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ABSTRACT 
This study investigates the application of nonlinear Principal 
Component Analysis (PCA), implemented through the use of 
Auto-Associative Neural Network (AANN), for early warning 
of impending gas turbine failure. The study is based on a real 
operational data set that includes a compressor failure. The 
analyzed data set consists of measured operational parameters 
whose identity are unknown, hence this study presents a 
purely data driven approach to the problem of early warning. 
In this case study, the use of AANNs for early detection of 
abnormal engine behavior could have provided the operator 
with a warning a few days prior to the fully developed failure, 
which resulted in a forced shut-down and extensive 
maintenance. Furthermore, a comparison is made between the 
nonlinear PCA by AANNs and the standard PCA model, 
which is an inherently linear method. The result shows that the 
AANN provides a more reliable detection of the failure by a 
higher residual generation during failure mode as well as 
fewer false indications prior to the failure. Consequently, this 
study shows that nonlinear PCA as performed with AANNs 
can be a valuable data driven tool for early warning of gas 
turbine failure. 
 
Keywords: nonlinear principal component analysis, auto-
associative neural networks, failure detection, industrial gas 
turbines 
 
1 INTRODUCTION 
Increasing competition in the electricity market forces 
operators to continuously improve the overall economics of 
their power plants, determined except for the efficiency by 
reliability and availability. Early detection of impending 
failure in gas turbines can improve plant availability since it 
provides the operator with the opportunity to take appropriate 
actions before any serious malfunctioning has occurred. Early 

warning detection ability should not be underestimated, since 
the economical consequences of a failure can be drastically 
reduced since additional time is given for plant operators to 
take appropriate maintenance actions.   
 Monitoring is usually performed by evaluation of the 
measured parameters at different locations along the gas path 
of gas turbines. Most of the parameters have a variation in the 
measured values caused by different operational conditions. In 
a gas turbine, this variation may be caused by different 
ambient conditions and load levels or operational modes such 
as frequency control where the Inlet Guide Vanes (IGV) is 
constantly varying.  In condition monitoring, the main focus is 
to differentiate between normal variation and variation caused 
by failure, degradation or e.g. sensor faults. There are mainly 
two different approaches to approach this problem. One is to 
build a mathematical model of the system, and compare the 
actual readings against model predictions. The second one is 
to use operational data to build a so-called nonparametric 
model or data-driven model of the system. Regardless of the 
approach, a monitoring system should be easy and fast to 
develop and use as well as provide sufficient accuracy to 
detect impending failures. It should also be efficient, in the 
way that it should provide early detection, but at the same time 
minimizing the number of false alarms. Another important 
feature of monitoring systems is processing speed, which 
should permit on-line applications for real time equipment 
surveillance. In addition, a monitoring system is normally an 
ad hoc installation using the existing standard engine 
measurements already in place. Modern Monitoring & 
Diagnostics (M&D) is usually centralized for entire fleets e.g. 
in support centers and to efficiently inform experts and guide 
them to the critical areas, M&D systems need to provide a 
clear message on the status on the component of concern. 
 The decision between a mathematical modeling 
approach and a data driven modeling approach may depend on 
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what kind of information is available for model development. 
A mathematical model, like a heat and mass balance program 
or something similar, requires detailed specifications, 
component characteristics and process knowledge of the GT 
system. Some of these required specifications and 
characteristics may not be easily obtainable for plant operators 
because of their Original Equipment Manufacturer (OEM) 
proprietary nature.  One example is the compressor map, 
necessary to model a gas turbine at off-design operation. The 
well-known Gas Path Analysis methodology, which is used in 
conjunction with a Kalman filter [1], is normally accompanied 
with a normalization procedure, which requires the 
compressor map for single shaft gas turbines, as well as sensor 
noise levels for each sensor to be executed correctly. 
However, one resource that is available, normally in excess 
and not used to its full potential, is operational data, 
corresponding to normal fault-free operation.  Since this is the 
only requirement in a data driven modeling approach, this 
alternative provides an attractive cost efficient approach. 
Different methodologies exist for nonparametric modeling, 
ranging from statistical methods such as principal component 
analysis (PCA) [2], similarity based modeling, which is a type 
of Kernel approach [3], neural network based models [4-5], 
and Auto-Associative Kernel Regression (AAKR) [6].  
 In this study, the model development is performed 
using an auto-associative neural network [7-8], which permits 
nonlinear feature extraction from high dimensional data. The 
models are developed from a data set collected during the 
normal operation of the gas turbine and thus represent a 
baseline model of the gas turbine. It is then applied on a data 
set containing a real failure, collected after the training data. 
This is actually a unique situation that allows verification of 
the model under real conditions. To verify the need of a 
nonlinear model a comparison is made to the well-known 
PCA, which performs linear feature extraction. The 
performance of the feature extraction models are highly 
dependent on the number of extracted features and a 
comparison is made between different models with different 
numbers of extracted features. The result shows that the 
AANN provides a lower training error for a certain number of 
extracted features as well as a higher residual prior to the fault, 
which verifies the nonlinear modeling approach. In addition, it 
is seen that the training error can be used as guideline for 
selection of model configuration, which is necessary when the 
model development is based on normal operational data.  
 
