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ABSTRACT 
In this paper, a novel approach is proposed to detect 

precursory events that lead to catastrophic systems failures. 

This approach is applied to investigating failures of heavy duty 

gas turbines. Current industry standards rely on either vibration 

sensors or gas path performance measurement sensors to 

identify system anomalies,  but this  proposed process is based 

on a combination of information from both type of monitoring 

sensors. This process is built on a systematical multi-step 

concept developed by assembling proven mathematical and 

statistical signal processing techniques to achieve a robust and 

more precise failure precursor detection methodology. The first 

step includes performing a multi-resolution analysis of gas 

turbines gas path performance measurement parameters, 

condition monitoring and vibration sensors data using wavelet 

packet transform to extract their signal features. Then, the 

probabilistic principal component analysis is utilized to fuse 

data of different types into a set of uncorrelated principal 

components.  Next, a one-dimensional signal representing the 

multi-variable  data is computed. After that a statistical process 

control technique is applied to set the anomaly threshold. 

Finally, a Bayesian hypothesis testing method is applied to the 

monitored signal for abnormality detection. As a proof of 

concept, the proposed process is successfully applied to a gas 

turbine compressor failure precursor detection problem. 

1 INTRODUCTION 
As a consequence of the recent deregulation in the electrical 

power production industry, there has been a shift in the 

traditional ownership of power plants and the way they are 

operated. Many new private entrepreneurs with no prior 

experience in power plant operation have entered into the 

power generation business. To hedge their business risks, those 

private entrepreneurs enter into long-term service agreements 

(LTSA) with third parties service providers for their operation 

and maintenance (O&M) activities with whom they share both 

the risks and the eventual rewards of plant performance. 

As a result, the original equipment manufacturers (OEMs) 

become the natural choices as third party O&M providers 

because they are experts of their designed products and will be 

willing to guarantee their operation. In return the OEM 

becomes responsible for the majority of the costs associated 

with unplanned outages like usual insurances contracts.  

Because the estimated cost-benefit of preventing such 

unplanned outages as a gas turbine compressor failure is very 

high, techniques for detecting failure precursors to avoid or 

limit the number of systems catastrophic failures are an absolute 

necessity. Each of the main gas turbine OEMs (together they 

represent about 94% of the global market [1]) has its own set of 

definitions and foreseeable benefits to the plant owners of their 

LTSA offerings. The major OEMs have been developing 

preventive maintenance strategies to minimize the occurrence of 

the unplanned outages resulting from failures of equipment 

covered under LTSA contracts.  The high potential for cost 

benefits to gas turbine OEMs when failures can be prevented 

raises the importance of techniques for detecting faults in gas 

turbines.  In this paper, a systematic process is proposed that 

can successfully detect failure precursory events. 

 The remaining of the paper is organized as follow: Section 

2 sets the context and background regarding power plant O&M 

and the background for the problem addressed. Section 3 

presents the steps of the proposed approach to detect 

catastrophic failure precursors. Illustrative examples of 

application to a gas turbine compressor failure problem are 

presented in Section 4, followed by a brief conclusion in 

Section 5. 

2 POWER PLANT O&M BACKGROUND 
Typically, the LTSA contracts work like insurance policies 

where the manufacturer guarantees a given level of power 
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output and/or efficiency over several years. They may provide 

repair, replacement, and upgrade parts to the degrading power 

plant. Overall, it is supposed to be a “win-win” partnership for 

both parties, as they share the operational risks as well as the 

rewards of extra performance generated by the power plant. 

There are several other advantages for both parties to entering 

into LTSA. For the plant owner, an advantage is that it is well 

accepted in the power generation field that LTSA contracts raise 

the plant re-sale value. While for the OEM, the equipment 

under contract provides unprecedented access to “a live 

laboratory” that should allow the OEM to learn from eventual 

design shortcomings of previous gas turbine designs in order to 

improve upon future designs. 

2.1 Power plant operation and maintenance  

 The O&M expenditures of a typical power plant are 

significant and consist  of 15% to 20% of total life cycle cost, 

while equipment maintenance costs account for approximately 

10% to 15% [2].  To be clear, there is always a cost associated 

with an outage whether it is planned or unplanned. Hence, to 

make the LTSA contracts profitable, the providers need to 

reduce the number of unplanned outages. Typically under a 

LTSA contract, the provider has to pay the plant owners a 

liquidated damage for each forced outage.  In general, the 

liquidated damage cost for a forced outage includes: the loss of 

production cost, the repair cost, the cost of buying the 

equivalent power to meet the quantity that the forced outage 

plant was dispatched for at usually higher prices, and eventual 

regulatory penalties. 

