ownership and availability of the 
engine fleet [2].  During typical testing, transient test data 
exceeding 40 terabytes is collected for post-processing, 
performance evaluation, model-building, and controls 
development.  These acceptance tests are therefore extremely 
expensive to operate.  Since the availability of engine 
components is critical for the maintenance and readiness of the 
fleet, the value of a more streamlined method to acquire data 
for characterizing the dynamic and transient performance 
characteristics would be very desirable. 

In a test cell environment, the measurements are subject to 
vibrations which render data collection an error-prone task.  In 
certain test stands, the natural vibration modes are low enough 
for excitations produced by the thrust output couple into the 
test stand and dominate the signal.  Since transient data is often 
needed for performance data reduction, stand-induced 
vibrations can completely obfuscate the engine’s actual 
transient characteristics.  To confound matters, load cell data is 
not always available or may be contaminated badly enough that 
the operator deems it necessary to ignore the results.  Because 
the engine data is convoluted with test stand dynamics, it is not 
feasible to simply filter the thrust signal.  It is possible to 
instead use models, along with other engine measurements to 
aid in reconstructing the true transient character of the engine.  
An accurate, adaptable thrust estimation scheme will therefore 
be of great value to the certification process and will save the 
industry millions of dollars in certification costs.  
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Indeed, modern engine control systems do not presently 
use a thrust estimate as the feedback variable because of the 
difficulty of correctly estimating that variable.  When 
estimating thrust, particular attention has to be paid to 
estimating health parameters accurately, a task that becomes 
even more difficult when there are a limited number of sensors 
available to form the estimate [7].  The highly nonlinear nature 
of the engine dynamics and the complex dependency of thrust 
on the engine’s health condition further increase these 
difficulties.  The methodology developed by Volponi [11] uses 
a state variable model in conjunction with a Kalman filter and 
neural network to correctly estimate parameters.  The Kalman 
filter used in that work was based on piecewise linear models 
and the neural network was designed at the outputs of the 
system.  Our case, in contrast, requires exploration of 
methodologies that make explicit use of a high-fidelity engine 
model and use an empirical modeling element that provides 
value even for outputs which are excessively noisy or 
altogether absent.   

High-fidelity engine models have been developed to 
perform cycle performance analysis for the purposes of engine 
and control system design.  Examples include the Numerical 
Propulsion System Simulation (NPSS) code [4], the Modular 
Aero-Propulsion System Simulation (MAPSS) [8], and the 
Commercial Modular Aero-Propulsion System Simulation (C-
MAPSS) [1], all developed by NASA.  NPSS models are 
typically available for new engines that are under development, 
and thus are powerful tools from which to develop an effective 
thrust estimation system.  More computationally-efficient 
models are also being developed, such as that by Frederick [2] 
which can accurately describe engine operation to a reasonable 
degree of accuracy. 

In this paper, a thrust estimation scheme is presented to 
provide “virtual” measurements of thrust and other parameters 
of interest that are true to the actual engine, even during 
aggressive engine transients.  To capture any discrepancies 
between the physics-based model and the true engine, a Neural 
Network (NN) is used to reduce any errors between the 
nonlinear model and the physical plant.  The NN removes the 
variability in the engine model due to engine-to-engine 
variation and engine degradation.  This hybrid 
empirical/physics model will then be used within a Kalman 
filter estimator structure that will be able to reconstruct the true 
dynamic performance of the engine using noisy or corrupted 
sensor measurements and control inputs.    

The algorithm is configurable to many engine platforms, 
and the developed software allows for generation of 
embeddable nonlinear engine models for the thrust estimation 
scheme.  Furthermore, the developed software enables 
generation of tuned hybrid models of the engine, which have 
been validated against actual data.  Optionally, the 
parameterized models can be extracted from the estimator and 
used directly in controls design.  To demonstrate the thrust 
estimator strategy, simulation results using the NASA Modular 
Aero-Propulsion System Simulation (MAPSS) engine model 
are reported.  Test cases at sea-level static and simulated 

altitude/speed conditions reveal promise for the methodology in 
extracting an accurate, validated thrust output.  It is envisaged 
that the model can be interchanged with any dynamic cycle 
deck model that is available for a given engine platform, such 
as the Numerical Propulsion System Simulation (NPSS). 

