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ABSTRACT 
Performance diagnoses of heavy-duty industrial gas 

turbines often rely on measured data from on-site monitoring 

systems (OSM), subjected to larger uncertainties and possible 

biases. The measured data are used to analyze gas turbine heat 

balance and estimate immeasurable performance characteristics 

such as firing temperature and component health parameters. 

Traditional heat balance techniques are deterministic, and, thus, 

calibration uncertainty is not mitigated. In this paper, a method 

of model-based data reconciliation (MBDR) and bias detection 

was developed, serving as a probabilistic process of reducing 

calibration uncertainty while eliminating contamination effects 

caused by measurement biases. This method utilizes physics-

based gas turbine models to reconcile multiple data sets while 

the model health parameters are inferred simultaneously. 

Levenberg–Marquardt algorithm was utilized to solve the 

maximum-likelihood problem, i.e., minimizing Least Squares. A 

hypothesis test scheme using sequential bias compensation was 

utilized for bias detection and neutralizing smearing effects. To 

reduce the computation time in MBDR and bias detection, the 

Response Surface Methodology (RSM) was applied to generate 

surrogate model. A systematic way of data selection using 

Multiscale Principal Component Analysis was also employed, 

serving as an efficient way of filtering large data sets for the use 

of MBDR. This proposed methodology was demonstrated by 

application to GE 7FA gas turbines. Results showed significant 

reduction in calibration uncertainty and smearing effects. 
 

INTRODUCTION 
Continuous monitoring gas turbine performance through 

the on-site monitoring system (OSM) has been widely adopted 

by the power plant industry since it provides the real-time 

information for better understanding the current machine status. 

This is especially important for the OEM companies, such as 

GE, who need to propose the upgrade package and provide 

absolute performance guarantees based on the current 

degradation status. There has been, however, a lack of a 

systematic methodology for analyzing the OSM data and 

tackling the problem of measurement uncertainty and bias. The 

measurement errors cause major issues in gas turbine 

performance analyses, such as not able to represent true status of 

the machine and, thus, force the analyzer to impose more 

margins on the performance guarantees to reduce the risks. 

Traditional data matching, or “data reduction”, is a deterministic 

method not capable of mitigating the estimate errors due to 

measurement uncertainty.    

Data reconciliation is a technique developed to reduce the 

effect of random errors and improve the measurement 

accuracies. It utilizes process model constraints and estimates 

process variables by adjusting the measurements so that the 

estimates satisfy the model constraints. The reconciled true 

value estimates are expected to be more accurate than the 

measurements and, most importantly, satisfy the physical 

constraints such as conservation of energy and mass.  

Data reconciliation has been widely implemented in the 

chemical industries during the past 35 years. There is a large 

volume of literature available addressing related topics. A 

detailed description of the underlying concepts and application 

examples can be found in Romagnoli and Sanchez [1]. Data 

reconciliation for linear models is also well studied. Crowe et al. 

[2] used a matrix projection method to decompose the model 

constraints and solve for the measured and unmeasured 

parameters sequentially. Pai and Fisher [3] use Crowe’s matrix 

projection method to decompose the linearized sub-problems 

and Broyden’s method to update the Jacobian. Swartz [4] also 

uses Crowe’s method along with a QR matrix factorization to 

eliminate the unmeasured parameters. 

The presence of biases can contaminate the results of data 

reconciliation. A bias is statistically an error whose occurrence 

as the result of a random variable is highly unlikely. The 

presence of a measurement bias is usually detected by statistical 

tests generally based on linear or nonlinear models. Rejection of 

biases can be performed using confidence level or values when 

the underlying distribution function for the measurement is 

available. Many works of bias detection have been done in 

chemical industry and can be found in [5-8]. Most works on data 

reconciliation and bias detection were mainly from chemical 

industry. These techniques were best suited for solving the 
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bilinear conservation equations such as mass and energy balance 

with one data set, and, as a result, might not be suited for gas 

turbine model calibration problems, which often processes large 

amount of OSM data.  

Application of data reconciliation in the power generation 

industry is not as widespread as in the chemical industry. 

However, there have been significant contributions: An 

equation-based data validation technique proposed by Cheng et 

al. was implemented to the gas turbine performance monitoring 

system [9]. Hartner et al. [10] suggested a model-based data 

reconciliation method and applied it to a fossil boiler plant.  

Gulen and Smith [11] developed analytical solutions to the data 

reconciliation problem based on the concept of the Kalman 

filter. Theses works, however, mainly focused on solving the 

reconciliation problems considering uncertainty only, while the 

issues of measurement biases were not addressed. 

Inference of jet engine health parameters from 

measurement data is often defined as gas path analysis (GPA). A 

large number of research works showing different GPA 

approaches including linear and non-linear GPA [12-14] were 

for specific engine types and might not be adapted to other types 

of applications with different prior assumption about the engine 

configuration. Applying one of these techniques to a different 

engine configuration could lead to contaminated results due to 

smearing effects not caused by measurement biases but by the 

model itself.   