2 CORRELATION MONITORING METHODOLOGIES  
In this section, a general introduction to monitoring by 
nonparametric correlation modeling will be given. The 
methodology applied is as follows.  

• A data set containing only healthy gas turbine data is 
used to produce a so-called baseline model. This 
baseline model incorporates the gas turbine 
characteristic in normal operating condition, i.e. 
without any fault.  

• New data are compared with predicted data from this 
model, and a residual is calculated. By comparing the 
actual residual and the residual obtained in the 

training data set, a decision as to whether or not a 
problem exists can be made. 

Figure 1 show the principle, where a new measurement vector 
is compared against the historical data. This comparison is 
done to see if a similar input as the one that is currently 
measured can be found in the history, which indicates that the 
current operation is in-line with normal operation.  

[ ]nx21 x,.....,x,x,xx=

x̂xx −=∆

[ ]nx21 x̂,.....,x̂,x̂,x̂x̂=

Figure 1 Principle for nonparametric correlation modeling 
 
Considering on-line monitoring, this should be performed for 
each new reading in time applying the same data resolution as 
in the data used for model development. The actual 
calculations are for most data driven methods a fast process 
since the model parameters are set once the model is 
developed. The main idea behind evaluating all parameters 
together is that only certain combinations of parameter values 
correspond to normal operation due an interrelationship 
between the parameters. This interrelationship can be termed 
correlation or dependency between the parameters. Consider 
figure two, which illustrates linear and nonlinear dependency, 
or correlation, between two different parameters, x and y. 
Since they are correlated, it is only certain combinations of the 
parameters that belong to normal operation.  

 
Figure 2 Illustration of linear and nonlinear parameter 

correlation  
 

When all parameters are used as input parameters, the model 
is said to work in an auto-associative mode. This is in contrast 
to a dedicated input-output model, or hetereo-associative 
mode, where output parameters are predicted based on certain 
inputs. For some systems that are highly interconnected with 
other systems, as well as have a high degree of correlation 
between the monitored parameters, it might be more suitable 
to evaluate the correlation between the parameters, due to 
difficulty to selection of appropriate input parameters or the 
absence of parameters that define the operational condition.  
 Principal Component Analysis is the most common 
technique for dimensionality reduction. Given a set of data on  
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� dimensions, PCA aims to find a linear subspace of lower 
dimension such that the data points mainly lie on this linear 
subspace [2]. This subspace attempts maintain most of the 
variability of the data by applying the Mean Square Error 
(MSE) objective function. Data compression methods such as 
PCA have been used in process engineering for a long time, 
see for example ref [9-13]. PCA is however designed to model 
linear variabilities in high-dimensional data, which means 
linear correlations between the parameters. However, if the 
data are nonlinearly correlated, the high-dimensional data lies 
on or close to a nonlinear manifold and not a linear subspace. 
Then, PCA cannot model the data variation accurately which 
imply that nonlinear PCA are needed to model the data 
correctly. To clarify, nonlinear PCA is in this context data 
compression into nonlinear manifolds, and not a method. 
Nonlinear PCA can be performed with different methods, such 
as Kernel PCA [14] and principal curves [15] and [16] and 
some application is shown in e.g. [17]. However, in these 
cases the number of parameters is limited to few such as 3 in 
[17]. It might be stated that the high dimensional modeling in 
combination with nonlinearity provides a challenging case. 
One method that can cope with both nonlinearity as well as 
high dimensional systems is the AANN, which is based on a 
three hidden layer multi-layer perception. The AANN’s main 
difference to PCA is that a nonlinear optimization problem has 
to be solved during the model building process since there is 
no closed form solution for calculation of the model 
parameters. However, the AANN provides a flexible data 
compression methodology, which means that arbitrary 
correlation can be learned without restriction to certain 
correlations. In addition, no a priori information about the 
correlations is required. This approach is more suitable for real 
world a system that in many cases includes a combination of 
linear and nonlinear correlations between parameters.  
 
