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ABSTRACT 
Based on the Gas Path Analysis (GPA) method, nonlinear 

estimation and fuzzy classification theories, a comprehensive 
fault diagnosis system has been developed for an industrial Gas 
Turbine (GT). The hybrid method consists of two parts, in the 
first part noisy sensor output changes are translated to changes 
in the health parameters using an Extended Kalman Filter 
(EKF). In the second part the outputs of the EKF are used as 
the inputs of a fuzzy system. This system can isolate and 
evaluate the physical faults based on the predetermined rules 
obtained mostly from experimental data and aero-
thermodynamical simulations. The ratios of changes in different 
health parameters due to different faults and also the areas in 
the compressor most affected by these faults are the key factors 
for developing the rules. The Fuzzy Inference System (FIS) 
gives the fault locations in the compressor or turbine. Also, 
operator-friendly suggestions for the time of the compressor 
washing or components repair are provided. This leads to a 
hybrid fault detection and isolation solution for the GT, and 
with pre-filtering the data before use as input of fuzzy inference 
system, the accuracy of the fault diagnosis system is improved. 
Nonlinear simulation, estimation and classification results are 
provided to show the effectiveness of the proposed 
methodology. 

 
1 INTRODUCTION 

With respect to ever-increasing power demand in the 
world and also growing share of power generation by gas 
turbines, continuous and risk-free performance of these devices 

is of high significance. Nowadays gas turbine manufacturers try 
to boost nominal and design performance conditions of their 
products and also optimize their performance in the site 
conditions. All types of gas turbines are susceptible to 
performance deterioration because of the site and working 
conditions and polluting environment. These deteriorations 
cause GTs to supply less power than what they are expecting to. 
As a result, health monitoring and performance improvement 
are two of the most important priorities of gas turbine 
manufacturers and users. 

Fault diagnosis procedures rely on discernible changes 
taking place in observable parameters in order to detect 
physical faults. There are specific physical faults which are 
responsible for much of the performance loss in the industrial 
gas turbines, namely fouling, erosion, corrosion, leakage, 
thermal distortion and foreign object damage (FOD). 

These degradations cause changes in the fundamental 
component performance characteristics of the gas turbine. They 
can be viewed as the state parameters representing the overall 
health of their related component, such as high or low pressure 
compressors or turbines. In most of the gas path analysis 
methods, two types of health parameters have been mentioned 
to be crucial in determining health conditions of the GT 
components, efficiency and flow capacity. Variations in these 
parameters caused by physical faults directly change the sensor 
measurements, such as pressures and temperatures in the inlets 
and outlets of the gas path components, fuel flow and spool 
speeds. 
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In this work, in the simulation phase, using accurate 1D, 
3D and quasi-3D simulations and analyses with a 3D finite 
volume solver program and Fortran, different physical faults 
are mapped to degraded health parameters and then using zero-
dimensional modeling of the gas turbine cycle with the help of 
stage stacking method, these degradations are mapped to 
changes in sensor measurements. In the diagnosis phase, first, 
using nonlinear gas path analysis  technique and extended 
Kalman filtering, degraded health parameters are estimated 
from noisy measurements and then with the help of fuzzy 
classification and the rules obtained from simulations and 
experience and validated by experimental results physical faults 
are classified. The schematic of the proposed method is shown 
in Figure 1. 

 

 
Figure 1: The schematic of the proposed hybrid fault detection 

and isolation system 

In section 2, a specific industrial gas turbine, the Siemens 
V94.2 modeling is explained. In section 3, GPA technique and 
EKF theory are briefly reviewed and in section 4, diagnosis 
system configuration and the results of the health parameter 
deteriorations estimation by EKF are shown. In section 5, with 
the help of fuzzy classification physical faults are classified 
from health parameter degradations and finally conclusions are 
presented in section 6. 