Based on challenges in gas turbine performance analyses 

and previous research works done in this field, developing a 

methodology capable of processing multiple OSM data sets and 

performing probabilistic model calibration with the 

consideration of measurement bias is necessary. 

 

NOMENCLATURE 
AFPAP = Barometric Pressure 

AFPCS = Compressor Inlet Pressure Drop 

AFPEP = Exhaust Pressure Drop 

AFQ = Compressor Airflow 

CHUM = Ambient Humidity 

CTIM = Compressor Inlet Temperature 

CPD = Compressor Discharge Pressure 

CTD = Compressor Discharge Temperature 

CPR = Compressor Pressure Ratio 

CQ  = Stage 1 Nozzle Inlet Flow Function 

DMM = Data Matching Multipler 

DPF  = Power Factor 

DWATT = Generator Output 

FQG = Fuel Flow 

FTG = Fuel Temperature 

HTC = Heat Transfer Correction Factor 

IGV = Inlet Guide Vane 

PDF =  Probability Density Function 

Tfire = Firing Temperature 

THN = Compressor Rotation Speed 

TTXM = Turbine Exhaust temperature 

comp = Compressor 

comb = Combustor 

eff = Efficiency 

turb = Turbine 

METHODOLOGY 
The methodology proposed here is trying to resolve the 

following challenges in gas turbine performance analyses: 

• Reconcile multiple data sets while calibrating the model 

• Mitigate smearing effects caused by measurement biases 

• Filter large OSM data sets used for model calibration 

• Reduce the computation time   

The goal is to provide a framework of probabilistic model 

calibration with multiple data sets, considering measurement 

uncertainties and biases. Model-based data reconciliation 

(MBDR) is the core part of this methodology.  

 

Model-Based Data Reconciliation 
Model-based data reconciliation (MBDR) utilizes the 

physics-based model to reconcile the data. MBDR is 

mathematically an inference process where model parameters 

are inferred from the source data through an optimization 

process. The source data are either the raw measured data or 

preprocessed data, e.g., filtered data, denoised data, etc. The 

parameters to be inferred are often the performance correction 

factors (tuners or multipliers), which “tune” the system off-

design performance to be consistent with test results. In MBDR, 

model calibration and data reconciliation are carried out 

simultaneously, where the source data are reconciled by 

inferring the model tuners while the model tuners are calibrated 

by reconciled data. It is recognized that when a plant model such 

as a GTP cycle deck, a gas turbine performance simulation tool 

by GE, or a GateCycleTM model, a combined cycle performance 

simulation tool by GE, is used for performance simulation, any 

set of performance metrics that are generated by the system 

model, e.g., flow/pressure/temperature of gas/water/steam, is 

ensured to be thermodynamically consistent, and, therefore, 

automatically becomes a set of candidate solutions for data 

reconciliation. It is also known that these model-predicted 

performance metrics are functions of the model inputs such as 

ambient conditions, operation parameters, system configuration, 

and system degradations, which are mimicked by a set of 

performance correction factors, e.g., DMM’s (Data Match 

Multipliers) in GTP cycle deck and similar factors in other 

performance models. Combining the above two facts, if these 

model-predicted metrics are also measured with uncertainties, 

one can perform data reconciliation in such a way that the Least 

Squares objective function, which is defined by the differences 

between the model-predicted and measured values for the 

performance metrics, is minimized by an optimum set of model 

inputs.  This is the core concept of Least Squares MBDR, and 

can be expressed as follows: 
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Identifying appropriate model inputs and outputs are 

crucial for MBDR. Typical model inputs include ambient 

conditions, operation parameters, system configurations, and 

degradation effects. One should limit the number of model 

inputs related to ambient and operation parameters to maintain 

enough redundancy, while remaining all health parameters, 

which represent system degradation status. Table 1 lists the gas 

turbine model inputs and outputs used in this study. 

 

 

Table 1 Gas turbine model parameters in MBDR 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eq. 1 is solved by the nonlinear solver. Several Nonlinear 

Programming (NLP) techniques such as Conjugate Gradient, 

Gaussian Newton, and Sequential Quadratic Programming 

(SQP) were investigated. It was found as the solutions were far 

away from their initial values, i.e., significant performance 

degradation from its new and clean status, these techniques did 

not show good convergence features, i.e., the value of Least 

Squares objective function equals zero when MBDR is in the 

data matching mode. On the other hand, the Levenberg-

Marquardt algorithm demonstrated a good convergence 

capability in a wide range of degradation status and simulated 

bias scenarios [15], and, therefore, was selected as the nonlinear 

solver for MBDR. 

