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Turbomachinery Group
Campus du Sart-Tilman, B52/3
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ABSTRACT
Least-squares-based methods are very popular in the jet en-

gine community for health monitoring purpose. Their isolation
capability can be improved by using a prior knowledge on the
health parameters that better matches the expected pattern of the
solution i.e., a sparse one as accidental faults impact at most one
or two component(s) simultaneously. On the other hand, com-
plimentary information about the feasible values of the health
parameters can be derived in the form of constraints.

The present contribution investigates the effect of the
addition of such constraints on the performance of the sparse
estimation tool. Due to its quadratic programming formulation,
the constraints are integrated in a straightforward manner.
Results obtained on a variety of fault conditions simulated
with a commercial turbofan model show that the inclusion of
constraints further enhance the isolation capability of the sparse
estimator. In particular, the constraints help resolve a confusion
issue between high pressure compressor and variable stator
vanes faults.

Keywords: gas path analysis, fault isolation, quadratic
programming, constrained estimation

NOMENCLATURE
·̂ estimated value
·̃ scaled value
bl baseline value
cbl customer bleed leak
h vector of health parameters
hpc high pressure compressor

hpt high pressure turbine
lpc low pressure compressor
lpt low pressure turbine
m number of measurements
n number of health parameters
N rotational speed
Pi total pressure at station i
QP Quadratic Programming
SEi efficiency factor of the component whose

inlet is located at section i (baseline value : 1.0)
SWi flow capacity factor of the component whose

inlet is located at section i (baseline value : 1.0)
Ti total temperature at station i
u vector of control parameters
vbv stability bleed valves behind the lpc
vsv variable stator vanes on the hpc
y vector of measurements
ε vector of measurement noise
λ regularisation parameter
N (m,R) a Gaussian probability density function

with mean m and covariance matrix R

INTRODUCTION
Condition-based maintenance aims at scheduling overhaul

actions on the basis of the actual level of engine deterioration.
The benefits are improved operability and safety as well as re-
duced life cycle costs. Generating reliable information about the
health condition of the gas turbine is therefore a requisite and has
been the subject of intensive research in the community.
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The purpose of Module Performance Analysis is to detect,
isolate and quantify changes in engine module performance, de-
scribed by so-called health parameters, on the basis of measure-
ments collected along the gas path of the engine [1]. Generally,
the health parameters are correcting factors on the efficiency and
the flow capacity of the modules (fan, lpc, hpc, hpt, lpt) while
the measurements are inter-component temperatures, pressures,
shaft speeds and fuel flow. The present paper focuses on the iso-
lation (aka. localisation) part.

As far as isolation is concerned, the main feature of the faults
is their impact confined to one (maybe two) component(s). Typi-
cal causes of such faults are for instance a foreign object damage
or a hot restart. On the other hand, progressive wear due e.g., to
fouling and erosion, is a continuous process that affects all the
components at the same time. Although it leads to a decrease in
engine performance too, it is not regarded as a faulty condition,
given that it occurs during normal operation.

Marinai et al. concluded from their survey [2] that methods
relying on artificial intelligence concepts such as neural networks
perform quite well in performing the isolation task, essentially
because of their classification nature, that restricts the set of so-
lutions to a finite, limited number of instances. On the contrary,
techniques based on optimal estimation such as weighted least-
squares or Kalman filters are better suited for the assessment of
distributed degradation and are known to spread localised faults
over several components.

This adverse effect, generally termed smearing in the litera-
ture, see [3], is due to the very nature of the estimation problem.
Indeed, in practical situations, the number of unknown health pa-
rameters exceeds the number of available measurements, making
the estimation problem underdetermined. To overcome this is-
sue, regularisation adds a penalty term on the deviations of the
health parameters to the usual least-squares criterion in order to
drive the estimator to a particular solution. A popular choice for
the regularisation term is a quadratic penalisation of the param-
eter deviations. Unfortunately, such a function penalises much
more solutions characterised by large deviations in a few health
parameters than solutions involving small variations of numerous
health parameters, which explains the spreading effect observed
in practice.

Nonetheless, the authors proposed in a previous paper [4] an
original approach to fault isolation based on optimal estimation.
It consisted in a least-squares formulation where the regularisa-
tion term was chosen in closer accordance with the expected pat-
tern of the solution, namely a sparse one i.e., a solution with
many zero components. The sparse estimator was expressed as
a quadratic programming (QP) problem for which efficient, off-
the-shelf solvers are available. Results based on computer sim-
ulations showed that the sparse estimator has a better isolation
capability than the legacy least-squares formulation.