2.2  Problem Background 

 With the high cost of liquidated damage associated with not 

meeting the reliability and performance requirement, LTSA 

providers need to develop strategies so that the revenues from 

the contracts exceed the cost of the involved risks.  In fact, 

according to a report of the Electric Power Research Institute 

(EPRI), the cost benefit from preventing a typical a gas turbine 

compressor failure is estimated between ten and twenty million 

dollars [3].  Accordingly, OEMs have spent huge resources to 

develop strategies to avoid unplanned plant outages.  For 

example, OEMs like GE Energy created a Power Answer 

Center in Atlanta, GA, where all power plants under its LTSA 

contract are continuously monitored using installed sensors on 

gas turbine. The illustrative Figure 1 shows the GE Power 

Answer architecture wherein the on-site monitor compares the 

actual unit performance with baseline predictions and provides 

the first level of anomaly detection and notification. 

 
Figure 1:  GE Monitoring & Diagnostics concept [1]. 

 

 Major OEMs have the ability to monitor hundreds of units 

throughout the world in real time in order to establish 

knowledge to detect faults before they can develop into failure. 

This is both challenging and can yield some advantages toward 

sustaining the technological competitive advantage of an OEM 

in the long run. Despite all of the efforts to avoid forced 

outages, there are still undetected failure precursors that led to 

catastrophic failure as reported by EPRI in its 2007 updated 

report [4].  

3 PROPOSED APPROACH FOR FAILURE 

PRECURSORS DETECTION 
 Though in recent years, there have been new and improved 

techniques such as condition-based monitoring (CBM) to help 

detect anomalies in their early stages of development. However, 

the new techniques are not able to totally resolve the issue of 

missed detections of all the anomalies.  Their merit is well 

accepted, their practical implementation is still inefficient 

because these techniques tend to be theoretical, difficult, and/or 

expensive to apply to real world problems. Therefore, the 

method proposed herein intends to take advantage of the two 

types of monitoring sensors to combine the information from 

the performance sensors and the vibration sensors to capture 

catastrophic failure precursors. 

 In general, the gas path performance and condition of 

power plants are monitored using two types of sensors: the 

static or process-related sensors (used to measure temperature, 

pressure, and flow), and the sensors characterized by their high-

bandwidth used for high-frequency signals like the vibration 

measurements. Although, there are many time-frequency 

techniques reported in the literature such as the Wigner-Ville 

distribution, the Choi-Williams distribution, the short time 

Fourier transforms; the wavelet transform is the best one to deal 

with short lasting anomalies and sharp discontinuities [5].  The 

following subsections provide a brief overview of the wavelet 

transform followed by a presentation of a step-by-step 

explanation of the proposed approach. 
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3.1 Fourier transforms overview 

 The time-frequency analysis techniques are appropriate 

when dealing with identifying anomalies in time series signals 

because more information can be extracted about small 

variations of a signal in the combination of the time and the 

frequency domains than can be extracted in the time domain 

alone.  The most popular frequency domain analysis technique 

is the Fourier transform because of its ability to decompose an 

energy limited signal time domain signal f(t) into its frequency 

domain contents )(F as defined by Eqs 1 and 2:       
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 However, the Fourier transform provides only the global 

information on the frequencies of a signal, it cannot provide 

local information if the spectral composition of a signal that 

changes rapidly with time [6].  In other words, once a signal is 

Fourier transformed, all the time domain information is lost, 

while the wavelet transform conserves both the time and the 

frequency information. Thus, the wavelet transform is an 

improvement over Fourier transforms for time-frequency 

analysis in that context. Wavelet transforms decompose a given 

signal through two filters: a low-pass filter that provides a low 

frequency part which trends and smoothes the original signal 

(i.e., approximation), and a high-pass filter that provides the 

high frequency part (i.e., details) which reveals local properties 

such as anomalies. 