Levenberg-Marquardt (LM) algorithm [16] is a nonlinear 

optimization technique most suitable for solving the type of 

objective function expressed as the sum of squares of a 

nonlinear function. The LM algorithm can be thought of as a 

combination of steepest descent and Gauss-Newton expansion 

methods. It significantly outperforms gradient descent and 

conjugate gradient methods in a wide range of problems as well. 

LM is a pseudo-second order method that uses the sum of outer 

products of the function gradients to estimate the Hessian 

matrix. Because of its superior performance in solving the least-

square type function, the LM algorithm is utilized to solve the 

nonlinear model based data reconciliation problem in this study. 

In solving the MBDR problem, a large number of function 

calls for the system model is required. The use of Response 

Surface Methodology (RSM) can save significant computation 

time. RSM provides a fast-executed model with the analytical 

polynomial form that spans the entire design space within 

limited ranges for a complex system response in which no 

analytical solution exists. RSM includes a number of statistical 

techniques for creating an empirical relation between an output 

variable, i.e., response, and the levels of a number of input 

variables. A typical second-degree response surface equation is 

given by: 
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where b0 is the intercept term, while bi, and bij are the 

coefficients for the linear terms and the product terms that 

include the pure quadratic parts bii and the cross-product parts 

bij; xi are the values for each of the input variables that span the 

design space and affect the response R directly. In this study the 

Monte Carlo Simulation is applied to generate random cases for 

gas turbine model outputs over selected model parameters. The 

simulated data are then used to obtain the RSE coefficients 

through nonlinear regression. Number of runs is between 1000 

and 2000 to get a good regression model.     

 

Bias Detection 
Smearing effects occur when measurement biases exist. In 

the MBDR application, the smearing effects become more 

obvious when there is degree of freedom in data reconciliation. 

When smearing effects happen, the reconciliation process drives 

the solutions toward the measurements with biases; while, on the 

other hand, the corrections to “healthy” measurements are 

beyond the scope of measurement uncertainties, i.e., over-

corrections. In this study, the hypothesis testing on different bias 

models was utilized to form the bias detection scheme. For the 

MBDR application, the bias model can be expressed as:  

 

 

                                     y' = f (a, θ) + ε + b                               (3) 

 

 

where f (a, θ) is the system model as a function of the model 

parameters a, θ, while b is the vector of biases; ε is the vector of 

random errors. If the measurement data are compensated with 

the correct gross error model, the compensated data are subject 

to random errors only, and, therefore, smearing effects will not 

occur during data reconciliation. The occurrence of smearing 

effects can be indicated by the test statistics, such as Least 

Squares. Thus, one can utilize the hypothesis testing to verify 

the bias model. While applying the hypothesis testing to the bias 

detection scheme, the null hypothesis and alternative hypothesis 

can be stated as follows: 

 

H0: without the bias model there is no smearing effect  

 

                    P(τ ≤  τc | yc
’ = y’) = (1 - α)                           (4) 

 

 

H1
g: with the gross error model there is no smearing effect 

 

                    P(τ ≤  τc | yc
’ = y’ - b) = (1 - α)                      (5) 

 

 

where τ is the test statistics obtained from the result of data 

reconciliation. By compensating the measured data with a 

correct gross error model, one can neutralize the smearing 

effects while carrying out the least squares type data 

reconciliation. In order to obtain the statistically “correct” bias 

Model Outputs Model Inputs Calibration Factors

(To be reconciled) (Fixed) (To be estimated)

DWATT CTIM comp_flow_DMM

FQG AFPAP comp_eff_DMM

AFQ CHUM comb_eff_DMM

CPD AFPCS turb_eff_DMM

CTD AFPEP turb_CQ_DMM

TTXM IGV Tfire

DPF

FTG

THN  
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model, a bias detection technique utilizing hypotheses testing is 

required. In this study, it is suggested to combine hypotheses 

testing with the serial bias compensation strategy for the bias 

detection [15]. 

The process starts from the null hypothesis, H0, in which it 

is assumed there is no gross error and there is no bias adjustment 

for the measured data. The null hypothesis and the associated 

test statistics are given by:   
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Without the hypothesized bias model, the test statistics for 

the null hypothesis is obtained from carrying out simultaneous 

data reconciliation and model calibration:  

 

 

                         ∑
=













 −′m

1j j

kij j

2

θkai σ

θafy ),(
min

,

                       (7) 

 

 

When the test statistics rejects the null hypothesis, the 

hypotheses test on the gross error models, carried out by the 

serial bias compensation scheme, is then introduced. The serial 

bias compensation strategy can be performed in two ways as 

discussed in previous section. The first option is testing all 

possible bias models at different scenarios of total biases 

number. In the scenario of p biases, the alternative hypothesis 

for the qth bias model is given by [15]:  
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where Epq represents the index matrix of the qth gross error 

model in the scenario of p biases. All elements except for the 

diagonal terms in the matrix Epq are zero while number of p 

positions in the diagonal terms are equal to 1 and the rest 

diagonal elements are zeros. In each scenario of p biases, there 

are C
r
p bias models to be tested. Each bias model is simply 

represented by the index matrix Epq with p non-zero elements in 

the diagonal terms. The structure of the index matrix Epq is 

shown in Fig. 1. The test statistics for each bias hypothesis is 

obtained by carrying out the joint data reconciliation process 

given by [15]: 
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where the magnitudes of the hypothesized biases, bp, are 

optimized along with the model parameters, θk, and 

measurements, ai. 