In module performance analysis, complimentary informa-
tion about the health parameters can be derived from physical

considerations and experience. For instance, assuming that no
maintenance actions are undertaken, the efficiencies of the tur-
bomachinery components are not expected to improve. A second
example is that when a fault occurs on a module, it most likely
affects both its efficiency and its flow capacity. Mathematically,
this knowledge can be expressed as constraints on the health pa-
rameters.

The topic of constrained estimation has received little atten-
tion in the field of engine performance monitoring. Reported
investigations [5–7] dealt with the inclusion of constraints into a
Kalman filter for the tracking of progressive deterioration. These
studies concluded that the addition of constraints lead to more
accurate estimates with respect to the unconstrained case, how-
ever at the price of a tedious integration of these constraints into
the algorithm. Similar trends were observed in the case of state
estimation in chemical processes [8].

In the light of these findings, the present paper investigates
the potential benefit of constrained sparse estimation for fault
isolation. Due to its quadratic programming formulation, the ad-
dition of constraints to the sparse estimator is a rather straight-
forward process. A variety of fault conditions simulated with a
generic commercial turbofan model are used to assess relevant
metrics such as the classification confusion matrix and kappa co-
efficient.

DESCRIPTION OF THE METHOD
The scope of this section is to provide a theoretical descrip-

tion of the fault isolation tool based on constrained sparse estima-
tion. First, the model relating the observations to the health pa-
rameters is described. The main features of the (unconstrained)
sparse estimator are then briefly recalled. Readers are directed to
reference [4] for a more comprehensive presentation of the sparse
estimator. Finally, the formulation and addition of constraints are
discussed.

The engine performance model
One of the master pieces of gas path analysis is a simula-

tion model of the engine. Considering steady-state operation of
the engine, these simulation tools are generally non-linear aero-
thermodynamic models based on mass, energy and momentum
conservation laws applied to the engine flow-path. Equation (1)
represents such an engine model where u are the variables defin-
ing the operating point of the engine (e.g., fuel flow, altitude,
Mach number), h are the aforementioned health parameters and
y are the gas path measurements.

y = G(u,h) (1)

In the frame of performance diagnostics, the model is rarely
used in the previous form stated by equation (1). Indeed, the
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quantity of interest is the difference between the actual engine
health condition and a reference one represented by baseline val-
ues hbl . Assuming a linear relationship between the measure-
ments and the health parameters, as well as fixed operating con-
ditions, the model is re-formulated according to equation (2).

y = G h (2)

where

G =
∂

∂h
G(u,h)

∣∣∣∣
h=hbl

(3)

is the influence coefficient matrix (ICM) of the engine model
around the health condition hbl . With some abuse of notation,
y and h represent from now on deviations of the measurements
and the health parameters from their values at the linearisation
point.

A random variable ε ∈ N (0,Ry) which accounts for sen-
sor inaccuracies and modelling errors is added to the determinis-
tic linearised model (2) in order to reconcile the observed mea-
surements and the model predictions. Equation (4) is therefore
termed the statistical model.

y = G h+ ε (4)

The statistical model can further be scaled to a linear system
with a noise distribution ε̃∈N (0, I) provided that the covariance
matrix Ry is positive definite. The scaled model is given by

G̃ = (
√

Ry)−1 G (5)

where the scaling factor takes into account the relative accuracy
of each sensor.

A short background on sparse estimation
The estimation of the health parameters can be cast as an in-

verse problem. A celebrated solution technique is the so-called
regularised least-squares algorithm [9]. The recourse to regulari-
sation is mandated by the fact that in most practical situations the
number n of unknown health parameters outweighs the number
m of available measurements, leading to an underdetermined es-
timation problem. Loosely speaking, regularisation helps solving
underdetermined problems by artificially improving their mathe-
matical conditioning.

A very common regularisation scheme for underdetermined
least-squares problems consists in adding a quadratic penalisa-
tion on the deviations of the health parameters. As a result, the

algorithm is driven towards the optimal solution that lies in the
neighbourhood of the baseline values. The shape of the neigh-
bourhood is specified by the elements of the symmetric, positive
definite matrix Q in equation (6). In that framework, the esti-
mated health parameters are the solution of the following opti-
misation problem

min
h

{
1
2

(ỹ− G̃ h)T (ỹ− G̃ h)+
1
2

hT Q−1 h

}
(6)

where the first term in the objective function expresses a least-
squares data fit and the second one is the quadratic regularisation
term. Note that the relative accuracy of each sensor is embedded
in the scaled model G̃.