3 PRINCIPAL COMPONENT ANAYSIS AND AUTO- 
ASSOCIATIVE NEURAL NETWORKS  
PCA [2] is a nonparametric method to extract relevant 
information from complex data sets. Assume a data matrix �   
has  � number of observations and � number of parameters, 
or variables. PCA allows a linear mapping from ��  to ��    
where  � 	 �, i.e. data compression: 
 
� 
 ��
 � �     (1) 
 
Where  �  is the score matrix with dimension � � �, � is the 
number of principal components, 	 �  , of �  and �  is the 
loading matrix with dimension of  � � �. The Euclidian norm, 
or the MSE,  of the residuals matrix is minimized for the given 
number of principal components. If �
� 
 � the linear of PCA 
is given by (2): 
 
� 
 ��      (2) 
 
Where  � represent a row of  �, a single data vector and �  
represents the corresponding row of  �. The loadings � are the 
coefficients for the linear transformation, and essentially 
define the orientation of the principal components with respect 

to the original m-variables. The information lost in this 
mapping is assessed by the reconstruction back to ��: 
 
 �� 
 ��
     (3) 
 
Where ��  is the reconstructed vector [2]. In PCA, any 
nonlinearity between the variables is lost through the 
compression steps. Nonlinear Principal Component Analysis 
(NLPCA) allows arbitrary nonlinear mapping from �� to ��. 
Consider the mapping: 
 
� 
 ����     (4) 
 
Where �  is a nonlinear vector function of � individual 
nonlinear functions, � 
 ���

�, ��, … . . , ����: 
 
�� 
 �����     (5) 
 
Reconstruction of the original data is accomplished by a 
second nonlinear function, � 
 ���

�, ��, … . . , ����: 
 
� 

� 
 � ��)     (6) 
        
It should be noted here that � is the inverse of �. Figure three 
shows a three hidden layer AANN, which implements 
nonlinear principal component analysis. The bottleneck layer 
represents the dimension of the number of principal 
components extracted. The AANN is trained in a so-called 
supervised mode, and the targets used to train the network are 
simply the input vectors themselves. The network attempts to 
map each input vector onto itself though the reduced 
dimension in the bottleneck layer. The numbers of principal 
components is determined by the size of the bottleneck layer, 
while the nonlinear complexity of � and � is determined by 
the size of the mapping layers. In addition to PCA, where only 
the number of extracted principal components has to be 
determined, the AANN has two independent variables, 
number of neurons in the bottleneck layer and in the mapping 
layers. Even though the name implies nonlinear principal 
component analysis, there are some differences worth 
mentioning. In a PCA model, the principal components are 
orthogonal, which is not a requirement for the three hidden 
layer AANN. The AANN tries to decode the information in 
such a way that it can be transferred through the bottleneck 
layer and still retain accurate reconstruction capability. It does 
not require the extracted features in the bottleneck to be 
orthogonal.  
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Figure 3 Nonlinear principal component analyses by AANN 

 
The number of adjustable weights for an AANN depends on 
the number of parameters as well as on the size of the different 
layers.  The number of adjustable parameters is: 
 
 !"#���, ��, �� 
 2 · � · �� � 2 · �� · �� � 2 · �� � �� � � (7) 
       
Where � is number of parameter,  �� is number of neurons in 
the mapping layers and ��  is number of neurons in the 
bottleneck layer. To assure generalization, it is recommended 
to have more data patterns than weight values, even though no 
exact guidelines are available in this matter. This will avoid 
over fitting of the network, which means that, the AANN 
learns the specific training parameters. When the network is 
trained with a reduced dimension in the bottleneck layer, over 
fitting is less likely to happen since the correlation between the 
parameters has been implemented during training. In [18], 
Malthouse describes the limitations of AANN, which basically 
are that they cannot model functions that intersect themselves 
such as circles or parameterizations that have discontinuous 
jumps. However, it should be noted that additional hidden 
layers might weaken the argument made by Malthouse, as 
indicated in [19]. These conditions may or not present a 
practical problem, but they should be considered when setting 
up the model for a certain system. For example, if the 
operation modes are distinguished by two different conditions 
which cause a discontinuous jump in the data, it would be 
more feasible to make two models, one for each operational 
mode due to the limitations of the AANN. For more 
information and details on AANNs, the two articles by Kramer 
in 1991 and 1992 [7-8] are recommended, and [20] which give 
a detailed mathematical description of the data compression 
issue.  
 