NOMENCLATURE 
A, B, C, D, L, H System matrices (Jacobians) 
EKF Extended Kalman filter 
Fn Net thrust 
h Deterioration (health) parameter vector 
HPC High-pressure compressor 
HPT High-pressure turbine 
K Kalman gain matrix 
LPC Low-pressure compressor (booster) 
LPT Low-pressure turbine 
MAPSS Modular Aero-Propulsion System 

Simulation 
N1 LP spool (fan) speed 
N2 
NN 

HP spool (core) speed 
Neural network 

PCNfR Percent corrected fan speed 
PLA Power lever angle 
Q Process covariance matrix 
R Measured output covariance matrix 
SLS Sea-level static 
TMPC Spatially-averaged metal heat soak 

temperature 
u Input vector 
v Measurement noise vector 
w Process noise vector 
Wf Fuel flow rate 
x State vector 
xm Measured portion of the state vector 
xu Unmeasured portion of the state vector 
y Measured output vector 
z Unmeasured output vector 
Á Component flow capacity 
´ Component efficiency 
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SEMI-EMPIRICAL NONLINEAR ESTIMATION 
APPROACH 

The basic model required to predict the engine states 
follows a standard nonlinear process that contains both 
measured and unmeasured outputs.  Considering the engine 
system 

 

_x = f(x; h; u)

y = gm(x; h; u)

z = gu(x; h; u)  (1) 

where x is the state vector, u is the input vector, h is the vector 
of deterioration parameters, y is the measured output vector, 
and z is the unmeasured output vector.  The vector z may 
contain variables such as thrust and compressor stall margins.  
The estimation structure is designed to estimate the unmeasured 
variable z via estimates of x and h using u and y.  To be 
representative of an engine mounted in a test stand, the process 
model is composed of a nominal engine model obtained as 
described by a high-fidelity numerical simulation coupled with 
a structural model that is assumed unknown.  For the purposes 
of this paper, the structural model introduces unmodeled 
dynamics that prevent accurate measurements of engine thrust 
to be made.  The diagram in Figure 1 shows the overall 
structure of the semi-empirical estimator. 
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Figure 1.  Structure of the thrust estimation system. 

Empirical Model 
Since engine models usually do not match the actual 

engine under test, an empirical engine model is used in this 
work to supplement the nominal physics-based model.  In this 
case, a neural network was used to approximate the dynamics 
in Eq (1) using a novel approach which learns mismatches in 
the model by training on processed versions of select engine 

measurements.  This has a particular advantage in thrust 
estimation.  Because it is often impossible to guarantee a 
dynamically un-corrupted measurement of thrust, learning 
modeling mismatches between measured and modeled thrust 
can significantly impair the estimation approach if the 
empirical model absorbs the corrupting dynamics.  To 
accommodate this, the present modeling method appropriately 
modifies the engine dynamics based on a subset of the more 
reliable, relatively low-noise sensor measurements.  The result 
is an empirical model that improves the dynamic and steady-
state matching in the thrust output with respect to the nominal 
physical model, and improves matching in most other outputs 
as well.  The methodology has been verified through 
simulation, where the ground truth is known.  Due to the 
proprietary nature of this technique, further details of the 
implementation are omitted. 

Extended Kalman Filter 
To make direct use of the full engine model, and also 

reduce the computational burdens brought about by the 
traditional extended Kalman filter (EKF), a variation on the 
EKF is used here.  The Constant-Gain Extended Kalman Filter 
(CGEKF) is a technique introduced by Safanov and Athans [9] 
for nonlinear estimation using an implicit (high-fidelity) model.  
Sugiyama [10] and Kobayashi, Simon and Litt [6] implemented 
the procedure for engine parameter estimation.  In this filter, 
the Kalman gain K is a constant matrix designed at a 
representative operating point based on the following linearized 
open-loop engine model: 

 

± _x = A±x + L(h¡ 1) + B±u + w1

_h = w2

±y = Cy±x + Hy(h¡ 1) + Dy±u + v1

±z = Cz±x + Hz(h¡ 1) + Dz±u + v2 

where  

 