The second option is eliminating gross error models one at 

a time. The alternative hypothesis for the mth gross error model 

at the lth round is given by:   
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where Elm represents the index matrix of the m-th bias model at 

the l-th round hypotheses testing. Unlike Epq, there is only one 

floating element in the diagonal terms of Elm at each round of 

hypotheses testing. In the l-th round of testing, there are (l – 1) 

non-zero elements at the fixed positions determined in the 

previous round, i.e., (l – 1)-th round. The number of all possible 

bias models at the l-th round is (r – l – 1) where r is the number 

of measured data. The structure of the index matrix Elm is shown 

in Fig. 2.  

Similarly, the test statistics for each bias hypothesis is 

obtained by carrying out the joint data reconciliation process, 

which is the least squares type minimization problem given by: 
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where the magnitudes of the hypothesized biases, bl, are 

optimized along with the model parameters, θk, and 

measurements, ai. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Structure of index matrix Epq 
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Figure 2 Structure of index matrix Elm 

 

 

In this study, the serial bias compensation was carried out 

within the MBDR scheme, which utilized the Lebenberg-

Marquardt algorithm for solving the minimum Least Squares 

problem in different scenarios of bias models. RSE’s were used 

to replace the GTP cycle model for the purpose of reducing 

computation time, especially in the bias detection process.     

 

Data Filtering Using MSPCA 
When processing the OSM data with MBDR, it is not 

practical to include all data sets due to increased computation 

time by adding more data. The use of filtering or denoising 

technique helps to screen large data sets down to manageable 

level. In this study, Multiscale Principal Component Analysis 

(MSPCA) is utilized to screen and select the data sets for the use 

in MBDR.  

Multiscale Principal Component Analysis (MSPCA) [16-

18] is widely used for data denoising in variety of fields. It 

combines the features of traditional Principal Component 

Analysis (PCA) [19] and Wavelets Transformation [20], making 

it best suited for analyzing the autocorrelated time-series signals 

like the plant performance data. In this study, MSPCA was used 

to filter the OSM data for the use of MBDR, serving as a 

systematic way of data selection from a large amount of sampled 

data.   

Conventional PCA modeling is done at a single scale, 

where the model relates the data with the same time-frequency 

localization at all locations. For instance, PCA of a time series 

data is a single-scale model since it relates variables only at the 

scale of the sampling interval. The single-scale modeling is not 

appropriate most of the time since most data contains 

contributions at multiple scales.  

On the other hand, the univariate wavelet analysis cannot 

catch the interrelations between different series of data that has 

multivariate nature embedded. Multiscale Principal Component 

Analysis (MSPCA) combines the multivariate feature of PCA 

with the multiscale characteristic of wavelet transformation. 

MSPCA extract the correlation among variables and combine it 

with orthonormal wavelets to separate deterministic features 

from the stochastic processes, while approximately decorrelate 

the autocorrelation among the measured variables.  

The process of MSPCA is shown in Fig. 3. It starts from 

carrying out wavelet decomposition for each data series in the 

data matrix. Then the wavelet coefficients at each scale are 

grouped across series and PCA is performed at each scale. The 

wavelet coefficients at each scale are then reconstructed per 

retained PCA. Using T2 and Q charts to create threshold, by 

which the wavelet coefficients are selected. Reconstruct all 

series only using scales that have points outside of threshold. 

Perform the final PCA for all scales together and reconstruct 

approximate data matrix from selected and thresholded wavelet 

coefficients. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Methodology of MSPCA 

 

 

The use of MSPCA requires that the multivariate data are 

linearly correlated. For the gas turbine performance data, the 

assumption of linear correlations is valid within a moderate 

change of ambient temperature and is based on the facts of 

chocked flow at stage 1 nozzle, regulated fuel by linear 

temperature control curve, and operation at a constant IGV and 

speed. By running the Monte Carlo Simulation of the GTP cycle 

deck over a 20°F change of temperature with the above 

conditions imposed, the scatter plot of multivariate gas turbine 

performance data, Fig. 4, shows the linear characteristics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Scatterplot matrix of gas turbine performance 

characteristics 
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APPLICATION 
A GE 7FA gas turbine was selected for the implementation 

of MBDR. The OSM data with 5-minute resolution was 

collected in a 24-hour sampling window, within which 

insignificant performance deterioration was assumed. The 

degradation status, as a result, can be represented by a set of 

model health parameters to be inferred by the sampled data. 