NOMENCLATURE 
GT Gas Turbine 
GPA Gas Path Analysis 
EKF Extended Kalman Filter 
FIS Fuzzy Inference System 
FFI Fuzzy Fault Isolator 
ICM Influence Coefficient Matrix ܪ influence coefficient matrix ܶܶܧ Turbine Exhaust Temperature ܹ  fuel flow ଷܲ compressor outlet pressure ଷܶ compressor outlet temperature Δݖ vector of sensor measurement deltas Δݔ vector of health parameter deltas 

݊ number of sensors ݉ number of health parameters Γ flow capacity ߟ isentropic efficiency 
Subscripts: 
c compressor 
c1 front section of the compressor 
c2 rear section of the compressor 
t turbine 

 
2 GAS TURBINE MODELING 

Any fault diagnosis procedure needs a comparison 
between the healthy and faulty systems, so a reference for the 
healthy baseline is needed to detect the existence of the fault. 
Also for further diagnosis additional references for faulty 
conditions are required. In the fault diagnosis theory references 
can be developed by three different ways; hardware 
redundancy, mathematical modeling (analytical redundancy) 
and process history data. The first method is costly, space-
consuming and not suitable for faulty references, the model-
based approach is appropriate if a comprehensive physical and 
mathematical knowledge of the system is available and the 
data-driven method is suitable if sufficient process history and 
experimental data in different operating conditions can be 
found. 

A team of research engineers in Turbotec company 
developed a nonlinear simulator for the Siemens V94.2 gas 
turbine in recent years and using that a nonlinear model has 
been developed for use in the fault diagnosis procedure. This 
gas turbine has 16 compressor and 4 turbine stages. For more 
accurate analysis this compressor is divided into four groups. 
The classification has been done on the basis of the place of the 
bleed valves and cooling extractions. In the zero-dimensional 
modeling of the gas turbine cycle, the maps of all groups of the 
compressor and turbine and also the combustion chamber are 
assumed as inputs. The advantage of zero-dimensional 
modeling is its high speed computation ability, so it is 
appropriate for the evaluation of the whole cycle performance 
and control system design. But the maps of the compressor and 
turbine must be generated from higher order models using one, 
two, three or quasi-three-dimensional models. Component 
maps in this paper are the results of accurate quasi-three-
dimensional analyses, by knowing the geometry of the 
compressor, turbine and combustion chamber. The streamline 
curvature methods as described by [1] and [2] can be used 
together with the blade-to-blade models in order to generate 
compressor and turbine maps. For more details readers are 
referred to [3] developed by one of the authors. 

Fault diagnosis is conducted in the steady state mode in 
our work because most gas turbine diagnosis procedures can be 
carried out in this mode [4]. As a result, the GT model used in 
this research has been designed in the steady state, off-design 
conditions. Off-design conditions are conditions which include 
various ambient temperatures, pressures and loads on the 
contrary to the design condition which is ISO environmental 
condition and full load. 



 3 Copyright © 2011 by ASME 

The faults mentioned in this paper are related to different 
stages of the compressor and turbine and are simulated by 
displacing the input maps of gas turbine health parameters. 
These maps are mainly the maps of efficiency-mass flow and 
pressure ratio-mass flow. In order to simulate a fault in GT, the 
amount of deviations of the faulty maps from their healthy 
counterparts can be set as the inputs of the program.  In the next 
stage, the cyclic analysis of the gas turbine can be done and 
sensor measurements of the faulty turbine will be obtained. 

 
3 GPA AND EKF THEORY 

The main parts of any gas turbine are gas path 
components such as the compressor, combustion chamber and 
turbine. A large portion of the faults which cause problems in 
the GT performance, safety and health, happen in these parts, 
so determining the health conditions of the gas path 
components is a priority for the turbine manufacturers and 
users. 

In this work, the aim is to detect and isolate the physical 
faults which threaten the health of compressor and turbine 
sections. These parts are susceptible to different kinds of 
degradations such as fouling, leakage, erosion, corrosion, 
thermal distortion and foreign object damage. These physical 
faults cause some principle independent parameters in the 
compressor and turbine sections to change. These parameters 
which are indicative of the overall health conditions of their 
corresponding components are mainly efficiency and flow 
capacity. It is obvious that performance based fault diagnosis 
methods like GPA can only detect faults which their occurrence 
changes the sensor measurements. 

Urban in [5] introduced the GPA method, and explained 
how health parameter variations directly change sensor 
measurements (dependent parameters) like pressures and 
temperatures, fuel flow and spool speeds. It is shown in [6] that 
a general influence coefficient matrix (ICM) may be derived for 
any particular gas turbine cycle, defining the set of differential 
equations which interrelate the various dependent and 
independent engine performance parameters. The influence 
coefficient matrix imply that 

 Δݖ ൌ (1)   ݔΔܪ
 
In (1), Δݖ is ݊ ൈ 1 vector of turbine sensor output deltas, Δݔ is ݉ ൈ 1  vector of turbine health parameter deltas and ܪ is ݊ ൈ ݉  influence coefficient matrix which consists of partial 

derivatives interrelating the two sets. Usually in gas turbines 
due to limitations in the number of instruments, the number of 
measurements (n) is less than the number of health parameters 
(m) [7], as a result the amount of available information at a 
single operating point may not be sufficient for the derivation 
of all unknown health parameters and in this case the system 
has fewer equations than unknowns. 

