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ABSTRACT 
Power plant owners require their plants' high reliability, 

availability and also reduction of the cost in today's power 
generation industry. In addition, the power generation industry 
is faced with a reduction of experienced operators and 
sophistication of power generation equipment.  

Remote monitoring service provided by original equipment 
manufacturers (OEMs) has become increasingly popular due to 
growing demand for both improvement of plant reliability and 
solution of experienced operator shortage. Through remote 
monitoring service, customers can benefit from swift and 
appropriate operational support based on OEM's know-how.  

Before implementation of remote monitoring, the customer 
and OEM often required repeated interchanges of information 
about operation and instrumentation data. These interchanges 
took a lot of time. Data analysis and estimation of deterioration 
were time-consuming. Remote monitoring has enabled us, 
OEMs, not only to access to a plant's real-time information but 
also to trace the historical operation data, and therefore the 
required time of data analysis and improvement has been 
reduced. 

Mitsubishi Heavy Industries, Ltd. also embarked on 
around-the-clock remote monitoring service for gas turbine 
plant over a decade ago and has increased its ability over time. 
At present, the application of remote monitoring systems have 
been extended not only into proactive maintenance by making 
use of diagnostic techniques carried out by expert engineers 
but also into building a pattern recognition system and an 
artificial intelligence system using expert’ knowledge. 

Conventional diagnostics is only determining whether the 
plant is being operated within the prescribed threshold levels. 

Pattern recognition is a state-of-the-art technique for 
diagnosing plant operating conditions. By comparing past and 
present conditions, small deterioration can be detected before it 
needs inspection or repair, while all the operating parameter is 
within their threshold levels.  

Mahalanobis-Taguchi method (MT method) is a technique 
for pattern recognition and has the advantage of diagnosing 
overall GT condition by combining many variables into one 
indicator called Mahalanobis distance. MHI has applied MT 
method to the monitoring of gas turbines and verified it to be 
efficient method of diagnostics. 

Now, in addition to the MT method, automatic abnormal 
data discrimination system has been developed based on an 
artificial intelligence technique. Among a lot of artificial 
intelligence techniques, Bayesian network mathematical model 
is used.  

INTRODUCTION 
With increase in interest for environmental issues, 

electrical power generation plants are required to have a high 
efficiency and high reliability [1]. MHI has been developing 
Gas Turbine Combined Cycle (GTCC) plants where gas and 
steam turbines are combined for higher efficiency and 
reduction of environmental load.  

Since the 90’s, MHI has strived to offer the long term 
service agreement (LTSA), a long-term total service package, 
as a new maintenance service for GTCC plants, in response to 
the global demand. Parts supply, repair and dispatch of 
technical advisers for periodic inspection are available within 
the scope of the LTSA. Also a resident engineer at power 
station and remote monitoring service are available as optional 
services to meet customers’ individual needs. 
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The LTSA has become popular for GTCC plants overseas 
to minimize risk of maintenance cost fluctuation. To meet the 
demand for high reliability, MHI provides 24-hour remote 
monitoring service for GTCC plants supplied by MHI. 

For that purpose, Takasago remote monitoring center 
(RMC) was established in 1999. Afterwards in 2001, Orlando 
RMC was established by Mitsubishi Power Systems Americas, 
Inc. (MPSA), MHI’s group company, in Florida, the USA in 
order to cover the remote monitoring of power plants located 
in North and Central America. Thereafter the number of 
remote monitoring users has gradually increased. Now the two 
centers above provide the remote monitoring service for more 
than 50 gas turbines worldwide with a total power output equal 
to 15 million kW. (Fig. 1) 

At present, in order to improve the monitoring service for 
early detection of abnormality and quick diagnosis of root-
cause, the application of remote monitoring systems have been 
extended into building a pattern recognition system and an 
artificial intelligence system using expert’s knowledge[2][3]. 

A lot of pattern recognition-based monitoring methods 
have been studied. Artificial Neural Networks(ANNs) like 
multilayered Perceptron or Kohonen’s Self-Organizing Map 
are actively applied to plant monitoring [4][5]. These 
techniques are useful for discriminating the normal pattern 
from abnormal patterns which consist of a lot of monitoring 
parameters without preparing any strict mathematical model of 
normal operations. However, after detecting the abnormality, 
these models require some additional analytical method if you 
want to know which monitoring parameters show the 
abnormality. 
  Another technique is to use statistical models. A multi 
regression method is used for the estimation of normal 
monitoring parameter values under the current operational 
condition using the training parameters collected from the 
normal operation conditions. This method tells which 
parameters show the largest deviation from the normal 
operation. However, we have to check all monitoring 
parameters for the abnormality detection every time. 