The choice of a quadratic function for the regularisation term
allows an analytic relation to be worked out which is one reason
for its popularity. However, it is also responsible for the “smear-
ing” effect. Indeed, the quadratic penalisation on the parameter
deviations favours solutions involving small variations of numer-
ous health parameters instead of solutions characterised by large
deviations in a few health parameters. As a result, the algorithm
has the tendency to spread the effect of localised faults over sev-
eral components.

Obviously, the regularisation term has a premier influence
on the behaviour of the algorithm and it should therefore be se-
lected so as to reflect as faithfully as possible the prior knowl-
edge about the solution. In that respect, the faults of interest are
such that they impact only a limited number of health parameters,
which means that many elements in the vector of health parame-
ter deviations are equal to zero. Mathematically, such a pattern is
termed sparse. In a previous publication [4], the authors showed
that the concentration capability of a least-squares-based algo-
rithm could be improved by introducing a regularisation term that
promotes sparsity.

Figure 1 illustrates the concept behind sparse estimation in
the case of a scalar parameter. Replacing the traditional quadratic
regularisation term (black line) with a linear penalisation (grey
line) enables sparse solutions. Indeed, large deviations of the
parameter are much less heavily penalised with the linear func-
tion than with the quadratic one. Among the range of functions
that favour sparsity in the solution, the linear penalisation has the
considerable advantage to lead to a convex optimisation prob-
lem which consequently admits one global optimum. The sparse
estimator is hence defined as

min
h

{
1
2
‖ỹ− G̃ h‖2

2 +λ 1T
n |h|

}
with λ > 0 (7)

where 1n is a column vector of length n with each element equal
to one and ‖x‖2

2 = xT x.
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Figure 1. PENALTY SET BY THE REGULARISATION TERM IN THE
TRADITIONAL AND SPARSE LEAST-SQUARES (LS) ESTIMATORS

The scalar λ balances the least-squares data fit and the spar-
sity requirement. As λ increases, the quality of the least-squares
fit degrades while the solution becomes sparser. This parameter
shall consequently be tuned by the user to reach optimal per-
formance. When processing noisy data, it is advised in refer-
ence [10] to set λ to the standard deviation of the noise, which is
equal to one for the scaled system.

Sparse estimation as a QP problem
As shown in [11], the optimisation problem (7) can be con-

verted into a QP problem (see Appendix or [12]). To this end,
the vectors h and |h| are replaced with their positive and nega-
tive parts

{
h = h+−h−

|h|= h+ +h−
with

{
h+ , max(h,0)

h− , max(−h,0)
(8)

Note that the operator max(v,0) compares each element of vec-
tor v to zero.

This rather simple change of variables doubles the number
of optimisation variables, but on the other hand it leads to the
following quasi-unconstrained QP problem

min
h+,h−

{
1
2

∥∥∥∥ỹ− G̃ (h+−h−)
∥∥∥∥2

2
+ λ 1T

n (h+ +h−)
}

subject to

{
h+ ≥ 0

h− ≥ 0

(9)

On a side note, it is worth realising that even if the new op-
timisation variables h+ and h− are forced to be non-negative, in
accordance with their definition, it doesn’t prevent the health pa-
rameter deviations h to be negative as they are computed as the
difference between the positive and negative parts.

To simplify the notation, let us aggregate the unknowns into
a single vector hT

a = [h+T h−T ], the quasi-unconstrained QP
problem (9) becomes

min
ha

{
1
2

∥∥ỹ− G̃a ha
∥∥2

2 + λ 1T
2n ha

}
subject to ha ≥ 0 (10)

with the concatenated matrix G̃a = [G̃ − G̃].

Formulation of the constraints
Additional information about the health parameters is avail-

able. Be it derived from physical considerations or experience,
it can most of the time be formulated as inequality constraints.
Various researchers [5–7] investigated the integration of such
constraints into a Kalman filter for tracking gradual deteriora-
tion. Their results showed that the estimates were more accurate
essentially because the constraints further increase the a priori
knowledge on the health parameters. This benefit was balanced
on the algorithmic side by a more demanding computational ef-
fort. In particular, the solution proposed by Simon and Simon [5]
consists in a two-step procedure. First, a regular Kalman filter
(i.e., without constraints) estimates the parameters. Second, this
unconstrained estimate is projected inside the feasible domain
through the solution of a QP problem.

In the present work, the sparse estimator is already ex-
pressed as a QP problem, therefore the inclusion of constraints is
almost immediate and does not make the algorithm more com-
plex. In the following, the formulation of relevant constraints is
discussed in the frame of fault isolation.