3.1.1 Mathematical overview of Wavelet Transforms  
 There is  plenty of literature describing the theory of 

wavelet transforms and its applications [7, 8].  Just like the 

Fourier transforms, the wavelet transform can be defined for 

any square-integrable function L
2
() [9].  But instead of using 

the harmonics, e
it

, the wavelet basis, , called a mother 

wavelet function, is used and defined as:   
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Where a is the dilation or scaling parameter and b is the time 

location or translation parameter. Thus the wavelet transform of 

a signal f(t) is computed as follows [8]: 



W f (a,b)  f (t)a,b (t)dt



       (4)                  

3.1.2 Wavelet Packets 
 The standard wavelet transforms has limitations because it 

can only decompose the low-frequency part of a signal. To 

remedy that limitation, the wavelet packet transform was 

introduced. It has the ability to decompose both the 

approximation part as well as the detail part.  The wavelet 

packet transform decomposes a signal into more detailed 

components than the standard wavelet transform could, thereby 

yielding more information about the signal.  For that reason, it 

is more advantageous to use the wavelet packet transform to 

realize the multi-resolution analysis (MRA) by decomposing 

both the low frequency and high frequency components of a 

signal into subspaces so as to obtain finer and adjustable 

resolution [10].  Figure 2 illustrates a wavelet packet 

decomposition of a signal S.  For a given signal original S(t) at 

level (0,0), the standard Wavelet decomposition would yield 

equation (5), while the Wavelet packet decomposition provides 

equation (6). On the tree decomposition, the nodes with the 

second entry of “0” represent approximation, whereas the nodes 

that have both entries as non-zero represent the detail 

components of the decomposition. Clearly, the Wavelet packet 

provides a higher level of detail (e.g. eight wavelet components) 

than the standard wavelet (i.e. five wavelet components).  
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Figure 2: Wavelet packet decomposition 

)7,3()6,3()5,3()4,3()0,1()( tS                 (5) 

)7,3()6,3()5,3()4,3()3,3()2,3()1,3()0,3()( tS  (6) 

 

3.2 Steps for failure precursor detection 

 As mentioned above, the proposed approach intends to take 

advantage of monitoring sensors to capture catastrophic failure 

precursors.  Figure 3 shows a flowchart of the proposed 

methodology for intelligent failure precursor detection using 

multi-resolution analysis.  A step-by-step explanation of each 

block in the flowchart is presented in the subsections below. 

The different steps of the proposed approach have been 

explained in [11]. 
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Figure 3: Intelligent failure precursor detection 

3.2.1 Raw time series data collection 
 The systems performance and operating condition 

parameters are continuously monitored and collected using 

installed sensors and stored for potential post-processing. The 

installed sensors for heavy-duty gas turbines typically include 

the two types mentioned previously, static or process-related 

sensors (used for pressure, temperature, and flow rate 

measurements) and high-bandwidth sensors used to measure 

high-frequency measurements (e.g., vibration measurement).  

3.2.2 Data Pre-Processing 
 The pre-processing of the raw data is a necessary step for a 

couple of important reasons. This step is necessary to allow an 

apples-to-apples comparison of a system overall health 

regardless of the ambient condition and the operating condition.  

First, the OEMs will not want to share their proprietary data on 

equipment malfunctioning because that may affect their 

competitive advantages due to risk of possibility of reverse 

engineering. Secondly, the sensors monitor different engine 

parameters (e.g., temperature, pressure, vibration, etc) that are 

recorded in different units and more importantly in different 

orders of magnitude.  For instance, a typical normal base load 

operation of a gas turbine can have a compressor discharge 

temperature measurement in the range of 600 to 800 degrees 

Fahrenheit, while the vibration sensor measurements could be 

on the order of 1/10 of an inch per second.  Therefore, an 

analysis with the raw measurement could be artificially skewed 

towards the variables with higher absolute values. Thus, the 

pre-processing step consists of normalizing each measured 

parameter value by the mean value of that variable 

measurement, and eliminating the visual outliers that would 

misrepresent the finding and affect the accuracy of the 

conclusion. 

3.2.3 DWPT signal de-noising   
 The de-noising step is essential because a sensor 

measurement signal is always tainted by noise.  In [12] the 

authors presented a de-noising technique that adequately 

removes the noise by combining the discrete wavelet packet 

transform (DWPT) and Bayesian thresholding.  The result is 

the removal of just the noise without the drawbacks of many 

other de-noising algorithms that either remove useful 

information along with the noise or remove too little noise thus 

leaving some noise in the signal. 