4 EXAMPLE: 3D – 2D – 3D 
In this section an example of data compression with AANNs 
will be shown for an arbitrary nonlinear function, which 
illustrates the nonlinear PCA performed by AANNs. Consider 
a functional relationship, & 
 '�(, &�,  which is a three 
dimensional function in the Cartesian coordinate system. Since 
this is a surface, the same information could be expressed in 
only two dimensions. We might think about this as stretching 
out the surface, see ref [21] and [22] for details on this matter. 
For simple geometries, such as a circle or a sphere, it is 
possible to use an analytical expression for transformation 

from the Cartesian coordinates to a polar or the spherical 
coordinate system.  This can provide a dimensionality 
reduction. For this transformation, the issue is to perform an 
arbitrary coordinate change by data compression. Figure four 
shows a schematic illustration of data compression for surface.  
 

 
Figure 4 Nonlinear feature extraction and reconstruction of 3-

dimensional surface 
 
Consider the nonlinear function: 
  
 ) 
 1.3356�1.5�1 . (� � ���/0�� sin�34 �& . 0.6���.. 
             (8) 
          . . ����60�� sin744�( . 0.9���:   
           
              
The surface generated by formula (8) is shown in figure five. 
 

 
Figure 5 Simulated nonlinear function 

 
This highly nonlinear function is arbitrarily selected; it could 
also be any nonlinear continuous function that does not 
intersect itself. However, since this is a surface, it should be 
possible to express the same information in only two 
dimensions. To verify this, several different AANNs with 
different number of neurons in the hidden layers is trained to 
reproduce this surface and the MSE for each network 
configuration is shown in figure six.  
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Figure 6 Training error as a function of neurons in hidden 

layers 
 

In figure six it can be recognized that two neurons are enough 
to provide almost a perfect reconstruction of the surface. Three 
neurons in the bottleneck layer perform a perfect 
reconstruction, but in this case no dimensionality reduction is 
performed. With one neuron in the bottleneck layer the data 
reconstruction error is substantially higher since the 
information in the function (8) cannot be explained in one 
dimension. A PCA with two principal components would 
create a plane on the function, placed in such a manner that the 
location would minimize the variance in a MSE fashion. 
Figure seven shows the original surface as well as the 
network-reproduced surface for the network with 15 neurons 
in the mapping layer and two in the bottleneck layer.  
 

 
Figure 7 Simulated surface and network reproduced surface 

on top of each other 
 

Since the AANN is constructed with two neurons in the 
bottleneck layer, the network has decoded the information into 
only two dimensions, thus it has been forced to perform 
nonlinear principal component analysis on the modelled 
function. 

 
Figure 8 Schematic illustration of AANN as a feature method 

from 3D to 2D and back to 3D 
 
One may ask why this should be useful. Pretend that the 
generated function (8) represents the healthy characteristic 
behavior of a specific component, and all three variables, 
(, &, ) , are measured parameters. The network would only 
provide a good match between input and output vectors when 
presented with input vectors that are located somewhere on the 
surface/function. If the characteristics behavior, i.e. the 
imbedded function (8) would change and generate values of 
x,y,z which does not belong to the surface, a residual between 
the input and output values would be seen. Thus, the 
dependency between the parameters at each operational point 
is considered. It is not required that the parameters are 
correlated as long as there is a functional dependency between 
them; however, a high correlation normally implies a higher 
data compression capability. 
 