The occurrence of a fault on a turbomachinery module al-
ways causes a drop in its performance. For compressors, it can
be modelled as a decrease in both efficiency and flow capacity
whereas for turbines, it translates into a decrease in efficiency
and an increase in flow capacity. This point of view is shared by
several authors see e.g., [13–15]. Looking at the plane formed by
flow capacity and efficiency changes of a given component, the
feasible domain for a compressor fault is the third quadrant i.e.,
the locus where ∆SWi ≤ 0 and ∆SEi ≤ 0 whereas for a turbine
fault, it is the fourth quadrant i.e., the locus where ∆SWi ≥ 0
and ∆SEi ≤ 0. Moreover, it is acknowledged that a component
fault hits both the efficiency and the flow capacity, reducing even
more the feasible domain. The situation is depicted in figure 2
where the greyish area shows the admissible sector of the third
(respectively fourth) quadrant.

The feasible sector of the third quadrant limited by the half-
lines a and b is defined via the two constraints

Constraint a : ∆SWi− fc,a ∆SEi≥ 0 with fc,a > 1 (11)
Constraint b : −∆SWi+ fc,b ∆SEi≥ 0 with fc,b < 1 (12)
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Figure 2. FEASIBLE DOMAIN FOR THE HEALTH PARAMETERS OF
A TURBOMACHINERY COMPONENT – Part of the third quadrant for a
compressor (left), part of the fourth quadrant for a turbine (right)

where fc,a and fc,b are so-called coupling factors (see next sec-
tion), equal to the inverse of the positive slope of the half-lines a
and b.

Similarly, the feasible sector of the fourth quadrant limited
by the half-lines c and d is defined via the constraints

Constraint c : −∆SWi+ fc,c ∆SEi≥ 0 with fc,c <−1 (13)
Constraint d : ∆SWi− fc,d ∆SEi≥ 0 with fc,d >−1 (14)

where the coupling factors fc,c and fc,d are equal to the inverse
of the negative slope of the half-lines c and d.

Constraints could also be included on the system (vbv, vsv
and cbl) faults. Indeed, these faults are “single-sided”, meaning
that the heath parameter can vary in only one direction. For in-
stance, stability bleed valves are normally closed at cruise regime
where the data is usually collected. A faulty vbv would therefore
be one that remained stuck open (which is by the way the fault-
safe mode).

Finally, every constraint is expressed in terms of the optimi-
sation variables h+ and h− of the QP problem. The constrained
sparse estimator then writes

min
ha

{
1
2

∥∥ỹ− G̃a ha
∥∥2

2 + λ 1T
2n ha

}
subject to

{
Ce ha = 0

Ci ha ≥ 0

(15)

where Ce and Ci define the equality and inequality constraints
respectively.

The equality constraints restrict the health parameters to the
correct quadrant for turbomachinery module faults and to the rel-
evant part of the real axis (positive or negative) for system faults.
Each row of the matrix Ce has only one non-zero element, which

means that each equality constraint relates to only one of the op-
timisation variables. Hence the equality constraints could be en-
forced directly by removing the corresponding variables in the
optimisation problem. As an example, the positive part of fan
efficiency deviation can be discarded as it is assumed that fan ef-
ficiency cannot increase. A direct benefit is a reduction of the
size of the optimisation problem and, as such, of the computa-
tional burden.

The inequality constraints implement the coupling between
the efficiency and flow deviations of the rotating modules. As
a result, each row of the matrix Ci has two non-zero elements
whose values are given in equations (11–14). It is interesting to
note that such a correlation between flow and efficiency can be
introduced in the classical least-squares technique through ap-
propriate non-zero terms outside of the main diagonal of the ma-
trix Q in equation (6), as explained by Doel [16].

The quadratic program (15) is coded in Matlab and solved
with the package BPMD by Mészaros [17]. This optimisation
algorithm is based on an interior-point method.

APPLICATION OF THE METHOD
Engine layout

The application used as a test case is a high bypass ratio,
mixed-flow turbofan. The engine performance model was devel-
oped in the frame of the OBIDICOTE1 project and is detailed
in [18]. A schematic of the engine is sketched in figure 3 where
the location of the health parameters and the station numbering
are also indicated.

 fa
n

lpc hpc combusto
r hpt lpt

inlet

SW49
SE49

nozzle

2 26 3

13

41 49 5

SW41
SE41

SW26
SE26

VBV
VSV

SW12
SE12

SW2
SE2

CBL

Figure 3. TURBOFAN LAYOUT WITH STATION NUMBERING AND
HEALTH PARAMETERS LOCATION

A total of 13 health parameters is considered. Ten of them
are usual efficiency (SEi) and flow capacity (SWi) factors for the

1A Brite/Euram project for On-Board Identification, Diagnosis and Control
of Turbofan Engine
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turbomachinery components. Parameters vbv and vsv represent
deviations with respect to the nominal schedule of the stability
bleed valves and variable stator vanes respectively. They model
a fault either on the sensed actuator position or on the actuator
itself (e.g., mechanical failure). Finally, parameter cbl models a
malfunction of the customer bleed valves. These devices allow
air bleeding from the hpc for various purposes such as cabin air
conditioning and anti-ice systems, all of which are considered as
external demands from the engine viewpoint.