According to Figure 2 introduced in [6] physical problems 
result in degraded component performance which produces 
changes in measurable parameters explainable by ICM. This is 

the natural chain of events in gas turbine faults. On the other 
hand in order to diagnose the fault the procedure should be 
reversed. From the changes of available measurements, 
estimation of degraded component performance parameters can 
be done which permits classification and usually correction of 
the physical problems. 

There are a number of methods which solve the inverse 
problem, especially in the presence of noise and other 
uncertainties, among them weighted-least-square [8,9] and 
Kalman filter methods [10-12]. 

 

 
Figure 2: Gas turbine fault diagnosis approach 

Kalman filter method, especially in its extended form, has 
been used widely in fault diagnosis and health monitoring of 
gas turbines due to highly nonlinear characteristics of these 
systems [10-12]. Its ability to estimate the state variables of 
nonlinear systems or health parameters in this case, accurately 
in the presence of noise and other uncertainties with its 
prediction-correction procedure has proved itself in many 
empirical situations. 

We consider our state space equations as (2) and (3)  
ݔ  ൌ ݂ሺݔିଵ, ݑ ିଵሻ  ݖିଵ (2)ݓ ൌ ݄ሺݔሻ   (3)ݒ
 

in which ݔ is the true state vector of the system in step ݇, ݂ is 
a nonlinear function which relates the state at the previous time 
step ݇ െ 1 to the state at the current time step ݇. ݑ  is the 
optional control input in step ݇. ݖ is the measurements vector 
in step ݇, ݄ is a nonlinear function which relates the state vector ݔ to the measurement vector ݖ. And random variables ݓ  and ݒ represent the process and measurement noise respectively. 
EKF formulation is stated in Table I [13] in which ݔොି  is a priori 
state estimate in step ݇, ܲି  is the a priori estimate error 
covariance equal to ܧሾ݁ି ݁ି ்ሿ in which ݁ି ≜ ݔ െ ොିݔ  , ܲ  is 
the a priori estimate error covariance equal to ܧሾ்݁݁ ሿ in which ݁ ≜ ݔ െ  ݂  are the Jacobian matrices of partial derivatives ofܪ  andܣ .݇ ො is the a posteriori state estimate in stepݔ ො andݔ
and ݄ with respect to ݔ in each step ݇, ܳ  and ܴ are process 
and measurement noise covariance matrices respectively, and ܭ  is the Kalman gain. 
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Table I: EKF formulation xො୩ି ൌ ݂ሺݔොିଵ, ,ିଵݑ 0ሻ 

ܲି ൌ ܣ ܲିଵܣ்  ܳିଵ ܭ ൌ ܲି ்ܪ ሺܪ ܲି ்ܪ  ܴሻିଵ ݔො ൌ ොିݔ  ݖሺܭ െ ݄ሺݔොି , 0ሻሻ 

ܲ ൌ ሺܫ െ ሻܪܭ ܲି  
 

4 HEALTH PARAMETER ESTIMATION 
As mentioned in section 2 the model used for this research 

is a nonlinear model of the Siemens V94.2 Industrial gas 
turbine. There are measurements of four different sensors 
available for the fault diagnosis system which are turbine exit 
temperature ሺܶܶܧሻ, fuel flow ሺ ܹሻ, compressor outlet pressure ሺ ଷܲሻ and compressor outlet temperature ሺ ଷܶሻ. V94.2 is a single-
shaft gas turbine and has one compressor and one turbine 
coupled with a shaft to each other. In [14], using stage stacking 
modeling technique and combining some of the stage maps, a 
method is proposed by authors to divide the compressor and 
turbine into two frontal and rear sections with independent flow 
capacities for each section but a common efficiency for the 
whole component. The scarcity of the available sensors limits 
the number of detectable health parameters and simulations 
were unable to show any difference between the effect of 
deteriorations in frontal and rear compressor and turbine 
efficiencies on the measurements, so we consider the efficiency 
parameters for the whole compressor and turbine. 
Mathematically speaking there were almost identical 
coefficients in the ICM columns for the frontal and rear section 
efficiencies. Urban in [6] presented an introduction to the 
fundamentals of turbine engine parameter selection and 
measurement requirements, and he emphasized there the role of ܪ matrix coefficients in obtaining poor results. 