5 CASE STUDY 
A data set containing a real gas turbine failure was used for 
this study. It consists of 25 measured parameters along the gas 
path of the specific gas turbine. This specific industrial gas 
turbine was operated in a so-called frequency mode, which 
means that the power output is constantly controlled by 
varying the Inlet Guide Vanes (IGV) angles in order to support 
the grid frequency. As mentioned previously, the specific gas 
turbine as well as the identity of the parameters is unknown. 
The data was divided into two sets, one set called training data 
and a second called failure data. In the training data, 
operational data from normal engine operation is included 
which are used to develop the baseline models. The failure 
data consists of data collected after the training data time 
window, and includes the real failure event in the end. The 
failure that occurred was a compressor blade failure, which 
caused an automatic shut down of the gas turbine. 
Unfortunately, any additional information about the failure is 
not available. The training data set consist of 6500 data 
patterns, while the failure data consist of 5262 data patterns. 
Each data pattern consists of a 5-minute average value from 
each specific sensor, which corresponds to normal data 
resolution used for gas turbine monitoring and data archiving. 
In figure nine a schematic illustration of the case study is 
shown.  
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Figure 9 Schematic illustration of the case study 

 
6 MODEL DEVELOPMENTS – CONFIGURATION 
AND TRAINING 
In this section, the process of building a model based on the 
training data set will be described. Since the knowledge of the 
data set is limited, a systematic trial and error approach is 
adopted to decide the correct model configuration. The first 
step is to train a model of the gas turbine by using the training 
data set. Since the actual parameters are unknown, no 
assumption about which parameters to include can be made, 
and therefore all parameters are selected. A three hidden layer 
AANN has two independent parameters, which are the number 
of neurons in the bottleneck layer and the number of neurons 
in the mapping layers. The goal is to compress the data as 
much as possible, while at the same time preserving the data 
reconstruction capability. This lowest possible dimension at 
which this is possible is called the intrinsic data dimension. 
Due to the nonlinear optimization problem during model 
development, the optimization algorithm can be trapped in a 
minimum higher than provided by the network complexity. 
Because of this, at least two different networks for each 
configuration are developed. However, assuming that each 
network converges to the global minima, the network 
reconstruction error can be specified as: 
 
;<= 
  '�>, ?�,     & 	 (    (9) 
 
Where x is number of neurons in the function approximation 
layers and y is the number of neurons in the bottleneck layer. 
The neurons in the bottleneck layer represent the number of 
extracted nonlinear features. Fewer neurons in the bottleneck 
layer imply higher data compression, since the information in 
the measured parameters is explained in a lower dimension 
provided that the reconstruction error does not increase. Each 
parameter is individually linearly rescaled, before presented to 
the network to give theme equal importance and to fit transfer 
functions in the network. During training, the training data is 
divided into three different sets called train, cross validation 
(CV) and test. The train data set is used to numerically adjust 
the network weights, while the CV data set is used as a 
benchmarking set to ensure network generalization. The test is 
used to validate the final network. The performance should be 
similar in all three sets. For training of the AANN models, the 
Scaled Conjugate Gradient (SCG) algorithm by Møller [23] 
has been used as the training algorithm. It is fast, and works 
well with large data sets and requires no user-defined 
parameters in contrast to the common Gradient Descent (GD) 
based optimization algorithm.  

In the normalized data space, the difference between each 
parameters measured value and reconstructed value is defined 
as: 
 
@� 
 |(�

BCD� . (E�
BCD�|    (10) 

 
While total network error, the residual, between the network 
input and output is defined as: 
 

@FCF 
 ∑ @�
�H�
�H�      (11) 

 
In contrast to PCA, the principal components in the AANN are 
not required to be orthogonal. In fact, in the training phase of 
the AANN, the network is trained to reproduce the input data 
vector as closely as possible at the output layer, given the 
constraints implemented by the number of neurons in the 
bottleneck layer. Thus, the network could group some highly 
correlated parameters through some of the bottleneck layer 
neurons and pass some other parameter or parameters through 
the bottleneck layer without correlation to the other 
parameters. Because of this, a validation test has to be 
performed in order to assure that the parameters are correlated 
to each other. This is done by contaminating each input 
parameter at the time in the training data set with faulty 
values, according to: 
 
(�0IJ�K 
 (� L ∆�     (10) 
 
Where ∆� is individually calculated for each parameter 
according to: 
 

  ∆�

NOP�/Q�0NRS �/Q�

�T
    (11) 