3.2.4 Multi-resolution analysis using discrete wavelet 
packet decomposition 
 In this step, the de-noised signal is decomposed at an 

appropriate level (3-level) of resolution (as in Figure 2) to get 

the approximation and the detail components. The content of 

each component resulting from the decomposition can be 

analyzed.  Once the decomposed tree is obtained, the energy 

content of the scaling function (approximation) and the wavelet 

functions (details) representing the nodes of the tree is 

calculated as:  







s

smjsmjmj WdtdtWE 2

,,

2

,,, ))((               (7) 

Where: Wj,m,s is the wavelet packet transform coefficient, j is 

the level, s is the translation, and m  is the modulation 

parameter (approximation or detail).  The energy content of 

each node will then be used as the signal features. 

3.2.5 Data Fusion using Probabilistic Principal Components 
Analysis 
 The goal of the data fusion step is to combine pieces of 

information from a system with potentially correlated multi-

sensory data set into fewer uncorrelated variables that allow for 

drawing a more adequate conclusion than one could get from 

each individual sensor. Thus, the probabilistic principal 

component analysis (PPCA) is used to merge the information 

from the sensors of interest.  To perform the PPCA, the steps of 

the principal components analysis (PCA) are executed. Then 

the maximum likelihood and the variance of the reduced data 

are calculated. Only the most significant weights obtained from 

the standard PCA are used as entries in a maximum likelihood 

matrix. The PPCA is an improved version of the standard PCA 

because it takes advantage of data uncertainty [13].  

3.2.6 Anomaly detection decision 
 The anomaly detection decision is a multi-step process. It is 

important to get the anomaly detection decision right as it 

represents the core of the proposed methodology. 

After completion of the PPCA step, the different principal 

components of the signal as obtained from PPCA are converted 

into a one-dimensional signal calculated as follows: 
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 r : The number of retained principal components (PC) 

g : The contribution of the
thg Eigenvalues.  

)(* iPg
: The signal corresponding to the 

thg principal 

component of the data matrix. 

RS: reconstructed signal. 

Statistical Process Control (SPC) for threshold 

 The authors presented the steps of the SPC in [14] as 

follows: 

Step1: The obtained reconstructed signal RS is decomposed 

using the discrete Wavelet packet decomposition. Then, the 

energy content of each node is calculated (similar to the multi-

resolution analysis step) using equation 7.  

Step 2: Calculate damage indicators SAD and SSD to be 

monitored instead of directly monitoring the change of the 

energy content as suggested in [15]. Instead of using the SAD 

and SSD as defined in [16]. The authors proposed the use of the 

modified version of SAD and SSD as introduced in [14]: 

Sum of Absolute Difference (SAD) and computed as: 

refEkEkSAD  )()(                   (9) 

Square Sum of Difference (SSD) and computed as: 
2))(()( refEkEkSSD             (10) 

With: refE : is the reference signal energy content at the 

approximation node of the decomposed tree, calculated as the 

mean value of the energy content over a healthy period before 

the monitoring period. 

)(kE : Energy content of the RS at the monitoring time step k  

k : Indice that starts right after the interval over which refE is 

computed.  

The damage indicators are the deviation of energy content from 

the reference energy refE . 

Step 3: Apply SPC (Statistical Process Control) 

 The X-bar control chart concept [17] is used to established 

the threshold of damage indication. Thus, the threshold for a 

one-sided upper (1-α) upper confidence limit for the SAD 

damage indicator monitor separately can be calculated as 

follows (a similar threshold is calculated for SSD) [18]: 
















q
ZUL SAD

SADSAD


 
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Where: 

SADUL  : Upper Confidence Limit 

SAD : is the value toward which the mean value of the 

parameter SAD converges  

 Z : is the value of standard normal distribution with zero 

mean and unit variance, so that the cumulative probability is 

100*(1-α)  

SAD : is the value toward which the standard deviation of the 

parameter SAD converges 

q : Number of interval of monitoring time step 

 : is the acceptable error or type I error 

Then, X-bar control chart upper limit is used to monitor of the 

damage indicators over a given period of time. The different 

statistical parameters are obtained after the system stabilized 

(see section 4 for illustration). 