The sensor suite selected to perform the engine diagnostics
is representative of the instrumentation available on-board con-
temporary turbofan engines and is detailed in table 1 together
with the sensors used to define the operating point of the engine
in flight.

Table 1. GAS-PATH AND OPERATING POINT INSTRUMENTATION
(uncertainty is three times the standard deviation σ)

Label Description Uncertainty

P13 fan outlet total pressure ± 150 Pa

T26 hpc intlet total temperature ± 2 K

P3 hpc outlet total pressure ± 5000 Pa

T3 hpc outlet total temperature ± 4 K

NF low pressure spool speed ± 3 rpm

NC high pressure spool speed ± 6 rpm

T49 lpt inlet total temperature ± 8 K

WF fuel flow ± 5 g/s

P2 ram total pressure ± 100 Pa

T2 ram total temperature ± 2 K

Pamb ambient pressure ± 100 Pa

Fault case generator
The effect on isolation capability brought by the inclusion

of constraints in the sparse estimation tool is assessed by means
of simulated data. The operating point is representative of cruise
conditions and is randomly selected in the envelope defined in
table 2. The engine is run at a prescribed fuel flow.

Table 2. ENVELOPE OF THE CONTROL PARAMETERS

Name Units Lower bound Upper bound

Fuel flow kg/s 0.38 0.40

Altitude kft 33 37

Mach - 0.78 0.82

∆TISA K -10 +10

The fault cases are picked up from the library summarised
in table 3 and freely inspired from reference [15]. Each faulty
condition impacts either one single turbomachinery component
or one of the mechanical devices (vbv, vsv or cbl). Component
faults involve alterations in both the efficiency SEi and flow SWi
correcting factors. The magnitude fm and coupling factor fc for
these faults are uniformly distributed in the intervals quoted in
table 3 and relate to the health parameters according to

 fm ,
√

∆SEi2 +∆SWi2

fc ,
∆SWi
∆SEi

⇒


∆SEi =

fm√
1+ f 2

c

∆SWi = fc ·∆SEi
(16)

where ∆ stands for deviation with respect to baseline values.
In the test-cases, SWi and SEi vary in the same sense for

compressors (as for fouling), whereas they vary in opposite
senses for turbines (as for erosion). The system faults are im-
plemented as true off-schedule deviations. The uniformly dis-
tributed magnitude for these fault types is reported here as some
kind of severity index, for sake of simplicity. A unit value corre-
sponds to a small modification with respect to the nominal setting
(e.g., only a slight mistuning of the vsv), while a value of 5 hints
at a deep malfunction (e.g., fully open vbv).

Table 3. LIST OF CONSIDERED FAULT TYPES

Component Magnitude fm Coupling fc

fan 1 to 5% 0.5 to 2.0

lpc 1 to 5% 0.5 to 2.0

hpc 1 to 5% 0.5 to 2.0

hpt 1 to 5% -0.5 to -2.0

lpt 1 to 5% -0.5 to -2.0

vbv 1 to 5 /

vsv 1 to 5 /

cbl 1 to 5 /

The isolation tool performs a snapshot-type analysis of the
data. In an attempt to mimic the on-board archival of engine data,
the snapshots are generated in the following way:

1. select a random operating condition and fault condition from
the distributions specified in tables 2 and 3,

2. run the engine model to generate 25 samples,
3. add Gaussian noise, whose magnitude is specified in table 1,

to the noise-free simulated measurements,
4. average the readings and store them in the database.

In the present study, 2000 occurrences of each fault type
have been generated resulting in a database of 16000 conditions
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to be analysed with the sparse estimation tool. Such a number
allows a rather decent coverage of the fault pattern for each com-
ponent (both in magnitude and coupling factor).

Isolation logic and selected metrics
The main objective of a fault isolation tool is to provide

the maintenance personal with an automated assessment of the
faulty component(s). The vector of health parameter deviations
obtained after solving the optimisation problem (15) is however
not in a so convenient form for that purpose, nor to readily eval-
uate the metrics described below.