Only the steady-state-base-load data was considered. This is 

because the heat balance tools utilized in this study, 

GateCycleTM and GTP, are only valid for the steady-state 

simulation. The sampling window is adjustable depending on 

the degradation rate of the gas turbine unit. A preliminary 

investigation on the degradation rate is needed. It can be done by 

monitoring the changes of heath parameters over time calculated 

by traditional heat balance analysis on each data set, or by 

looking at the mean shifts of the pair-wise correlations between 

key parameters such as output versus ambient temperature. 

Sometimes the mean shifts are caused by changes of operation 

mode not by performance degradation, e.g., change of IGV, 

change from base load to peak load, etc. A careful look is 

needed to separate different causes.  

 

Data Selection  
In this study, only the measured data that serves as model 

outputs, e.g., DWATT, FQG, CTD, etc, are reconciled and used 

to infer the model calibration factors (or “health parameters”) 

such as DMM’s and Tfire. The operational parameters such as 

IGV, THN, FTG, etc, are typically controlled and maintained at 

certain target values with relatively small uncertainties. Instead 

of reconciling these operational parameters in the MBDR 

process, it is a reasonable way of simplification to propagate 

uncertainties of these parameters by correcting the measured 

model outputs. Uncertainties of the measured model outputs 

after corrections need to be reevaluated by combining 

uncertainties of those operational parameters used as correction 

references.  

The measurements of ambient pressure and humidity 

usually have less uncertainty and are relatively stable compared 

to ambient temperature. Thus, these two parameters can also 

serve as correction parameters, and the corresponding 

uncertainties can be propagated to the measured model outputs 

using error propagation principle. 

The corrected data were normalized by their means and 

standard deviations from the original raw data. In this study, the 

normalized data of ambient temperature and six corrected model 

outputs (Table 1) were selected for the MSPCA denoising 

process. The raw data were then compared against the denoised 

data and the data selection was carried out based on the Least 

Squares ranking for each data set. Either the raw data or de-

noised data top ranked are selected and used for MBDR.  

In the MSPCA analysis, the orthogonal wavelet bases used 

were the order 6 Symlet wavelets. The family of Symlet 6 has 

the characteristic of possessing the largest number of vanishing 

moments for a minimum support and hence was considered as 

the best choice in this study. This means, in the presence of gas 

turbine performance data at certain levels, the correlation 

between wavelet coefficients and the data would be high, 

yielding fewer and higher wavelet coefficient.     

The level of wavelet decomposition should be selected to 

provide maximum separation between the stochastic and 

deterministic components of a time-series data. If the number of 

level is too small, a significant amount of noise will retain in the 

last scaled data resulted from MSPCA. A large number of 

decomposition levels could cause very few rows in the matrix of 

wavelet coefficient at coarser scales due to the dyadic 

downsampling, affecting the accuracy of PCA at that scale. The 

decomposition level can be decided by cross-validation, but in 

this study a heuristic maximum depth, L = log2n –5, was used, 

where n is the number of data set; L is the level of wavelet 

decomposition. The number of data sets was 142 in this studied 

example, and, therefore, the decomposition level, L, was 2. The 

Heuristic rule was used to determine the number of principal 

components retained at each decomposition level and at the final 

reconstruction step.   
The MATLABTM wavelet toolbox was utilized to perform 

MSPCA analysis. A 142 by 7 data matrix containing the 

normalized values for the corrected data of CTIM, DWATT, 

FQG, AFQ, TCD, PCD, and TTXM, was analyzed. The 

reconstructed time-series data of selected parameters are plotted 

against the original data shown in Fig. 5. The pairwise 

correlation plots of the denoised and raw data for the selected 

parameters are shown in and Fig. 6 and Fig. 7. As shown in 

these plots, the denoising effects are more obvious if the data are 

presented in a multivariate way, such as the pairwise correlation 

plot, than being presented in a univariate way, such as the time-

series. This manifests the capability of MSPCA in ensuring 

mutual correlations among the denoised data that are more close 

to the physics-based model than the raw data. Figure 8, which 

zooms in one of the pairwise plot, DWATT vs. CTIM, 

demonstrates the denoised data represents the model behavior 

better than the raw data by tightening the DWATT/CTIM 

correlation.  

The tightened correlation among performance parameters 

from the denoised data serves as a guideline of selecting the raw 

data used for MBDR, which is, selecting the raw data that are 

top ranked in least deviation from the corresponding denoised 

data. The data sets are ranked based on the Least Sqares scores, 

defined by the deviation between the raw and denoised data and 

the associated measurement uncertainty. 