Mahalanobis Taguchi method, another sophisticated 
statistical method can show the abnormality by a single value 
called Mahalanobis distance, and also it can tell which 
monitoring parameters are closely related with the largest 
abnormality by “SN ratio”[6][7]. Now MHI RMC use 
Mahalanobis Taguchi method for automatic abnormality 
detection. 

Diagnosis of root-cause of abnormality is another 
important process for the monitoring. For this diagnosis, there 
are also a lot of “soft computing methods”. ANN or fuzzy logic 
has been studied for this purpose [8][9]. ANNs have some 
difficulty to combine experts’ root-cause knowledge with the 
neural network structure explicitly. Fuzzy logic better 
represents the expert’s knowledge. However the quantitative 
connections of observed conditions and possible root-cause 
should be defined by experts’ subjective opinions as fuzzy 

functions, which do not necessarily agree with objective 
probabilities based on collected operation data. 

Bayesian Network (BN) model is based on the root-cause 
knowledge model with Bayesian probability. This model is 
used actively in the diagnosis fields [10][11]. Successful gas 
turbine monitoring using BN model has been reported[12]. 
MHI RMC also use BN model for the diagnosis. Root-cause 
analysis for Blade Path temperature (BPT) high was firstly 
implemented with over 1,000 BPT events. 

 This paper presents an overview of the Mitsubishi’s 24x7   
Remote Monitoring Center capabilities and experience. Then, 
examples of RMC Information processing technologies such as 
trend monitoring system, abnormality detection using 
Mahalanobis Taguchi method, and failure root-cause analysis 
using Bayesian Network model are described. Effects and 
advantages of these techniques are shown based on the field 
examples. 
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Fig. 1 Two remote monitoring centers and worldwide users 

 
1. REMOTE MONITORING SYSTEM CONFIGURATION 

Configuration of the Takasago’s remote monitoring system 
(RMS) is shown in Fig. 2. The RMS enables us to monitor 
plant operational conditions by extracting operation data from 
the plant control equipment into the local data server and 
transmitting it to the RMC. 

 
1.1. Local Data Server 

First, operational data consisting of analogue and digital 
values are transmitted from the plant control equipment to the 
local data server installed for the remote monitoring systems. 
Then, it is transmitted to the RMC in almost real time 
(approximately three second intervals) as “real-time data” and 
also stored temporarily in the local data server at one second 
intervals. The one second interval data is sampled to one 
minute interval data and is stored in the data storage server as 
“historical data”. 
 
1.2. Web Server & Client, Data storage 

The “real-time data” transmitted from the local data server 
at three second intervals via the MPLS-VPN or the Internet is 
stored temporarily in the web server located in the RMC, the 
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monitoring terminals in the RMC are updated on a real-time 
basis from this server. 

The one minute interval “historical data” is stored in the 
data storage server located in the RMC and all the monitored 
power plants’ operation data is stored away there for an 
unlimited duration. The stored operation data is able to be 
downloaded from the data storage server at anytime as 
required. 

 
1.3. Sampling and monitoring items 

The main GT operational parameters recorded by the 
RMS are; 

(1) GT Speed and generator output 
(2) Control signal output 
(3) Fuel gas temperature, flow and control valve 

position 
(4) Compressor inlet, outlet air temperature and 

pressure 
(5) Blade path temperature and exhaust gas temperature 
(6) NOx emissions 
(7) Combustion pressure fluctuations 
(8) Bearing vibration and metal temperatures 
(9) Rotor cooling air temperature and disc cavity 

temperatures. 
In addition to these analogue data points, digital data 

points (alarm and event signals) are also recorded. The main 
items cover the rest of the plant including steam turbine and 
heat recovery steam generator are also collected. Total number 
of monitoring items reaches up to 2,000 points at each 
monitoring cycles. 
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Fig. 2 Configuration of remote monitoring system 

 
2. RMC’S MONITORING FUNCTIONS AND PLANT 

OPERATION SUPPORT 
Remote monitoring system can display data in various 

ways, such as trend graphs, schematic diagrams and alarm 
summaries which are the same as the power plant’s control 
screens. These displays are used for observing the plant 
operational conditions and identifying alarms as standard real-
time monitoring. In addition to this, the RMS has a data file 
writing function, which enables us to download operation data 

from the data storage server. This operational data can be used 
for various analyses, such as root-cause analysis of problems 
and performance evaluations. 