±x = x¡ xss ±u = u¡ uss

±y = y ¡ yss ±z = z ¡ zss  

and where the subscript “ss” refers to the steady-state condition 
at which the Kalman filter is designed.  x is the vector of engine 
states, u is the vector of control inputs and environmental 
inputs, y is the vector of measured outputs and h is the vector of 
health parameters.  In the above implementation, h – 1 is meant 
to represent the deviation from nominal.  The outputs are hence 
described by a linear combination of the states, health 
parameters, engine inputs, and noise.  The Jacobians A, B, C, 
D, L, and H are numerically obtained from the process and 
measurement equations.  The estimator is implemented using 
the following process: (

_̂x
_̂
h

)
=

·
f̂(x̂; ĥ; u)

0

¸
+ K(y ¡ gy(x̂; ĥ; u)) 
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where f̂(x̂; ĥ; u) contains both the nominal nonlinear engine 
model and the empirical model.  Ref. [9] proved the conditions 
under which this class of nonlinear observers with constant 
gain matrix K is non-divergent.  

In the CGEKF formulation, the first moment (mean) is 
propagated through the nonlinear process equation, while the 
covariance is only propagated through a static relationship 
valid for the linear case.  Because of this statistical 
approximation, the filter is suboptimal.  Note that, while the 
Safanov and Athans version of the filter uses an affine 
representation of the system, the one used here does not 
necessarily require such structure.  Because of this, the 
covariances Q and R no longer hold statistical meaning but (as 
in Refs. [10] and [6]) are instead treated as free design 
parameters. 

THRUST ESTIMATION USING MAPSS 
The MAPSS military engine model [8] and fan-speed 

control system is used in this work as both the truth model and 
the estimator model.  The MAPSS model operates at a 0.02-sec 
step size and was altered to include easy access to deterioration 
parameters, addition of the closed-loop control system, addition 
of system sensors, and addition of sensor noise.  The list of 
inputs and states in the MAPSS model for sea-level, static 
(SLS), standard-day operation are shown in Table 1. 

 

Table 1.  State and auxiliary variables for the MAPSS 
engine model. 

 Designation Variable Description 
Pilot Input PLA Power lever angle (deg.) 
Controller 

Output 
Wf36 

Primary fuel flow rate 
(lbf/hr) 

Engine State 
Variables 

N1 Fan speed (rpm) 
N2 Core speed (rpm) 

TMPC 
Average heat soak 
temperature (°R) 

 
 
 
Engine Sensors.  The sensors under consideration in the 
MAPSS model are given in Table 2.  Note that thrust is 
included in the list, with the understanding that the thrust 
sensor would be part of the test cell mounting, rather than on 
the engine itself.  A set of first-order sensor models having 
unity DC gain represent sensor dynamics.  Sensor noise was 
adapted from a noise model obtained from NASA.  The noise is 
assumed to be zero-mean colored noise, constructed by passing 
Gaussian-distributed noise, with variance that is proportional to 
the signal’s current value, into a low-pass filter with a small 
time constant.  The resulting pre-filtered noise standard 
deviations are shown in Table 3.  The thrust sensor (test stand-
mounted load cell) has more complicated dynamics and is 
described in greater detail later in the section. 

Table 2.  Sensed variables for the MAPSS engine model. 
Index Designation Sensed variable 

1 N1 Fan speed (rpm) 
2 N2 Core speed (rpm) 
3 Fn Net thrust (lbf) 
4 Ps21 Fan exit static pressure (psia) 
5 P27D Duct stream pressure (psia) 
6 T27D Duct stream temperature (°R) 
7 P27 Core stream pressure (psia) 
8 T27 Core stream temperature (°R) 
9 T3 HPC exit temperature (°R) 

10 Ps15 Bypass duct static pressure (psia) 
11 P16 Bypass mixing plane pressure 

(psia) 
12 Ps3 Bleed static pressure (psia) 
13 T5B LPT blade temperature (°R) 
14 T56 LPT temperature (°R) 
15 Ps56 Mixer static pressure (psia) 
16 P58 Mixer pressure (psia) 