Bayesian Hypothesis for monitoring time 

 In this paper, it is proposed to apply the Bayesian 

evaluation method to the modified threshold 

value
 MXSADUL _ , which corresponds to the use of the 

maximum value reached by SAD  in the equation (11) instead 

of its converged value. It is important to use the modified 

threshold because it has been observed that there is an 

overshoot before convergence occurred. Thus, the Bayesian 

evaluation method for hypothesis testing is conducted with a 

binary outcome over a given period of monitoring time to 

facilitate the monitoring process overtime.  The anomaly 

function is defined as )(th which is the vector of the Bayesian 

hypothesis testing result and is based on answering the question, 

is the system healthy? The null and the alternative hypotheses 

are defined as follows: 

 Null hypothesis H0: 

  1)(,)(  thtSAD                                 (12)      

 Alternative hypothesis H1:   

0)(,)(  thtSAD                                 (13)  

The function )(th has values of 1 or 0 and can be plotted over 

time for visualization.  Where a )(th value of 1 corresponds to 

a healthy state while a )(th value of 0 is an abnormal one.  

Therefore, the appearance of the value of 0)( th  can be 

considered as a sign of failure precursor. It is important for 

practical purposes to reset (recalculate) the threshold value (i.e. 

all the parameters used to calculate the threshold) after any 

exterior performance change as offline compressor water-wash, 

or installation of new parts or components. 

Type I and type II errors calculation 

 Recall that the probability of a type I error or false-positive 

is defined as: α = P{reject H0|H0 is true}; this is the probability 

of detecting a failure precursor while there is no defect. 

Whereas, the type II error or false-Negative is defined as β = 

P{fail to reject H0|H0 is false}, that is the probability of 
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missing a defect while one is present. In the proposed process 

the statistical confidence level is decided by the system 

operator; it has a probability of 100*(1-α)%. 

 To compute the type II error we assume H0 is false and H1 

is true, and that the difference between the mean values of the 

H0 distribution and the H1 distribution is  .  The type II error 

is the probability that the test statistic will fall between 2/Z  

and 2/Z  under H1 being true, as illustrated in figure 4. A 

more detail explanation of the concept of determination can be 

seen in [17]. 

 

Figure 4: Graphical representation of type II Error  

 

The type II error can be calculated  for each damage indicator 

as follows:    
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Where:    : is the cumulative standard normal distribution 

 : is the difference between the mean value used to calculate 

the threshold value and the mean value of the monitored 

interval of time of the damage indicator SAD and SSD. 

 : is the standard deviation 

Another interesting statistical parameter is the process power 

defined as 1–β = P{reject H0|H0 is false}; it is the probability 

of correctly rejecting H0. 

The steps of the anomaly decision are summarized in Figure 5. 
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Figure 5: Anomaly Detection Decision Flowchart 

4 EXAMPLE APPLICATION TO A GAS TURBINE 

COMPRESSOR FAILURE 
 To demonstrate its practical value, the proposed 

methodology is applied to a set of base load operating condition 

of heavy-duty gas turbine compressor failure precursor 

detection.  
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Figure 6: Layout of monitored sensors for gas turbine 

compressor anomaly detection 

 The layout of sensors that are monitored is shown on 

Figure 6. Table 1 provides the description of the twelve 

monitored sensors (variables). 

Table 1: Monitored GT sensors for compressor failure 
  Variable Variables Description

X1 Overall  system health parameter 1

X2 Overall  system health parameter 1

X3 Compressor seismic vibration 2

X4 Compressor seismic vibration 2

X5 Turbine seismic vibration 3

X6 Compressor health parameter 1

X7 Compressor health parameter 2

X8 Compressor effectiveness health parameter 1

X9 operating condition (load)

X10 operation condition 1 (environment)

X11 Compressor effectiveness health parameter 2

X12 operation condition 2 (environment)
 

The remainder of this section is divided into two parts:  

1. Illustration of the proposed method applied to a case of 

compressor failure with only eight available sensors 

measurement 

2. Illustration of the benefit of combining both the 

vibration and the gas path performance measurement 

sensors.  