Therefore, in order to determine the faulty entity, the fol-
lowing isolation logic is applied. It builds upon the one devised
in [19]. This isolation logic assumes that only one component
is faulty at a time. The magnitude of each fault type is com-
puted from the estimated deviations of the health parameters. For
the turbomachinery components, the magnitude is defined as the
scalar fm in equation (16) and for the systems, the magnitude is
simply the absolute value of the deviation. The entity with the
largest magnitude is deemed as the faulty one.

The isolation capability of the sparse estimation tool, with
and without constraints, is measured by means of the same two
metrics as in reference [4]. For sake of completeness, they are
briefly recalled below.

The first metric is the Classification Confusion Matrix
(CCM). It is a square matrix, whose dimension is equal to the
number of fault types N f (equal to eight here). In the most gen-
eral form, the no-fault type can be included as well. It is however
not the case here as the emphasis is put on fault isolation. The el-
ements on the main diagonal reflect correct classifications. Each
column gives an overview of how the true occurrences of a given
fault type (e.g., lpc) are affected to the various fault types by the
algorithm. As a by-product of this matrix, the Percent Correctly
Classified (PCC) for a given fault type is defined as the ratio of
the number of correct classifications to the total number of oc-
currences for the said type (which amounts to 2000 here).

The second metric is the Kappa Coefficient κ, defined in
equation (17). It conveniently summarises the content of the
confusion matrix into a single scalar and can be interpreted as
a measure of an algorithm’s ability to correctly classify a fault,
which takes into account the expected number of correct classifi-
cations occurring by chance. The upper bound on κ is one, which
means that the algorithm achieves perfect classification.

κ =
Ncc−Nec

Ntot −Nec
(17)

where

- Ncc is the number of correctly classified cases,
- Ntot is the total number of cases,
- Nec is the number of cases expected correct by chance,

Ncc =
N f

∑
i=1

CCMi,i Ntot =
N f

∑
i=1

N f

∑
j=1

CCMi, j

Nec =
N f

∑
i=1

{(
N f

∑
j=1

CCMi, j

Ntot

)
·

N f

∑
j=1

CCMi, j

}

Results
The database of 16000 fault conditions was processed twice

with the sparse estimation tool, first without constraints, to estab-
lish the performance of the “baseline” algorithm, then applying
the constraints discussed earlier. In both cases, the regularisation
parameter λ was set to the recommended value of one.

Tables 4 and 5 report the classification confusion matrix re-
spectively in the unconstrained and constrained case. The true
and predicted fault states are respectively on the horizontal and
vertical axes. The percentages of correctly classified cases for
each fault type are quoted in the last row of the tables.

The PCC figures in table 4 show the rather good overall iso-
lation capability of the unconstrained sparse estimator. All oc-
currences of fan, hpt and lpt faults are indeed correctly classified

Table 4. CLASSIFICATION CONFUSION MATRIX AND PERCENT
CORRECTLY CLASSIFIED – UNCONSTRAINED SPARSE ESTIMATION

fan lpc hpc hpt lpt vbv vsv cbl

fan 2000 0 0 0 0 0 0 0

lpc 0 1746 0 0 0 1 0 0

hpc 0 3 1467 0 0 0 107 0

hpt 0 0 0 2000 0 0 0 1

lpt 0 1 0 0 2000 0 0 36

vbv 0 200 0 0 0 1999 0 0

vsv 0 50 533 0 0 0 1893 0

cbl 0 0 0 0 0 0 0 1963

PCC 100 87.3 73.4 100 100 100 94.7 98.2

Table 5. CLASSIFICATION CONFUSION MATRIX AND PERCENT
CORRECTLY CLASSIFIED – CONSTRAINED SPARSE ESTIMATION

fan lpc hpc hpt lpt vbv vsv cbl

fan 2000 0 0 0 0 0 0 0

lpc 0 1976 2 0 0 2 0 0

hpc 0 0 1983 0 0 0 53 0

hpt 0 0 0 2000 0 0 0 18

lpt 0 0 0 0 2000 0 0 9

vbv 0 24 0 0 0 1998 0 0

vsv 0 0 15 0 0 0 1947 0

cbl 0 0 0 0 0 0 1973

PCC 100 98.8 99.2 100 100 99.9 97.4 98.7
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Table 6. OVERALL PCC AND KAPPA COEFFICIENT FOR THE UN-
CONSTRAINED AND CONSTRAINED ALGORITHMS

Overall PCC κ coefficient

Unconstrained 94.2% 0.933

Constrained 99.2% 0.991

and only one vbv event is misclassified. The PCC’s of vsv and
cbl faults are well above the 90% mark, which is almost perfect
too. The isolability of lpc and hpc faults is worse, with PCC’s
of respectively 87.3% and 73.4%. These results are very similar
to those obtained in reference [4] that showed the superiority of
the sparse estimator with respect to the legacy least-squares for-
mulation for fault isolation. Note that this previous study used a
slightly different sensor set and did not consider cbl faults.