 
Where 10 is arbitrarily selected. In literature the standard 
deviation of the measured values are commonly used. 
However, this is not suitable for non-Gaussian distributed 
parameters and therefore we divide with 10, just to make sure 
that the faulty values are within the operational range for each 
parameter. This is performed for all patterns in the test data 
and then an average of the network residual is calculated. A 
parameter which does not produces any residual when 
contaminated with these faulty values should be removed, 
since it is not correlated to the other parameters; it is just 
transferred through the network. Using this methodology, the 
correlation between the parameters can be validated. Of 
course, a standard linear correlation coefficient can be 
calculated, but this indicates only linear correlation and can be 
decisive when a parameter is nonlinearly correlated to the 
other parameters.  
 In the PCA model, the data are first normalized into a 
linear scale, the same with the AANN model, and then 
rescaled according to each parameters standard deviation.  
This implies that the data are centered on zero with a standard 
of one, which is the normal PCA procedure. Thus, by 
monitoring the residual in the normalized linear data scale, a 
comparison between the AANN and PCA models with the 
same number of extracted components as well as the same 
residual scale can be performed. 
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6.1 MODEL RESULTS 
Figure 10 shows the data reconstruction error for different 
configurations that have been trained using the training data 
set. As seen, the main dominating parameter is the bottleneck 
dimension.  

 
Figure 10 MSE for different network configurations, first run 
 
The network with four neurons in the bottleneck layer and 20 
in the mapping layers is selected and the parameter 
correlations are evaluated.  One parameter, number nine, was 
seen to be uncorrelated to the other parameters since any 
failure in this parameter was simply transferred through the 
network. This was validated by examining different levels of 
failure in the parameter as well testing of different 
configurations of AANNs.  

 
Figure 11 Error Atot for failing input parameters 

 
Figure 11 shows the error Atot when the different parameters 
were contaminated by failing values according to (10). As 
seen, parameter nine is transferred through the model 
unchanged which means that one neuron in the bottleneck 
layer is dedicated to pass this parameter through the network. 
In figure 12 the error Ai is shown for each parameter when 
parameter one is contaminated with failing values and figure 
13 show the result for parameter nine, clarifying the result in 
figure 11. This approach can also be performed for different ∆ 
to specify the exact sensitivity to each parameter.  
 

 
Figure 12 A i for each parameter when parameter one is failing 
 

 
Figure 13 A i for each parameter when parameter nine is 

failing 
 
Since parameter nine does not contribute to residual 
generation during failure, this parameter can be removed. A 
new training variation is performed and in figure 14 the new 
training performance is shown. When the bottleneck layer is 
decreased from six to three neurons, the effect in the 
reconstruction capability is rather small and the big difference 
occurs when going from three to two neurons. Hence, it might 
be possible to assume that the intrinsic dimension, the lowest 
possible dimension to preserve the information, is a three 
dimensional space.  

Figure 14 MSE for different network configurations, 
parameter nine omitted, second run 
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The network with three neurons in the bottleneck layer and 20 
neurons in the mapping layer is selected for parameter 
correlation validation. Figure 15 shows the result and is clearly 
indicated that a failure in any of the parameters causes a 
residual and the dependency between the parameters is 
verified.   

 
Figure 15 Error Atot for failing input parameters, second run 

 
To show the data reconstruction capability when applying 
three neurons in the bottleneck layer, figure 16 shows the 
result for an arbitrary parameter and for a certain time interval. 
The measured data values are rather similar to the network 
reconstructed values, even though this 24 dimensional data set 
has been compressed to and decompressed from a three 
dimensional space which indicates a high correlation between 
the parameters.  

 
Figure 16 Measured values and network-reconstructed values 

for parameter 19 
 
Since the performance of the AANN models will be compared 
against PCA models, figure 17 show the MSE as a function of 
used principal components applying the PCA procedure which 
indicates that five or six principal components are required to 
capture the variance in the data.  
 

 
Figure 17 MSE as a function of principal components, PCA 

 
To evaluate the different models performance on the failure 
data, four different AANN models and four different PCA 
models respectively, the AANN models contain one to four 
neurons in the bottleneck layer and the PCA models one to 
four principal components. One important issue is, is it 
possible to decide the optimal data compression level, or the 
intrinsic dimension, based on the training data?  
Figure 18 show Atot for the different AANN models. The first 
observation is that when two neurons are used in the 
bottleneck layer the residual is substantially higher than for the 
other models. Furthermore, increasing the number of neurons 
from three does not substantially improve the data 
reconstruction error.  