 
2.1. Trend Graph Screen Display Function 

On the trend graph screen as shown in Fig. 3, the 
progression of any specified parameter is viewable. The graph 
can be traced back 365 days. The time interval and the span 
are selectable. A cursor is available to read instantaneous data 
values. 

 

 
Fig. 3 Trend graph screen 

 
2.2. Schematic Diagram Screen Display Function 

The control block display is shown in Fig. 4. The current 
operational status of each system (such as fuel gas system, air 
flow system, lubrication system, bearing vibration and exhaust 
gas temperature distribution) can be easily understood from the 
schematic diagram screens. 

 

 
Fig. 4 Schematic diagram screen (control block) 

 
2.3. Alarm Summary Display Function 

From the viewpoint of protecting the equipment, an 
acceptability threshold is set for each operational parameter, 
such as temperature and pressure. These are the criteria which 
limit plant operation. If an operational parameter exceeds the 
threshold level, an alarm is activated which notifies us of some 
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abnormality with the plant. The RMC above mentioned also 
receives various event signals, such as valve’s open and closed 
signals, along with the alarm signals. The summary of alarm 
and event signals is displayed on a dedicated screen. 
 
2.4. Plant operation support 

RMC engineers monitor plant operational conditions 
around-the-clock in three shifts providing the operational 
support services, such as troubleshooting, tuning support, 
answering inquiries and diagnosing a root-cause of 
abnormality. (Fig. 5) 
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Fig. 5 Operation support service 

 
The RMC has prepared various templates of graphs for the 

purpose of data discrimination. Therefore, the required time 
for discrimination has been remarkably reduced regardless of 
the plant’s location (Fig. 6) so that unplanned outages are 
minimized. This will increase the plant reliability which is the 
greatest advantage of the remote monitoring center. 
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Fig. 6 The required time for data discrimination 

 

3. ABNORMALITY DIAGNOSIS 
The key of abnormality diagnosis is early detection. To 

protect the equipment from damages, the alarm threshold level 
can independently be set to each operation parameter, such as 
temperature and pressure. These alarms notify the RMC of 
some abnormality of the equipment when the parameter 
exceeds the threshold level.  

In some cases, however, the proper action should be taken 
before the instrumentation data exceeds the alarm threshold. 
Even though the instrumentation data is within the threshold 
level, indications of a problem may appear as “small” change 
in that parameter (as shown in Fig. 7) and when the alarm is 
generated, the equipment may have already suffered damage.  

It is, therefore, important to detect small changes which 
are symptomatic of an initial problem, before the alarm is 
generated. The monitoring items of gas turbine unit, however, 
cover a broad range of physical parameters and are subject to 
vary depending on many factors, such as atmospheric 
conditions and operation condition. Therefore it is not easy to 
detect such small changes by traditional operational 
monitoring. 

 

Threshold level
●

Alarm is generated!

A

B

C

TIME

“Small” change

 
Fig. 7 Indication of initial problem 

 
For the diagnosis of abnormality, we focus on two types of 

differences from standard patterns. Fig. 8 shows the two 
typical differences of a combination of parameters “X” and 
“Y”. One is an abnormality which exceeds the alarm limit, 
which was discussed above. The standard custom alarm 
method is applied for detecting this type of abnormality at an 
earlier stage. The other shows a deviation from the normal 
relationship between the correlative parameters. The fact that 
the pattern is different from the standard operational patterns 
suggests an initial problem. Trend monitoring methods and 
Mahalanobis Taguchi method are useful in this type. 
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Fig. 8 Two types of abnormalities 

 
3.1. Custom Alarm 

The RMC sets a pre-alarm separate from the permanent 
alarm. Pre-alarm level is set closer than the permanent alarm 
for the purpose of early detection. Even if each unit has 
individual patterns of the same parameter, the threshold level 
of the permanent alarms are common to each unit. However, 
the RMC’s custom pre-alarm is able to be set arbitrarily and 
individually for each unit as shown in Fig. 9. Therefore, 
custom alarm is very useful as an early warning system. 

In addition to the pre-alarm based on arbitrary threshold 
level, the differential alarm and the variation rate alarm are 
able to be set arbitrarily. 

 
(1) Threshold level pre-alarm  
(2) Differential alarm 
(3) Variation rate alarm 
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Fig. 9 Custom pre-alarm 

 
3.2. Trend Monitoring 

There are some cases where a small change cannot be 
detected early even if custom pre-alarms are used. For 
detecting these abnormalities, monitoring the trend of the 
pattern is useful. 