 
 

Table 3.  Sensor noise standard deviations for each sensor. 
Sensor Standard deviation, σ Unit 

N1 28.61 rpm 
N2 37.77 rpm 
Fn 1000 lbf 

Ps21 0.145 psia 
P27D 0.176 psia 
T27D 5.272 °R 
P27 0.187 psia 
T27 5.262 °R 
T3 10.274 °R 

Ps15 0.273 psia 
P16 0.276 psia 
Ps3 1.335 psia 
T5B 14.995 °R 
T56 19.715 °R 
Ps56 0.252 Psia 
P58 0.263 Psia 

 
 
Engine Deterioration.  Deterioration inputs were added to all 
five rotating components (Fan, LPC, HPC, HPT, and LPT).  
The deterioration level of each rotating component can be 
specified, producing the desired efficiency and flow modifiers 
for each component.  Table 4 shows the deterioration parameter 
designations for each rotating component.  For the purposes of 
demonstration, the percentage change in flow capacity and 
efficiency is directly proportional to the deterioration 
parameter. 
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Table 4.  Deterioration parameters for each of the five 
rotating components. 

Parameter  Description  

hFan(= ¢ÁFan = ¢´Fan) Fan deterioration modifier 

hLPC(= ¢ÁLPC = ¢´LPC) LPC deterioration modifier 

hHPC(= ¢ÁHPC = ¢´HPC) HPC deterioration modifier 

hHPT(= ¢ÁHPT = ¢´HPT)  HPT deterioration modifier 

hLPT(= ¢ÁLPT = ¢´LPT) LPT deterioration modifier 

 
 
Closed-Loop Controller.  A fan-speed controller with gains 
scheduled for SLS, standard-day conditions is applied to the 
MAPSS model, along with a power management table to 
convert from user-specified values of PLA to percent corrected 
fan speed (PCNfR), from which the demanded fan speed can be 
computed.  The designed controller is able to accommodate a 
PLA range between 20 and 50 degrees, which is the range of 
“dry” operation (no afterburning). 
 
 
Thrust Measurement and Test Stand Dynamics.  The main 
difficulty with test cell measurements is that the test stand is 
dominated by structural modes that corrupt the thrust 
measurement.  In addition, flow-induced noise is present, 
producing oscillations that further corrupt the measurement. 

In an attempt to provide a representative evaluation of 
heavily-corrupted test cell measurements, a simple yet 
representative model of the test stand has been developed to 
conceptually prove the estimation methodology.  Based on an 
assumption that the structural modes in the test stand are 
lightly-damped with a dominant 3-Hz frequeency, the model 
consists of a second-order longitudinal model, as shown in 
Figure 2.  By modeling the system as a lightly-damped first-
order (single-mode) system, it is possible to generate a 
response that is fairly representative of the low-frequency 
system response (below 10 Hz).  A more representative model 
will be necessary, however, to do more advanced evaluations of 
more complicated thrust measurements (e.g. vectored thrust in 
all 6 axes). 

 
 

mstandmengine

kengine kstand
Fthrust

mengine + mstand

kstand
Fthrust

Engine structure assumed stiff

 
Figure 2.  Single-mode model of test stand (longitudinal 

direction). 

The simplified test stand dynamics are incorporated into 
the resulting model shown in Figure 3.  Since the output core 
stream is dominated by noise, the pressure pulsations were 
replicated via experimental frequency spectra obtained from the 
literature.  One example of a near-field noise spectrum is as 
found in Harper-Bourne [4].  Here, each of the pressure spectra 
are functions of the jet velocity.  Both hydrodynamic and 
mixing noises are prominent at low frequencies, while shock 
noise is prominent at high frequencies, well out of the 
frequency range of measureable interest (i.e. thrust 
measurement sample rate).  To implement the near-field 
pressure spectrum we have fitted a subset of these spectra 
below 1000 Hz and extrapolated to generate a response down 
to 1 Hz.  As shown in the figure, this spectrum is added to the 
MAPSS engine output and fed into the structural model.  At the 
output of the structural model, this is summed with the sensor 
noise process.  The resulting noisy thrust signal is shown in 
Figure 4.   