 

 

 

 

 

 
 
 
 
 
 

 

 

 

 

Figure 5 The denoised and raw data of corrected FQG 
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Figure 6 The pairwise correlation plot of the denoised data for the 

corrected DWATT, FQG, AFQ, and ambient temperature 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 7 The pairwise correlation plot of the raw data for the 

corrected DWATT, FQG, AFQ, and ambient temperature 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 8 The correlation between normalized DWATT and ambient 

temperature 

The Least Squares score for each data set can be calculated 

as follows: 
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where S i is the score of the ith data set; y j  , ŷ j , and σ j  are the 

raw data, denoised data , and measurement uncertainty of the jth 

parameter. The 142 data sets were ranked based on their Least 

Squares scores from lowest to highest, and the top 10 data sets 

with the lowest scores were selected. It is also preferred to have 

a wide ambient range so we have higher confidence in utilizing 

the calibrated model for prediction across a wide ambient range. 

Therefore, both the Least Squares scores and ambient 

temperature range need to be considered when selecting the data 

sets.  

 

MBDR and Bias Detection 
The 10 data sets screened by MSPCA were used as the 

source data for MBDR. At each data set, the measured model 

outputs were corrected to the reference points of several ambient 

and operational parameters, assuming these correction 

parameters have less uncertainty and are relatively stable 

compared to others during the operation. The uncertainties of 

these corrected data were reevaluated by considering the 

uncertainties of the correction factors. The rest of measured 

model inputs, i.e., ambient temperature and pressure drops, 

served as constants in MBDR, i.e., no reconciliation for 

measured model inputs. The assumptions and simplifications 

were made for the purpose of reducing the computation time. In 

some special cases such as inlet bleed heating, the model input 

of ambient temperature will need to be reconciled due to non-

uniform temperature profile. The MSPCA data screening 

process also helped to ensure the consistency between measured 

model inputs and outputs, but not able to differentiate data from 

biases.  

For each data set, the response surface equations of gas 

turbine model outputs as functions of health parameters 

(DMM’s and Tfire) were generated by the nonlinear regression 

utilizing the simulated data from Monte Carlo Simulation. A 

2000-run Monte Carlo Simulation was carried out to generate 

random cases. The goodness-of-fit for each RSE was evaluated 

by examining the Reduced-Chi Squares, χν, and the residual 

plot, i.e., residuals should be normally distributed and pattern 

free for acceptance of goodness-of-fit. The RSE’s were tested by 

comparisons with the GTP outputs through a 1000-run Monte 

Carlo Simulation. Table 2 summaries the averaged error of each 

simulated model output.  

 

Table 2 The averaged error of RSE’s compared to GTP model  

DWATT FQG CDP CTD AFQ TTXM 

0.00253% 0.00028% 0.00020% 0.00013% 0.00021% 0.00133% 

 

 

The RSE’s were then used to replace the GTP model in 

MBDR. The reconciliation process can be expressed as follows: 
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where θi represent the cycle deck DMM’s; φk is the firing 

temperature at the kth data set; y’
jk represents the measured data 

of the jth performance metric from the kth data set, while fjk is 

the jth calculated performance metric at the corresponding 

operation condition of the kth data set.  

Several scenarios of prior assumptions on the health 

parameters and measurement biases were tested. Currently the 

number of independent variables, i.e., health parameters, is 

equal to number of dependent variables, i.e., model outputs. This 

results in lack of information redundancy, which exists if the 

number of dependent variables is greater than number of 

independent variables. Prior knowledge or assumptions are, 

therefore, required by bias detection when information 

redundancy does not exist. Multiple data sets can only improve 

the location redundancy, i.e., a performance metric measured 

multiple times or having multiple measurement instruments. 

When systematic errors exist, location redundancy is not 

sufficient for detecting the biases, but information redundancy 

is. The information redundancy can be achieved through 

reducing the number of independent variables by introduction of 

prior knowledge or through increasing the number of 

performance characteristics being measured. The need for 

information redundancy is another reason why the measured 

model inputs were not suggested to be reconciled in MBDR.    

 

No Bounds on Health Parameters. The first 

scenario is imposing no bounds on the health parameters 

including the firing temperature, and assuming there are no 

biases in measured model outputs. This allows MBDR to 

explore the design space for the health parameters as much as it 

can.  

The Levenberr-Marquardt algorithm serves as a nonlinear 

solver to solve for Eq 1. The optimization process continues 

until the change of the chi-squares, ∆χ2, i.e., the Least Squares 

objective function, is below 1∗10-7 or the number of iterations 

exceeds 100. In this scenario, the converged Least Squares was 

4.3, of which the Reduced-Chi-Squares was 0.095. The low 

Least Squares value indicates the average data adjustment is 

within the measurement uncertainty, ideal data reconciliation 

results. Table 3 shows the adjustments to measured model 

outputs in this scenario.  