An example of trend monitoring of the blade path 
temperature (BPT) deviation is shown in Fig. 11. Combustion 
gas temperature is one of the most important operational 
parameters of gas turbine, but turbine inlet gas temperature is 
too high to be measured. Therefore the temperature 
downstream of turbine final row blades called “BPT” is used to 
monitor the combustion condition. Fig. 11 is an example of the 
MHI 701F-type gas turbine witch has 20 combustors. Each 

deviation from the average temperature is important because 
its distribution can tell us something about the combustion 
condition of each combustor. (Fig. 10) 
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Fig. 10 Distribution of BPT deviation 
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Fig. 11 Trend monitoring of BPT deviation 

 
Fig. 11 shows scatter diagrams of BPT deviation (deg. C). 

on the Y axis and the generator output (MW) on the X axis. 
The blue points show a 10 day scatters and pink points show 
the latest one day scatter. The correlation between the two 
parameters is clearly visible here. Since each BPT deviation 
has individual patterns of correlation with generator output, by 
monitoring changes in such patterns, it is possible to detect 
changes in operational parameters even if it is a small change.  

The latest one day pattern of No.4 BPT deviation varies 
from the standard pattern, even though it is a “small” change. 
This “small” change was actually detected before an alarm was 
generated. From this an inspection was carried out and No. 1 
combustor was found to have initial light damage. Heavy 
damage was avoided because of early detection. The light 
damage caused a reduction in airflow into No. 1 combustor 
and this caused No. 4 BPT corresponding to No.1 combustor to 
decrease. Like the above example, trend monitoring enables 
us to detect such a small change before they become big 
changes, which could prevent damage in the time passed. 
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3.3. Mahalanobis Taguchi Method 
Trend monitoring is a useful method for detecting 

differences in pattern early on. However, because of the large 
number of sensors on a modern GT, there are many monitoring 
parameters. Mahalanobis Taguchi method (MT method) is an 
advanced method of analysis which has the advantage of 
making diagnosis using only one index. 

The MT method is one of several methods of the 
Mahalanobis Taguchi system and has a feature to identify the 
major factors in causing the difference. Also, MT method is a 
popular method used for pattern recognition. It is considered 
applicable to abnormality diagnosis to investigate whether the 
current operation condition is normal or abnormal in 
comparison with the previous condition.  

The standard pattern consisting of multiple variables is 
created using a large number of data collected during normal 
operation. The distance between the standard pattern and the 
sample pattern is calculated based on the Mahalanobis 
distance(MD), where the variance of collected normal data is 
taken into account for the distance computation. Whether the 
operation condition of sample pattern is normal or abnormal is 
determined depending on this distance (Fig. 12).  
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Fig. 12 Euclidean distance & Mahalanobis distance 

 
The MD is calculated from the gas turbine’s operation 

pattern consisting of more than 150 parameters considering 
correlations between each parameter as shown in Fig. 13.  

The process of MT method consists of three major steps: 
(1) Preparation for MD calculation by defining correlation 
matrix, (2) Calculation of MD, (3) Calculation of SN ratio of 
each monitoring parameter. 

Correlation matrix R is defined as follows: 
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Here, k is number of monitoring parameters. jiD is i,j 

component of 1�R  . 
If the correlation matrix is an identity matrix, the training 

data have uniform distribution along all parameters. In this 
case, MD is equivalent to Eucledian distance. 

Basic idea of SN ratio of i-th monitoring parameter is the 
difference of Mahalanobis distance of abnormal operation 
between the two cases: the case where i-th parameter is used 
and the case where i-th parameter is not used. In order to 
calculate this SN ratio effectively, the experimental design with 
orthogonal representation is used in Mahalanobis Taguchi 
method[6][7]. 

Since Mahalanobis distance indicates how the monitored 
operation is different from the normal operation with one 
parameter, we can detect any abnormality without looking at a 
lot of variables, such as generator output, control signal output, 
fuel gas flow, compressor inlet air temperature and exhaust gas 
temperature, etc. 
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Fig. 13 Correlations between each parameter 

 
If the sample pattern is diagnosed as “abnormal”, the 

signal-to-noise ratios (SN ratios) of each variable used for the 
calculation of MD are estimated. Looking at the SN ratios, it is 
possible to identify which parameters are the major factors 
causing the large MD. 

The RMC has developed special software for making 
abnormality diagnosis calculations based on the MT method. 
Since 2008, we have successfully detected more than 20 
potential problems at an early stage.  