 
Figure 18 A tot for the AANN models with different number of 

bottleneck neurons, training data 
 

To illustrate the different residuals for the different 
configurations, figure 19 show the residual histogram for each 
configuration. The result shows that the measured parameters 
can be explained in three dimensions and additional dimension 
does not improve the result. Thus, it can be concluded that the 
intrinsic dimension for this data set, or system, is three 
dimensions.  
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Figure 19 Histogram of Atot for the different numbers of 

bottleneck neurons, training data 
 

The same analysis is performed for the PCA models, and 
figure 20 show the result for the different PCA models. 
Compared to the AANN models, the PCA models produce a 
substantially higher residual with two and three principal 
components while the residual for four and five principal 
components are substantially lower than the previous.  

 
Figure 20 Atot for the PCA models with different number of 

principal components, training data 
 
From figure 21 the histogram of the different PCA models are 
shown, compared to the AANN models the intrinsic 
dimension seem to be four, since the difference between five 
and four principal components are rather low while the change 
between four and three principal components is substantial. 
Already here the nonlinear correlation between the parameter 
is verified, since the AANN model could process the data 
through a three dimensional space with higher accuracy.  

 
Figure 21 Histogram of A tot for the different numbers of 

principal components, training data 
 
7 EVALUATIONS WITH FAILURE DATA 
In this section, the residual generation on the failure data is 
investigated. The important question is: how early could the 
operator have been notified so that corrective measures could 
have been taken? In addition, how does the residual generation 
depends on the model configuration and is the assumption of 
the intrinsic dimension based on the training data the most 
optimal considering high residual generation during failure 
mode? 
 The last hours of operation data in the failure data set 
is removed, since these data observations produces such high 
residuals that a detection could have been done by a simple 
max/min threshold on each parameter. Atot is used as the 
monitored parameter, but it could also be possible to monitor 
A i. However, Atot provides one simple measure to monitor and 
includes the total residuals. In addition, more complex 
algorithms are available for residual evaluation such as 
consistency check, CUSUM etc., but the main point is that the 
model should produce a low residual when there is no fault 
and a high residual during failure mode. For this reason, the 
model residual is directly plotted versus time. It should also be 
mentioned that the authors does not know exactly when the 
fault occurred and hence the analysis is done based on the 
observed residual. This would simulate a real case where a 
model is trained on normal operational and then applied for 
on-line monitoring.  
 From figure 22, showing the residual generation for 
the different AANN models, it can be recognized that the gas 
turbine operation seems to be in-line with the training data 
performance until around data observation 4000. At this point, 
an increase in the error can identified which indicate an 
abnormal operation. However, shortly after, the residual 
decrease and is further on followed by sharp jump where the 
residual increases for all investigated models. An explanation 
can be, the failure occurred at the first indication of change in 
operation but the operational condition changed, or the control 
system intervened, and thereby the effect of the failure was 
less indicative on the performance.  
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Figure 22 Atot, failure data set, AANN models 

 
The same analysis is performed for the PCA models, and 
visualized in figure 23. In this case, the PCA models with two 
and three principal components reveal a rather scattered 
residual prior to the assumed failure, while the PCA models 
with four and five principal components produces a rather low 
and constant residual. The sharp jump in Atot is detected for all 
PCA as well, while the first indication of a change in the 
performance as seen with the AANN models are not visible 
(around data observation 4000). The pikes in Atot produced by 
the PCA models with two and three principal components can 
be attributed to modeling error, since the same behavior was 
seen in the training data for these two models.  

 
Figure 23 Atot, failure data set, PCA models 

 
The time period in which a clear change in the operation has 
been identified for both the AANNs as well as the PCA 
models are further studied. At this point it can be assumed that 
the failure has occurred and is expected to progress, i.e. it 
should produce an increasing residual. The AANN models 
with three and four number of neurons in the bottleneck layer 
produces a similar, increasing, residual after the failure has 
been detected, see figure 24. In addition, the residual 
generation is also higher for these models compared the model 
with two bottleneck neurons as well as the model with five 
bottleneck neurons. Two conclusions can be drawn at this 
point: selection of the appropriate bottleneck layer size 
produces a higher residual during failure and this can be 
determined from the training data, (as in figure 19).  

 
Figure 24 Close up of failure data set, AANN models, 

between data observations 4320 and 5000 
 

The result, see figure 25, for the PCA models is rather 
different, in two aspects. First, the PCA model, which was 
assumed to contain the intrinsic dimension, four principal 
components, does not cause the highest error; instead this is 
seen for the PCA models with two and three principal 
components. Secondly, the residual generation is lower and 
does not reveal the same progressive trend as the AANN 
models. It could also be argued that the PCA models with four 
and five principal components produce a higher residual than 
in the training data set and is of course also valid as 
monitoring models. However, the AANN seem to be more 
sensitive to change in the performance through a higher 
residual generation and thereby provides a higher confidence 
in the results.   