The means and standard deviations of the inferred health 

parameters are shown in Table 4. The results of the inferred 

health parameters showed the combustion efficiency DMM and 

the turbine CQ DMM exceeded the expected “new and clean” 

value, 1, significantly, suggesting there were serious heat 

imbalance and significant area growth in stage 1 nozzle area. It 

was shown, however, that the nozzle area input to the GTP cycle 

model in this study matched the test report issued recently, and, 

thus, it was less likely to have such a high turbine CQ DMM that 

indicates a big change in nozzle area. On the other hand, it is not 

possible to have combustion efficiency better than 100%. The 

DMM higher than 1 suggested there were significant heat 

imbalance, often caused by measurement biases in compressor 

airflow (AFQ) or fuel flow (FQG)    

The prior knowledge about this unit can be utilized to 

constrain some health parameters, by which the degree of 

freedom in MBDR increases, i.e., information redundancy can 

exist. The bias detection scheme was then applied in the 

presence of information redundancy.   

 

Bounds on Health Parameters. This scenario 

imposed bounds on two health parameters, combustion 

efficiency DMM and turbine CQ DMM, based on the facts that 

the combustion efficiency must not be greater than 1 and that the 

stage 1 nozzle area should not have such a big deviation from 

the test report. By bounding these two parameters to 1’s, the 

degree of freedom was increased by two, allowing the bias 

detection scheme.  

The sequential bias compensation was first applied. This 

scheme searches biases one at a time, while estimating the 

magnitudes of biases all together after previous biases are 

detected. Once it locates the first bias, searching on the second 

bias will be ran in the presence of first identified bias, and the 

magnitudes of both biases are estimated simultaneously. If all 

two-bias hypothesis models cannot lead to a better Least 

Squares, the scheme will end at the first identified bias.    

The results from sequential bias detection are shown in 

Table 5 and 6. The AFQ bias was identified while no second 

bias was indicated. The RSE models were calibrated in the 

presence of the AFQ bias by MBDR where the health 

parameters along with the bias were solved all together for the 

minimum Least Squares. The estimated combustion efficiency 

DMM and turbine CQ DMM with AFQ bias identified are now 

close to 1’s, and the estimated firing temperatures were about 13 

°F higher than the nominal.  

 

Table 3 Data adjustments for no bounds on health parameters 

 

 

 

 
 

 

Table 4 Means and standard deviations of inferred health 

parameters in the scenario of no bounds on health parameters 

 

 

 

 

 

 

 

 

 

 

 

Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Data 10

DWATT kW 56.81 67.81 -75.35 14.52 -6.90 -57.96 58.68 -45.50 -64.46 40.90

FQG lb/sec -0.02 -0.02 0.02 -0.01 0.01 0.01 -0.01 0.00 0.02 -0.02

CPD psia -0.12 -0.13 0.16 -0.04 0.03 0.07 -0.16 0.14 0.13 -0.07

CTD F -0.09 -0.03 -0.11 0.44 -0.05 0.24 0.45 -0.81 -0.04 0.03

AFQ lb/sec 0.49 0.55 -0.92 0.33 0.27 -0.28 0.79 -0.44 -0.99 0.32

TTXM F -0.94 -1.28 1.33 -0.41 0.10 0.86 -1.52 1.29 1.09 -0.67  

Mean Std

comp_eff_DMM 0.9915 0.00078

comp_flow_DMM 1.0027 0.00152

comb_eff_DMM 1.0139 0.00246

turb_eff_DMM 0.9892 0.00081

turb_CQ_DMM 1.0327 0.00195

Tfire Data Set 1*  -4.7647 2.67384

Tfire Data Set 2  -4.9870 2.66911

Tfire Data Set 3  -5.3280 2.68816

Tfire Data Set 4  -4.7701 2.67655

Tfire Data Set 5  -5.9771 2.68282

Tfire Data Set 6  -5.0792 2.68560

Tfire Data Set 7  -4.6617 2.67085

Tfire Data Set 8 -4.8607 2.68708

Tfire Data Set 9  -5.1647 2.68884

Tfire Data Set 10  -3.6912 2.67193  
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Table 5 Data adjustments in the scenario of health parameters 

bounded 

 

 

 

 

 

 

 

 

Table 6 Estimated health parameters and the measurement bias in 

the scenario of health parameters bounded 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The alternative option of hypothesis test is testing all 

possible bias models. If the MBDR has n degree of freedom, the 

bias detection scheme is good for identifying up to n biases, 

while multiple solutions might exist. If one is trying to detect 

more biases, more constraints from prior assumptions or 

engineering judgments are required for decision making among 

multiple solutions. The test scenarios will include number of C
6
1  

tests on the one-bias scenario, number of C
6
2  tests on the two-

bias scenario, etc, and up to number of C
6
n  tests on the n-bias 

scenario. In this case with two degree of freedom available, the 

bias detection is required to test total number of C
6
1 + C

6
2 = 21 

bias models. Table 7 lists the test results for all of the 1-bias and 

2-bias scenarios. The results show that, in the 1-bias scenario, 

the model of AFQ bias with –5.63 standard deviation correction 

has the best Least Squares score while the corresponding 

estimates of model health parameters were within expectations. 