With the configuration described in [14], the result was six 
independent health parameters, namely frontal and rear 
compressor flow capacities ሺΓୡଵ, Γୡଶሻ, compressor efficiency ሺߟ ሻ, frontal and rear turbine flow capacities ሺΓ୲ଵ, Γ୲ଶሻ,  and 
turbine efficiency ሺߟ௧ሻ. However, the results of simulations by 
using sensor measurements in several different operating points 
show that the changes of five out of six health parameters can 
be estimated correctly and with reasonable accuracy, which are 
all the parameters except the flow capacity of the rear section of 
the turbine ሺΓ୲ଶሻ. The inability to estimate Γ୲ଶ deviation is due 
to presence of small coefficients in the corresponding column 
of the H matrix. But it is mentioned in [14] that incapability in 
estimating Γ୲ଶ won’t affect the results of diagnosis and isolation 
of the physical fault responsible for the performance 
deterioration. This is from the fact that turbine fault diagnosis 
depends less on knowing the whereabouts of most affected area 
than the compressor fault diagnosis. For example, in 
compressor, frontal deterioration is a sign of fouling but decline 
of rear section parameters improves the chance of erosion [15].   

Regarding those results, authors have chosen a new 
configuration and new set of health parameters for the V94.2 

gas turbine by considering the turbine section as a whole and 
allocating one parameter as the flow capacity of the whole 
turbine ሺΓ୲ሻ, as mentioned earlier this is done by combining the 
maps of different stages of the component. It leads to the 
reduction the number of independent health parameters to five 
which can be estimated correctly using the measurements 
information of two different operating points. The new 
configuration is shown in Figure 3. 

 
Figure 3: V94.2 fault diagnosis parameter configuration 

The concept of multiple operating point fault diagnosis 
was described by Stamatis et al. in [16]. They explained that, by 
taking advantage of nonlinearity of the GT model and the 
hypothesis of having unchanged Δݔ for different operating 
points for some of the compressor fault cases the number of 
useful sensor data can be multiplied by the number of operating 
points which those measurements are available in. Considering 
that, for each extra operating point a new set of equation would 
be added to the problem while the number of unknown and 
unchanged compressor health parameters would remain the 
same. For more information readers are referred to [14] and 
[16]. 

Because of the fact that the method is validated for the 
compressor fault cases, we just hold constant the compressor 
related health parameter deviations. In the configuration used in 
this work, measurements in two different operating points have 
been used which means 8 measurements while on the other side 
there are 5 unknown health parameters of both the compressor 
and turbine for the first point and two additional which belong 
to the turbine section for the second point, and their sum is 7 
unknown parameters. The results of the estimations with 
appropriate noise levels are shown in Figures (4-6). It can be 
seen that the EKF algorithm using measurements of two 
discrete operating points is able to accurately estimate the 
health parameter degradations of an over-parameterized 
problem. 

 
5 PHYSICAL FAULT ISOLATION 

As shown in Figure 2 gas path analysis can be divided 
into two procedures. The first part is estimating health 
parameter deteriorations using an accurate mathematical model 
of the gas turbine and noisy measurement data which have done 
in this work by an EKF algorithm. 
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Figure 4: True degradations of ડ܋ and ࢉࣁ (up) and their 

estimation with EKF (down) 

 
 The second part is classification of the estimated 

parameters to isolate the physical fault or faults responsible. 
For the first part the precise model and data are available but 
for the second part, lack of an appropriate model and 
comprehensive data set is usually the problem. The kind of 
physical faults threatening the GT is very dependable to its 
aerodynamic design, site location, environmental and 
operational conditions, appropriate filtering and maintenance 
[17-19]. For example jet engines are more vulnerable to foreign 
object damage than industrial gas turbines due to lack of 
filtering in the air intake. Or operating in desert conditions or 
near the sea or ocean where the level of salt and sand particles 
in the air is high will increase the chance of fouling and erosion 
problems. Other than that, the size of these particles and the 
quality and type of the filter used can be important factors for 
determining the kind of fault [20]. The size and the stage 
loading of the gas turbine is another factor for susceptibility to 
fouling [21,22]. 