Although the estimation problem is quite underdetermined,
with six more health parameters than gas path measurements,
the sparse estimation approach allows an accurate isolation of
most fault types over a wide range of fault magnitudes and cou-
pling factors. The inclusion of constraints in the sparse estima-
tion problem further enhances the picture. Indeed, as shown in
table 5, the PCC’s of lpc and hpc faults reach 99% and the PCC
of vsv faults rises by a couple of percent with respect to the un-
constrained case. Moreover, the addition of constraints does not
degrade the PCC’s of the other fault types save the vbv that shows
now two misclassified events.

Table 6 provides an at-a-glance summary of the performance
of the unconstrained and constrained algorithms in terms of over-
all PCC (mean value of the diagonal terms of the CCM) and
kappa coefficient. The greater score of the constrained estima-
tion tool comes from the higher number of total correct classi-
fications which is measured by the overall PCC, but also from
the lower number of non-zero terms outside the main diagonal
which amounts to nine in the unconstrained case versus seven in
the constrained one. In a given column of the CCM, the larger
the number of non-zero terms, the more random the fault is asso-
ciated to a class by the algorithm. This degree of randomness is
accounted for in the definition of the kappa coefficient.

Looking in more details at the CCM in the unconstrained
case (table 4), a mere 5% of vsv faults are reported as hpc faults
and an anecdotal number of cbl faults are misclassified as lpt
ones. However, about 10 percent of lpc faults are erroneously
assigned to a vbv malfunction and not less than 26 percent of hpc
faults are isolated as vsv ones. Comparing with the figures of the
CCM in the constrained case (table 5), the addition of constraints
is most beneficial for the isolability of hpc faults as the number of
misclassifications decreases from 553 to 17. This improvement
is analysed more deeply below.

The misclassification of some 26% of hpc faults as vsv ones
by the unconstrained algorithm can be understood by observing
figure 4. It shows the variation in each gas-path measurement,
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Figure 4. SIGNATURES OF SW26 AND VSV ON THE SENSORS
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Figure 5. COMPARISON OF THE UNCONSTRAINED AND CON-
STRAINED SPARSE ESTIMATE OF A HPC FAULT

quoted in number of sensor’s standard deviation, for a 1% change
in SW26 (black bars) and a vsv malfunction of severity 0.5 (grey
bars). The value of the severity index for the vsv malfunction was
chosen so that the maximal deviation is of comparable magnitude
for both parameters.

From the graph, it is obvious that the signature of SW26 is
highly similar to that of vsv for the given level of fault mag-
nitudes. In both cases, only one sensor reading, namely the
high spool speed NC, undergoes a significant deviation. Con-
sequently, it is very hard to distinguish between these two pa-
rameters in the case of small magnitude faults. The true loss
in SW26 is preferentially affected to vsv as the same deviation
in the sensors is achieved for a fault severity of half the value
it would have in the case of SW26. Part of the criterion of the
sparse algorithm penalises in fact the sum of absolute values of
the parameter deviations.

Figure 5 illustrates the effect of the constraints on the be-
haviour of the algorithm for one of the hpc fault cases. The health
parameter values, on the vertical axis, are expressed as percent
deviations from the baseline values for the efficiency and flow
factors and as the severity index for the system faults. Black bars
are related to the true fault, dark grey bars to the unconstrained
solution and light grey bars to the constrained solution. First of
all, it can be seen that both solutions are in fact sparse as only
two parameters out of 13 have non-zero deviations.
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Figure 6. MISCLASSIFIED LPC FAULTS (LEFT) AND HPC FAULTS
(RIGHT)

This particular hpc fault case is misclassified by the uncon-
strained algorithm, but correctly isolated once constraints are
added. Looking at the unconstrained solution, the sparse algo-
rithm captures reasonably well the alteration of the efficiency
SE26, but transfers the change in flow capacity to the vsv pa-
rameter. Given that the vsv deviation is larger than the com-
bined one on the hpc parameters, the previously described iso-
lation logic declares the vsv as the faulty entity. The integration
of constraints, more specifically those enforcing some coupling
between the flow and efficiency deviations as given by equations
(11–12) solves the confusion issue between SW26 and vsv. For
the constrained algorithm, the unconstrained solution is not feasi-
ble because it violates some of the constraints. Indeed, a change
in SE26 must go together with a modification of SW26. Basi-
cally, the constraints reshape the admissible domain which al-
lows the constrained algorithm to converge to a solution much
closer to the truth.