 
 

Simplified 
Structural Model

TF =
2³!ns + !2

n

s2 + 2³!ns + !2
n

!n = natural frequency (3 Hz)

+

+

+

+
MAPSS Engine

Jet Noise 
Spectrum Sensor Noise

Fnnominal Fnmeasured

 
Figure 3.  Thrust measurement model to be used for 

evaluation of uni-axial thrust estimation scheme. 
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Figure 4.  Example of measured thrust to a PLA doublet. 
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SIMULATION RESULTS 
In this section, the results of the estimation methodology 

are presented.  To design the Kalman filter, the Q matrix is 
taken as a diagonal matrix with dimension equal to the number 
of states to be estimated.  In MAPSS, Q is 8x8, since the 
augmented state vector contains the engine states plus the 
deterioration parameters.  The R matrix is also diagonal with 
dimension equal to the number of sensors available for 
measurement.  For the CGEKF design, the 
process/measurement noise variances are as shown in Table 5. 

In all the cases explored in this paper, modeling disparities 
are represented by introducing a mismatch in engine health 
coupled with some modeling mismatch.  As indicated earlier, 
shifts in deterioration parameters can be representative of 
engine-to-engine mismatch, faults, and degradation.  To 
represent the modeling mismatch in this study, a bias is applied 
to the power extraction on the high-pressure (HP) shaft to 
represent an unknown modeling mismatch, which introduces 
significant variability in the response. 

 

Table 5.  Kalman filter process and measurement noise 
variances. 

State Covariance 
(Q) 

Sensor Covariance 
(R) 

x1 (N1) 2 N1 11444 
x2 (N2) 2 N2 15108 

x3 (TMPC) 2 Fn 166720 
x4 (hFan) 2 Ps21 28.911 
x5 (hBst) 20 P27D 35.124 
x6 (hHPC) 2 T27D 702.93 
x7 (hHPT) 2 P27 37.314 
x8 (hLPT) 2 T27 701.63 

  T3 1369.9 
  Ps15 54.500 
  P16 55.223 
  Ps3 267.07 
  T5B 1999.3 
  T56 2628.7 
  Ps56 50.333 
  P58 52.668 

 

Kalman Filter Performance With Thrust Measurement 

To evaluate the Kalman filter engine parameter estimation, 
several runs were made at various power settings at sea-level, 
static, standard-day conditions.  The deterioration parameters 
are set to 4%, corresponding to an engine with severe 
degradation with respect to some nominal healthy condition.  A 
power extraction mismatch of 1500 W is introduced to 
represent model-plant mismatch.  A PLA doublet of magnitude 
6 degrees is introduced, with the first upswing occurring at 2 
seconds, downswing at 7 seconds, and second upswing at 12 
seconds.  The results for an initial PLA of 40 degrees is shown 
in Figure 5, Figure 6, and Figure 7.  Figure 5 reveals the 

activity of the Kalman estimator attempting to compensate for 
the modeling discrepancies through adjustment of health 
parameters.  As shown in Figure 6, the three states are all 
accurately estimated and the first eight sensors in the list in 
Table 2 are correctly estimated (the remaining eight are omitted 
for conciseness).  For all sensor outputs, the estimated 
responses are much closer to the actual values than using the 
model alone.  In steady-state, the mismatch between the model 
and engine produces a 340 lbf (about 6%) discrepancy in 
thrust.   A close-up of the thrust estimate during the doublet 
downswing (Figure 7) shows that the estimator captures some 
of the unwanted oscillatory behavior of the test stand dynamics.  
Better steady-state matching can be made by increasing the 
weight of the Q matrix relative to the R matrix, but this comes 
at the penalty of increasing the oscillatory response of the 
estimate. 
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Figure 5.  Actual component deteriorations (health 

parameters) plotted against estimated values with engine 
degradation for a 10-deg PLA step applied at 10 seconds. 
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Figure 6.  Measured sensor outputs plotted against 

estimated values with engine degradation for a 6-deg PLA 
doublet. 
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Figure 7.  Close-up of thrust estimate along with noisy 
thrust measurement (boxed region in Figure 6). 