 
Fingerprint Charts 

Many researchers have tried to diagnose these physical 
faults by analyzing representative health parameters and their 
deviations. The results are usually shown as a table or 
fingerprint chart describing the signs, magnitudes or ratios of 
the changes happened in health parameters or sensor outputs 
due to different physical faults [23-28]. Ecsher in [28] proposed 
an almost comprehensive table which connects the direction 
and ratio of changes in the independent health parameters to the 
physical faults. These mappings are shown in Table II. 
 

 

 
Figure 5: True degradations of ડ܋ and ࢉࣁ (up) and their 

estimation with EKF (down) 

 
Table II and the other similar tables are actually sets of 

rules with health parameter changes in the “if” part and 
physical faults in the “then” part. For example: 
• If ሺΓେ ↓ሻ and ሺߟ ↓ሻ and the ratio of changes is about (2:1) 

the fault is (Compressor Erosion)  
 

Table II: Physical faults exspressed as independent parameter 
changes according to [28] 

Physical Fault 

Non-
dimensional 
mass flow 
change A 

Isentropic 
efficiency 
change B 

Ratio 
A:B 

Compressor Fouling Γେ ߟ ↓ ↓ ~3-8:1 
Compressor Erosion/Corrosion Γେ ߟ ↓ ↓ ~2:1 

Turbine Nozzle Guide Vane 
Fouling 

Γ ்ߟ ↓ ↓ ~2:1 

Turbine Erosion/Corrosion Γ ்ߟ ↑ ↓ ~2:1 
FOD (Non Severe) Γୡ ߟ ↕ ↓ 0.5:1 
Thermal Distortion Γ ்ߟ ↑ ↓ 0.5:1 

 
Another theory which we used for further improvement of 

fault isolation is the one developed in [15] by Mathioudakis and 
Stamatis. They stated in [15] that “a realistic way to model 
fouling in a compressor is to assume a linear variation of stage 
performance drop at the front stages of the compressor” and 
“when compressor blade erosion is considered, it is possible 
that the loss of performance in the stages can be more severe in 
the rear stages of the compressor”. 

Considering the facts mentioned above and 
undeterministic nature of the problem, a fuzzy solution seems 
to be ideal. Fuzzy classification is a nonlinear mapping of an 
input feature vector into a scalar output [29] and fuzzy systems 
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are now widely used in industries because of their flexibility 
and ability to handle uncertainties. 

 

 

 
Figure 6: True degradations of ડܜ and ࢚ࣁ (up) and their 

estimation with EKF (down) 

 
Fuzzy Fault Isolator (FFI) 

We use Matlab Fuzzy Logic Toolbox for this part of the 
project. In some previous works [30], inputs to the fuzzy logic 
system were measurement deviations and the outputs were 
faulty components. In our work, inputs of the fuzzy system are 
the outputs of the EKF at any time step which are health 
parameter deviations and are more reliable sources of 
information for fault diagnosis according to [31]. The outputs 
are also more informative in our work because of indicating the 
type of physical fault in addition to the faulty component. The 
EKF estimation procedure observes the trends of changes in the 
health parameters through time and at any given time a sample 
of these data can be fed to the fuzzy inference system. 

The fuzzy classification part of the work is split into two 
sections, compressor and turbine FFI. In the first section, 
compressor health parameter deviations are the inputs and the 
severity of compressor fouling, oil leakage, erosion and foreign 
object damage are the outputs. In the second section, turbine 
health parameters deviations are the inputs and the scale of 
turbine fouling, erosion and thermal distortion are the outputs.  

 
Fuzzy Inputs and Outputs 

First the number and the span of input variables should be 
determined. The inputs are Γୡଵ, Γୡଶ and ߟ  for the compressor 
and Γ୲ and ߟ௧  for the turbine. The efficiency parameters are 
ranging from -4% to 0% and the flow capacity parameters are 

ranging from -8% to 4%. Next they are split into linguistic 
variables and the set is described with the function L(ݔ). 
Efficiency and flow capacity parameters are decomposed into: 

• L(∆ߟ) = {Very Large-, Large-, Medium-, Small-, Tiny}with 
the midpoints respectively at: {-4, -3, -2. -1, 0} 

• L(∆Γ) = {Very Large-, Large-, Medium-, Small-, Tiny, 
Small, Medium} with the midpoints respectively at: {-7.5, -
5.5, -3.5, -1.5, 0, 1.5, 3.5} and are shown in Figure 7. 