4.1 Illustration of Failure Precursor Detection Method 

4.1.1 Background of test unit  
  The proposed process is applied to a gas turbine 

compressor failure problem where the working sensors are X1, 

X3, X4, X5, X7, X8, X9 and X10 (as shown on Figure 6). The 

test unit failed on June 24, 2006 at 18:18.  The gas turbine 

manufacturer found through a post compressor failure analysis 
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that there was a failure precursor event (artificially big 

increased in sensor data) on June 20, 2006 at 23:30. Also, the 

manufacturer indicated that the operated hours of the unit were 

about one half the number hours required for inspection and 

that there were no major events prior to the compressor failure. 

4.1.2 Proposed methodology steps  

Step 1: The sensor measurements for the eight sensors of 

interest at 5-second intervals from June 19, 2006 at 00:00 to 

June 25, 2006 at 00:00 are obtained and presented in this study 

because there were no prior noticeable events.  

Step 2: The raw data are normalized using the mean value of 

each variable.  As a result, the normalized sensor readings are 

within the same order of magnitude with a mean value of 1 for 

each variable.  

Step 3: All normalized raw sensors data are de-noised using 

DWPT. 

Step 4: Each sensor signal is decomposed into a 3-level tree as 

shown on Figure 2 using the DWPT and the “Daubechies 4” 

wavelet mother function. The energy content of each of the 8 

nodes ((3,0), (3,1), etc) representing the wavelet component at 

the level 3 is calculated and used as the signal feature 

characteristic.   

 It observed that each of the eight sensors has over 99.9% of 

its energy content at the approximation node (3, 0) which signal 

0,3E is shown on the right hand plot of Figure 7 for the sensor 

X8. Therefore, the approximation will be used as a 

representative of the actual signal in the subsequent steps. 
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Figure 7: Example tree decomposition of sensor X8 

Step 5: The standard PCA steps are executed to determine the 

principal components which are the eigenvectors corresponding 

to the most significant eigenvalues of the covariance matrix 

formed with the sensor data. As shown on Figure 8, to maintain 

at least 95% of the original information in the model, the first 3 

PCs representing 99.326% of the original information should be 

retained.   

 

 
 Figure 8: Pareto chart of eigenvalues contribution 

 Then the PPCA parameters are calculated with the 

maximum likelihood weight matrix first by setting to 0 any PC 

weight that is less than 0.1 as shown in Table 2.  

Table 2: Maximum likelihood weight matrix 

Variables PC1 (75.1%)

PC2 

(18.9%)

PC3 

(5.3%)

X1 0 0 0

X3 0.59281 0.7203 -0.35998

X4 0.46975 0 0.88042

X5 0.65235 -0.69038 -0.30792

X7 0 0 0

X8 0 0 0

X9 0 0 0

X10 0 0 0

3 Principal Components for 99.3%

 
 

Step 6: This step deals with the anomaly detection:  

 Computation of reconstructed signal 

Since only the 3 most important principal components are kept, 

the reconstructed 1-dimensional signal is obtained as: 
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With 1 =75.1%, 2 =18.9% and 3 =5.3%, which are the 

percentage of total information content in the 3 major 

eigenvalues. 
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Figure 9: Reconstructed 1-d signal 

 The remaining analysis is based on the reconstructed 1-

dimensional signal (RS) on Figure 9, which is a representation 

of the original eight sensors. The RS in turn is decomposed 

using the DWPT up to the level-3 decomposition, since higher 

level of decomposition did not yield any additional information. 

The remaining sections of the anomaly detection decision are: 
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 Threshold calculation  

 To compute the damage indicators SADand SSD , refE  

needs to be established first. refE is calculated as the mean 

value of the energy of the approximation node (3, 0) 

(representing more than 99.9% of the RS energy content) from 

the decomposed tree on Figure 7 of the RS signal over an  hour 

period using a 5-second sample interval. Through this process a 

value refE =1.1328 is obtained. Next, the mean and standard 

deviation values of SADand SSD are needed to calculate the 

anomaly threshold.  