The fact that the reading of AFQ (compressor airflow) often had 

bias due to miscalculation suggested this AFQ bias model was 

acceptable. The second ranked model of CDP bias suggested a 

large correction of CDP while resulting in comb_eff_DMM 

greater than 1, which was not accepted by the engineering 

expectation. For the 2-bias scenario, the top 2 ranked bias 

models that had better Least Squares scores than the best 1-bais 

model both suggested the AFQ bias. The first bias model also 

suggested a FQG bias, but the estimated magnitude was within 

its measurement uncertainty. The second model suggested a 

TTXM bias of 2-standard-deviation magnitude, not categorized 

as a bias. This explained the reason of not identifying the 2-bias 

model by the algorithm of sequential bias compensation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The uncertainties of inferred model health parameters by 

MBDR were also evaluated and compared to the traditional data 

reduction method. Figure 9 shows the normal distributions of the 

Mean Std Biases Unit Biase (sigma)

comp_eff_DMM 0.9915 0.00078 DWATT Sigma 0

comp_flow_DMM 0.9757 0.00152 FQG Sigma 0

comb_eff_DMM 0.9960 0.00243 CPD Sigma 0

turb_eff_DMM 1.0004 0.00089 CTD Sigma 0

turb_CQ_DMM 1.0011 0.00191 AFQ Sigma -5.63

Tfire Data Set 1*  13.7341 2.71227 TTXM Sigma 0

Tfire Data Set 2  13.7004 2.70871

Tfire Data Set 3  12.7534 2.72359

Tfire Data Set 4  13.6000 2.71506

Tfire Data Set 5  12.1519 2.71983

Tfire Data Set 6  13.0367 2.72261

Tfire Data Set 7  14.0095 2.70960

Tfire Data Set 8 13.2387 2.72418

Tfire Data Set 9  12.9013 2.72370

Tfire Data Set 10  15.0064 2.70989  

Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Data 10

DWATT kW 32.14 19.37 -27.39 8.20 26.84 -18.55 12.22 -1.82 -14.03 -6.26

FQG lb/sec -0.03 -0.02 0.01 -0.02 -0.01 0.00 -0.01 -0.01 0.01 -0.02

CPD psia -0.13 -0.14 0.16 -0.05 0.03 0.07 -0.17 0.14 0.12 -0.09

CTD F -0.09 -0.03 -0.12 0.43 -0.06 0.23 0.46 -0.83 -0.06 0.03

AFQ lb/sec -24.15 -23.97 -26.08 -24.42 -24.77 -25.37 -23.74 -25.56 -26.18 -24.19

TTXM F -0.49 -0.50 0.86 -0.21 -0.21 0.48 -0.77 0.87 0.58 0.11  

Table 7 Hypothesis testing results for all 1-bias and 2-bias scenarios with the estimated firing temperatures of the first 5 datasets 

 
*Delta firing temperature, difference between estimated and nominal  
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estimated compressor efficiency DMM’s (comp_eff_DMM) by 

MBDR and tradition data reduction method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Uncertainty of compressor efficiency DMM 

 

 

Figure 9 shows that the uncertainty of compressor 

efficiency DMM was reduced significantly due to the use of 

multiple data sets. It is also shown that MBDR leads to a single 

estimated value for the model health parameters (except for 

firing temperature) instead of different values at different data 

sets. The features of unified estimates with reduced uncertainty 

are especially desired in reducing the risk of performance 

prediction and guarantee.   

 

CONCLUSION 
A methodology of model-based data reconciliation 

(MBDR) and bias detection has been developed for solving the 

problem of gas turbine model calibration using the OSM data, 

which are subjected to larger measurement uncertainty and 

biases. A method of data filtering and selection using MSPCA is 

proposed. This scheme can be utilized to filter large amount of 

OSM data while ensuring the filtered/selected data still satisfy 

the linear correlations between performance characteristics in 

gas turbine. Within a moderate range of ambient temperature, 

the linear correlations can be achieved by correcting out the 

ambient pressure and humidity effects.   

Multiple data sets, selected by MSPCA, are used as source 

data for MBDR. The use of multiple data sets reduces the 

uncertainty of model turners, i.e., health parameters, and, 

therefore, improves the quality of calibrated model. The RSE’s 

serve as surrogate models to reduce the computation time. The 

time saving is especially prominent when the bias detection 

scheme is executed. The method of sequential bias 

compensation has shown its capability of detecting biases. It 

needs less execution of MBDR than the scheme of hypothesis 

testing on all bias models. Future works will focus on testing the 

bias detection scheme in more gas turbine units and improving 

its detection rate.       
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