 

 

 
Figure 7: Gaussmf and Gauss2mf functions defining linguistic 
measures of ઢડ܋and  ઢࢉࣁ for input health parameters of the 

FFI 

 
We have used gaussmf and gauss2mf membership 

functions from the “Membership Function Editor” panel of the 
Matlab fuzzy logic toolbox. The outputs for the compressor 
section are decomposed into: (and are shown in Figure 8) 
• L(Compressor Fouling) = {Zero, Next to Wash, Wash, Next 

to Repair, Repair} 
• L(Compressor Oil Leakage) = {Not Happened, Happened, 

Severe} 
• L(Compressor Erosion) = {Zero, Small, Medium, Large, 

Severe} 
• L(Compressor FOD) = {Not Happened, Happened, Severe} 

 
And the outputs for the turbine section are decomposed into: 
(and are shown in Figure 12) 
• L(Turbine Fouling) = {Zero, Small, Medium, Large, 

Severe} 
• L(Turbine Erosion) = {Zero, Small, Medium, Large, 

Severe} 
• L(Turbine Thermal Distortion) = {Not Happened, 

Happened, Severe} 
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Fuzzy Rules for the Compressor 
After defining the input and output sets, the fuzzy rules 

must be determined. Using information of the Table II, Figure 9 
can be drawn as a classification map for fault isolation of a 
compressor with the efficiency and one of the flow capacity 
parameters. 

 

 

 

 

 
Figure 8: Various membership functions defining linguistic 

variables of Fouling, Oil Leakage, Erosion and FOD as outputs 
of the compressor FFI 

By adding useful considerations of the effect of different 
faults in the front and rear sections of the compressor, we can 
have all three inputs and their modified rules for the 
compressor section. For example Baker stated in [17] that 
“compressor deterioration is exacerbated by internal oil leaks 

near the blade surfaces. Oily substances in the incoming air act 
as glue to fix dirt particles to compressor airfoil and shroud 
surfaces. In the high temperature region at the back end, oils 
bake onto surfaces and form a thick coating”. Considering this 
fact the chance for oil leakage in the compressor will rise if 
there is considerable decline in rear section flow capacity in 
comparison to its efficiency and frontal section flow capacity. 
Unfortunately, we are unable to show the 3 parameter 
configuration as a classification map on a figure due to its 3 
dimensional nature. 

 
Figure 9: Classification map of the compressor fault isolation 

We loaded these rules into the “Rule Editor” panel of the 
Matlab fuzzy toolbox and completed the procedure. The 
maximum number of rules is 5 ൈ 7 ൈ 7 ൌ 245 but many of 
them are not physically possible. For example a small negative 
change in the compressor efficiency with a considerable 
positive change in its flow capacity or extreme changes in two 
compressor flow capacity parameters towards opposite 
directions. After removing the improbable rules, 145 of them 
remain. Some of the rules used by fuzzy inference system are 
as follows: 
• If (Δߟ  is Medium-) and (ΔΓୡଵ in Large-) and (ΔΓୡଶ is 

Large-) then (Fouling is Wash) (Oil Leakage is Not 
Happened) (Erosion is Zero) (FOD is Not Happened). 

The above rule indicated that if the ratio of changes of the 
efficiency parameter to flow capacity is near 1 to 3, the chance 
of fouling would be high and the time is appropriate for 
washing the compressor. 
• If (Δߟ  is Large-) and (ΔΓୡଵ in Medium-) and (ΔΓୡଶ is 

Very Large-) then (Fouling is Zero) (Oil Leakage is 
Happened) (Erosion is Large) (FOD is Not Happened). 
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The above rule indicated that if the extent of deterioration 
in the rear section is much worse than the front section the 
chance of fouling would be tiny but there would be a good 
chance for oil leakage and erosion.  
• If (Δߟ  is Large-) and (ΔΓୡଵ in Tiny) and (ΔΓୡଶ is Small-) 

then (Fouling is Zero) (Oil Leakage is Not Happened) 
(Erosion is Zero) (FOD is Happened). 

The above rule indicated that if the change of the 
efficiency masters the flow capacity deteriorations, foreign 
object damage would be the primary suspect. 