 
Figure 25 Close up of failure data set, PCA models, between 

data observations 4320 and 5000 
 
8 DISCUSSIONS AND CONCLUSIONS 
The aim of this study was to investigate the usefulness of 
AANNs for early warnings of gas turbine failure by imbed the 
characteristic operational performance in a feature extraction 
model which can be used to validate new observed data. When 
the interrelationships between the parameter changes due to 
failure, the model will produce a difference between the 
measured data and the model estimate, hence this difference 
can be viewed upon as a residual used to detect changes in the 
operation related to abnormal data readings. 
 One may ask what kind of failures that a feature 
extraction model can detect; the answer is that any failures that 
change the interrelationships between the parameters will be 
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detected. One of the main tasks during the model development 
phase is to decide upon the model configuration, which in the 
case of AANNs requires selection of two variables, number of 
neurons in the bottleneck layer and number of neurons in 
function approximation layers. The bottleneck layer is the 
most important since it determines the number of extracted 
features, or the dimension in which the measured parameters 
can be explained without information loss. Number of neurons 
in the mapping layers should be selected such as the 
transformation from the measured dimension (i.e. number of 
parameters) to the compressed dimension can be performed 
satisfactory. When the so called intrinsic dimension (the 
smallest dimension that can explain the same information as in 
the measured data dimension) is not known a priori, this can 
be determined from a trial and error approach where the 
smallest possible dimension should be selected. In this study, 
different AANN with different number of bottleneck neurons 
was selected to evaluate the residual during failure and it was 
seen that a correct selection of number of neurons in the 
bottleneck layer produce a more sensitive model which 
respond with a higher residual to failure. In this study a real 
compressor failure was investigated and it was seen that the 
most appropriate feature extraction could be selected by 
evaluating Atot, and specifically the difference in Atot for 
different configurations.  
 The main purpose to apply an AANN is the 
assumption of nonlinear correlation between the parameters, 
since a PCA model can applied for linear correlations, thus the 
improvement provided by an AANN depends on the 
nonlinearity within the system. An AANN requires a higher 
computational effort to develop since the model training 
requires a nonlinear optimization procedure. One AANN 
model takes approximately one hour to develop while a PCA 
model for the same data set may take in the range of one 
minute. In many cases, a system can be assumed to behave 
linearly at a certain operational point but if a full operational 
envelope is considered, it most often behaves nonlinear. Thus, 
an advantage provided by the AANN is that one model can 
incorporate the full operational behavior.  
 In this case applying a gas turbine data set, a 
comparison between the PCA and AANN was performed for 
different configuration, i.e. number of extracted features. The 
AANN model could express the data set by approximately 
three extracted featured, while the PCA with three principal 
components resulted in a higher data reconstruction error. 
Thus, this verifies that the PCA assumptions fail and that the 
AANN performs a nonlinear PCA on the training data set. The 
PCA model with three principal components showed a few 
pikes in training data set where the error was substantially 
higher than the average, which can be explained by 
operational conditions that imply a nonlinear behavior. All 
models identified a time 56 hours prior to the fault, where the 
residual indicated that a shift in the performance occurred. 
However, the residual by the AANN model were both higher 
as well for the AANN model 3 and 4 number of extracted 
features indicated a progressive residual which is in line with 
what is expected. The AANN models with 2 and 5 numbers of 
extracted features revealed a lower residual, thus this indicated 

that a correct selection of the bottleneck layer is required for 
optimal performance.  
 In summary, this study shows that AANNs can 
applied as valuable tool for early warning, or novelty 
detection, of abnormal operation when correctly configured. 
Compared to PCA, it permits nonlinear system to be modelled 
and thereby provides a wider applicability to different power 
plant systems.  
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NOMENCLATURE 
AAKR Auto-Associative Kernel Regression 
AANN  Auto-Associative Neural Network 
CV  Cross Validation 
GD Gradient Descent 
IGV Inlet Guide Vanes 
M&D Monitoring and Diagnostic 
MLP Multi-Layer Perceptron 
MSE  Mean Square Error 
OEM Original Equipment Manufacturer 
PCA  Principal Component Analysis 
SCG Scaled Conjugate Gradient 
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