One example of successful detection is shown here. The 
MD value shown rapid change and had large values (Fig. 14). 
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The SN ratios showed a specific fuel gas pressure control valve 
to be the major factor of this abnormality (Fig. 15). Looking at 
the CV position of this value, small position changes were 
repeatedly observed which were within the pre-alarm level 
(Fig. 16), during normal operation, this value should be stable. 
At the earliest possible inspection, the corresponding servo 
card and servo valve were exchanged. If this “small” 
abnormality was not detected, continuous operation might have 
caused a Gas turbine trip due to the high control deviation. 

 

 
Fig. 14 Mahalanobis distance change 

 

 
Fig. 15 SN ratio 

 

 
Fig.16 Unusual position change observed on the specific valve 

 
4. ROOT CAUSE ANALYSIS 
4.1. Bayesian network model 

Now the RMC is developing the root cause analysis 
system based on an artificial intelligence technique. The 

Bayesian network can make reasonable inferences on the 
possible root causes using mathematical probability models.  

Fundamental Bayesian theory is described first. Let 
),...,( 1 nxxx  be observed monitoring parameters and 

),...,( 1 myyy  be operational condition parameters like fuel 
type or ambient temperature. Let z be possible root-cause. 
From accumulated operation data, conditional probability that 
z is the root-cause under the condition where x X and 
y Y can be calculated as follows: 

 ),|( YXzP
¦

yx
zyxPzP

zYXPzP

,

)|,()(
)|,()(

 ･･･(4) 

Here, )|,( zYXP can be calculated by measured data 
collected from the cases where parameters are X and 
Y under the root-cause z . )(zP is the probability of root-

cause z  through the whole operation.¦
yx ,

is the summation 

of all possible combination of x  and y . 
The Bayesian network is a probabilistic graphical model 

which represents a set of variables, their causal relationships 
and the conditional probability between variables via directed 
acyclic graph whose nodes have conditional probability tables. 
To avoid the explosions of computation steps, probability 
propagation method is used [13]. Based on these probabilities, 
the components to be inspected can be limited to a minimum 
so that the time and the cost for restoring the equipment to 
working order are reduced. 

This model is constructed by accumulating the actual 
results of causes and incidents. It can represent their causal 
relationships quantitatively as conditional probabilities. 
Accordingly, in the Bayesian network, an unknown cause can 
be inferred from previously observed incidents. 

 
4.2. Applied results of Bayesian Network model 

Here, a real field example how Bayesian network 
successfully estimated the root cause of abnormality is 
described. On April 2010, MT distance alarm was generated. 
By the SN analysis, a #4 BPT deviation was found to be 
changing slowly. BPT signal and trend graph are shown in 
Fig. 17. Mahalanobis distance graph is shown in Fig. 18. 

The Bayesian network model for BPT was activated. 
Necessary information for the inference such as the magnitude 
of deviation, number of BPT sensors which shows the large 
deviation and times of deviation occurred, etc. are input to the 
Bayesian network system. The Bayesian network system 
estimated with probability 67% that the root cause of #4 BPT 
large deviation might be damage to a spring clip (Fig. 19).  

After inspecting the corresponding combustor basket, the 
suggested spring clip damage was observed . Since we 
prepared the repair parts before the inspection based on the 
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Bayesian network analysis, this damage was quickly rectified 
and the GT was successfully restarted after a short stoppage. 

 

 

 
Fig. 17 BPT signal trend and trend graph 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18 Mahalanobis distance increased 

 

 
Fig. 19 Bayesian Network analysis result 

 
The accuracy of inference of the Bayesian network model 

depends on the quantity of actual results used for the 
construction of the model. Furthermore, the Bayesian network 
has a learning function and its model repeats reconstruction 
based on the result of inference. The RMC has many actual 
results on the basis of more than 10 years’ remote monitoring, 
and collection of actual results is ongoing.  

 
5. CONCLUSIONS 

One of an important responsibilities of power producers is 
stable supply of energy. To achieve this goal, OEMs must 
provide more reliable machines and also optimum operation 
support service. The RMS is a powerful tool to provide 
effective and reliable operational support. 

Through utilization of the RMS, the RMC provides 
advanced abnormality diagnoses, so that the outage of the 
plant is minimized by detecting small symptom before the 
deterioration becomes a problem. Also, in case of abnormal 
data deviation, the RMC provides swift and valuable approach, 
such as root-cause analysis including cause probabilities. 
Therefore, remote monitoring plays a big part in maintaining 
safe and stable operation, thereby high reliability of the 
monitored power plant. This will improve further advances in 
IT and the monitoring technology. 

However, our goal cannot be reached only by advance of 
remote monitoring tools. Extensive experience and know-how 
our engineers have gained are essential in providing 
operational support.  
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