To conclude the review of the results, figure 6 depicts the
distribution of the misclassified lpc (left panel) and hpc faults
(right panel) in the magnitude–coupling plane. The grey dots
represent cases that are misclassified by the unconstrained tool,
but correctly localised with the constrained one. Loosely speak-
ing, these grey dots are an image of the improvement in isolabilty
of lpc and hpc faults. The black dots relate to fault cases that are
still wrongly isolated after the addition of constraints.

Considering the lpc pattern, most of the grey dots appear to
be localised below the main diagonal i.e., the line running from
the top left corner to the bottom right corner, which means that
faults either with a large coupling factor or with a large magni-
tude are correctly classified by both algorithms. This successful
isolation is due to a favourable signal-to-noise ratio. Although
easily understandable for faults of large magnitude, acceptable
signal-to-noise ratio can also be achieved with large coupling
factors. In that case, the change in flow capacity dominates the
change in efficiency. As explained in [20], performance is much
more sensitive to flow capacity than to efficiency. The few black
dots are evenly distributed along the vertical axis for fault mag-
nitudes smaller than roughly 1.5%.

The hpc pattern looks totally different. Indeed, the grey dots
are concentrated above a threshold coupling factor of about 1.5,
over the whole range of magnitudes. This can be explained by
the argument developed during the analysis of figure 4. All 17
black dots but one are characterised by a coupling factor larger
than about 1.75 and a magnitude smaller than about 3.5%. No
explanation has been found so far to justify that pattern.

DISCUSSION
The analysis of the results has illustrated the benefit brought

by the addition of constraints in the sparse estimation algorithm
as far as fault isolability is concerned. Incidentally, it is yet an-
other illustration that the more precise the prior information em-
bedded in the estimator, the better it performs. It should be kept
in mind that the algorithm was applied to simulated data, which
are always of better quality than field data. In the remainder
of this section, ideas for complimentary work around the con-
strained sparse estimator are discussed.

On the theoretical side, it would be valuable to derive the
covariance matrix of the constrained sparse estimates. Such un-
certainty bounds could then be taken into account in the isolation
logic to provide some kind of confidence level associated to the
isolated fault type.

A complete solution for engine performance monitoring
shall have the capability to track gradual deterioration as well as
detect, isolate and quantify abrupt faults that can occur acciden-
tally. The authors have devised in a previous contribution [22]
an adaptive Kalman filter which actually deals with the tracking
of progressive degradation and the detection of abrupt faults. A
possible follow-up to this work could be the combination of the
fault isolation tool with the adaptive Kalman filter. Practically,
the isolation module shall be extended to the coverage of sen-
sor malfunctions. This extension will further increase the sparse
nature of the solution vector.

CONCLUSION
The purpose of this contribution was to investigate the effect

of the addition of constraints to a fault isolation tool. At the heart
of this tool is a sparse estimation approach. It combines a tradi-
tional least-squares fit of the data and a prior knowledge on the
parameters that favours solutions with large deviations in a few
parameters, which are typical signatures of abrupt faults. On the
other hand, the constraints translate complimentary information
about the feasible values of the health parameters (e.g., coupling
between efficiency and flow deviations for a given component,
no improvement in the efficiency). They are integrated in quite a
straightforward manner into the fault isolation tool thanks to its
quadratic programming formulation.

The performance of the algorithm was assessed in terms of
classification confusion matrix and kappa coefficient from the
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processing of a large variety of component and system faults sim-
ulated with a commercial turbofan model. Results showed that
the already satisfactory isolation capability of the “bare” algo-
rithm can further be improved via the inclusion of constraints.
In particular, the constraints help resolve a confusion issue be-
tween the health parameters of the high pressure compressor and
of the variable stator vanes. The enhancements brought by the
constraints can be explained by the fact that they further increase
the prior knowledge about the health parameters.
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APPENDIX: Elements of Quadratic Programming
A Quadratic Programming problem is a problem in which

the objective function is quadratic and the constraint functions
are linear. The problem is to find a solution vector xopt to

min
x

f (x) =
1
2

xT A x+bT x

subject to

{
cT

i x = di, i ∈ E

cT
i x≥ di, i ∈ I

(18)

where E and I are respectively the sets of equality and inequality
constraints.
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