Kalman Filter Performance Without Thrust 
Measurement 

For the case where thrust measurements are not available, 
the thrust estimator only has 15 sensors at its disposal.  Again 
considering the setting PLA = 40 degrees with 4% 
deteriorations on all components and a power extraction 
mismatch of 1500 W, the result is a steady-state mismatch in 
net thrust of 650 lbf, an inaccuracy of 5.5%.  Time histories 
using the same input profile as the previous case are shown in 
Figure 8.  Other parameters deviate similarly to the case with 
thrust measurement.  Although this result underscores the 
importance of the thrust measurement to eliminate steady-state 
errors, the thrust dynamics can be accurately reconstructed with 
the remaining sensors, provided they are corrupted only with a 
nominal amount of noise. 

The results show that the parameter estimation scheme is 
functioning well, both with and without thrust estimates, and is 
well-suited to handle gross mismatches between the engine and 
model.  Based on the runs made, the thrust parameter is well-
estimated, and does not deviate much even with large shifts in 
health parameters and high-pressure spool power extraction (to 
simulate engine mis-modeling).  Nonetheless, variability may 
be found as different operating conditions are encountered, and 
the actual application may exhibit more modeling variability 
than was contemplated in these simulations.  Therefore, the 
empirical modeling component can be a critical piece of the 
overall estimation structure.   
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Figure 8.  Measured sensor outputs plotted against 
estimated values with engine degradation and 

power extraction for a 6-deg PLA doublet.  
Estimator designed without thrust sensor. 
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CONCLUSIONS AND FUTURE WORK 
In this paper, an estimation methodology is presented that 

makes use of a high-fidelity nonlinear model coupled with an 
empirical model to estimate measured and unmeasured 
parameters.  This method is under development for a test stand 
application for use where mere filtering of the thrust signal is 
not a viable option; e.g. when the frequency range of the test 
stand dynamics overlaps (and hence contaminates) the 
dynamics of the engine process.  The empirical component of 
the model aims at reducing model-plant mismatches arising 
from process model uncertainties that are not necessarily (or 
completely) attributable to health parameter mismatches.  The 
Kalman filter estimator is used to further reduce errors by 
manipulating estimates of engine states and health parameters.  
The approach is particularly suited for performance data 
reduction using engine test stand instrumentation which is 
corrupted with noise and whose thrust measurements 
dominated by test stand structural dynamics.  As indicated by 
simulation studies conducted on the MAPSS engine model, the 
estimator improves the capability to provide estimates of 
unmeasured engine outputs both in steady-state and transient 
operation.  

Two important features define the methodology.  Firstly, 
since this is an off-board estimator, the requirement is to make 
direct use of nonlinear engine models which are more accurate 
in making predictions of the engine’s behavior than their 
piecewise linear counterparts for model-building, identification, 
and certification.  The approach therefore uses a Kalman filter 
based on an intrinsic internal model.  The second feature is the 
requirement to make use of empirical modeling work well with 
unmeasured (or highly corrupted) engine outputs such as thrust.  
In this paper, a novel method for empirical modeling is 
presented.  This is shown to improve the dynamic and static 
response of the states as well as estimates of the thrust output. 

In this study, only the uni-axial thrust component was 
considered and a model of thrust noise-induced vibrations was 
incorporated within the evaluation framework to simulate the 
actual environment.  It is possible to include models of 
vectored thrust nozzles to determine the reaction forces on 6-
axis-measurement test stands.  NPSS models typically contain 
more detailed effects such as these, as well as use of 
customized inlets used in test cells.   Porting the methodology 
to the NPSS realm will not only ensure applicability across a 
wide range of engine platforms and configurations, but also aid 
in streamlining the development cycle of new engines and 
control systems. The continuation of this effort will also focus 
on incorporating a model of the test stand dynamics directly 
into the filter structure.  With the inclusion of the test stand 
dynamics in the formulation, the dynamics can be estimated by 
the filter and thus estimates of unmeasured thrust may improve.  
If necessary, unknown parameters such as the dominating 
natural frequencies, can be modified through an adaptation 
mechanism.   
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