 
Compressor FFI Results 

In Figure 10 the output of the “Surface Viewer” panel of 
the Matlab fuzzy toolbox for changes of the 2 out of 3 
compressor health parameters are shown. ΔΓୡଶ is kept constant 
here. The shifting of the prominence of fouling to erosion and 
then FOD as Δߟ ΔΓୡଵ⁄  grows bigger is obvious. 

 

 

 
Figure 10: Fuzzy surfaces of Fouling, Erosion and FOD of the 

compressor with holding ઢડ܋ ൌ െ 

After developing the fuzzy classifier, output of the EKF 
estimator at any given time can be classified to the responsible 
physical fault. To validate our work, we fed the noisy data of 

145 different probable set of health parameter deviation 
estimations as inputs to the classifier. And our Fuzzy Fault 
Isolator system was able to correctly classify 133 of them, 
which means correct classification rate of 91.72%. The 
remaining 12 are those which are on the boundaries of severe 
changes in the surfaces of Figure 10. 

 
Fuzzy Rules for the Turbine 

For the turbine sections, the job is much simpler. There 
are just two inputs, Δߟ௧  and ΔΓ୲. The maximum number of rules 
here is 5 ൈ 7 ൌ 35 but like the former part some of them are 
not physically possible. After removing the improbable 
combinations, 26 rules remain. Once again using information of 
the Table II, Figure 11 can be drawn as a classification map for 
fault isolation of the turbine section with efficiency and flow 
capacity parameters. 

 

 
Figure 11: Classification map of the turbine fault isolation 

Turbine FFI Results 
In Figure 13 the output of the “Surface Viewer” panel of 

the Matlab fuzzy toolbox for changes of the turbine health 
parameters are shown. The shifting of the prominence of 
fouling to thermal distortion and then erosion as the ΔΓ୲ sweeps 
from the extreme negative to the extreme positive is obvious. 

Like the previous part, turbine related outputs of the EKF 
estimator at any given time can be classified by fuzzy fault 
isolator to the responsible physical fault. To validate our work, 
we fed the noisy data of 26 different probable sets of health 
parameter deviation estimations as inputs to the classifier. 
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Figure 12: Various membership functions defining linguistic 
variables of Fouling, Thermal Distortion and Erosion as outputs 

of the turbine FFI 

 
Our fuzzy fault isolator system was able to correctly 

classify 25 of them, which means correct classification rate of 
96.15%. The only incorrect classification is for the input set of 
(Large-, Small) which should be mapped to (Zero, Zero, 
Happened) but the answer of the isolator is (Zero, Small, 
Happened). In fact the fuzzy system evaluates the erosion as 
“small” because a block away there is a sharp slope in the 
surface toward “Large Erosion”, shown in Figure 14. 
 

 

 

 
Figure 13: Fuzzy surfaces of Fouling, Thermal Distortion and 

Erosion of the turbine 

 
6 CONCLUSIONS 

A hybrid EKF-fuzzy fault detection and isolation system 
is developed for the Siemens V94.2 industrial gas turbine. At 
first using noisy sensor measurements at two different operating 
points and an accurate nonlinear GT simulator as the model, the 
deteriorations of the health parameters of both compressor and 
turbine sections have been accurately estimated. In the next 
step five health parameters of the gas turbine have been fed to 
the fuzzy fault isolator system for further classifying the actual 
physical faults. The FFI system based on the ratios of the 
changes of different health parameters and the approximate 
whereabouts of the degradations in front or rear sections of the 
compressor isolates the most probable physical fault. 

This system consists of two parts, the compressor FFI 
maps the changes of the compressor efficiency and frontal and 
rear flow capacities of the compressor to physical faults such 
as, fouling, oil leakage, erosion and foreign object damage. 
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Figure 14: Fuzzy output surface of erosion for the turbine and the 
sharp slope near the input set (Large-, Small) showed by the arrow 

It also gives a user friendly linguistic report of the health 
situation of the compressor and also a hint for the appropriate 
time for washing or repairing it. The turbine FFI maps the 
changes of the turbine efficiency and flow capacity to the 
turbine related faults such as fouling, erosion and thermal 
distortion. The method has been validated using data gathered 
from simulations of the actual faults in different faulty 
scenarios. Results of the simulations show high correct 
classification rates for both compressor and turbine sections. 
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