 Therefore, )(kSAD is calculated at each time step and its 

value is added to a set to compute the mean and standard 

deviation value of that set. Similar to the refE  calculation, 

)(kE represents the energy content of the node (3,0) at each 

subsequent time step k . The calculation is repeated over time 

until the mean value and standard deviation of the set SAD 

values converge towards SAD  and SAD  respectively as 

shown on Figure 10.  
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Figure 10: Convergence of mean and standards deviations of 

SAD & SSD 

 The convergences of the statistical parameters are based on 

the hours of operation which may be much shorter the calendar 

hours shown on the x-axis on Figure 10. After the statistical 

parameters convergence, the modified threshold of SAD is 

calculated as 1337.0 using a value of  of 2%. The idea is 

that, once the threshold is set, a system operator monitors the 

SAD (or the SSD ) signal (green curve) instead of the original 

eight sensors in this case until system failure. Any time the 

value of SAD goes above the calculated threshold, it is 

considered an anomaly. Also, since the monitoring SADor 

SSDyield the same conclusion, only the results obtained from 

SADare presented in this paper. The Figure 11 shows the 

threshold (red dash line), the magnitude,  length of anomalies 

and the point of the catastrophic failure. The blue portion of the 

curve represents the time history used to established the 

threshold parameters ( refE , SAD , SAD  and   ) . 
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Figure 11: SAD parameters with detected anomalies 

 Bayesian Hypothesis Testing  

 The final step is the Bayesian hypothesis testing. The result 

is the binary function h(t) with entry values of “1” and “0”.  As 

shown on the Figure 12, there are four abnormal events during 

the almost 17 hours of monitoring. In a post-failure analysis, the 

gas turbine manufacturer established that the initial indication 

of a precursory event that led to the compressor failure was on 

June 20, 2006 at 23:30.  

 Indeed, the proposed technique successfully detected that 

event and found that it has started precisely at 23:13. The 

difference in the exact time of initiation may be explained by 

the fact that the manufacturer’s analysis had a 30-minute 

sampling time. Furthermore, the proposed process has detected 

three other less severe and short lasting events as marked on 

Figure 12. Although these events may be part of the accepted 

2% type I error, they are marked as warning signs because their 

damage indicator values are higher than the threshold value 

(one of them has a damage indicator about 10% over the 

threshold).  
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Figure 12: Result Bayesian hypothesis testing 

 Finally, the errors associated with the precursor detection 

are calculated. Recall that the probability of false-positive is an 

input that is decided by the analysis and it represents 2% in this 

example. The corresponding probability of type II error   or 

false-negative is calculated to be less than 10e-4. Thus, the 
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proposed methodology meets the goal of any practical process 

that to be implemented has to have a much smaller type II error 

for given type I error. Because in the case of high cost 

catastrophic failure systems as a gas turbine, erroneously 

stopping a system operation while thinking there exists a 

anomaly is less expensive than missing a precursor that leads to 

failure. 

4.2 Illustration of Advantage of combining performance 

and vibration sensors 

To illustrate the robustness of combining both types of 

sensors, data from a unit that failed on September 10, 2009 at 

12:09 with eleven working sensors is tested. First, three 

vibration sensors (X3, X4, X5) and eight gas path performance 

measurements sensors (X1, X2, X6,X7,X8, X9,X10, X11) are 

used separately. Then the eleven sensors are put together to 

carry out all the steps of the proposed methodology. To allow a 

fair comparison the same analysis inputs assumption are for 

each of the three cases (i.e. value of   =2%, maximum 

likelihood for weight matrix and with entry (W>=0.1)). 

4.2.1 Vibration sensors only 
 After the preprocessing and de-noising of each of the three 

vibration sensors, the PPCA step is done. The eigenvalues 

contribution is shown on Figure 13 .  
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Figure 13: Vibration sensors Pareto plot of eigenvalues 

contribution 

 The PPCA is performed, which yields two retained 

principal components (99.31% of information content). The 

retained principal components are shown inTable 3. 

Table 3: Retained PC for vibration sensors only 

 Sensors PC1 PC2

x3 0.67079 -0.10819

x4 0.7126 -0.1801

x5 0.2055 0.97768  

 The anomaly detection step starts with the reconstructed 

signal is shown in Figure 14. Then follow the calculation of the 

damages indicators SAD and SSD. 
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Figure 14: Reconstructed signal for vibration sensors only 

 Finally, the fault threshold is calculated and the hypothesis 

testing is performed and shown in Figure 15, where three failure 

precursor anomalies are detected. 

8/3/2009  12:42:00 PM 8/5/2009  3:17:00 PM 8/14/2009  1:56:00 PM 9/10/2009  12:09:00 PM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
H - function

Three Anomalies detected

 
Figure 15: H-function for vibration sensors only 

4.2.2 Gas path performance sensors only 
In a similar fashion, all the steps are repeated with the eight 

gas path performance sensors. The eigenvalues contribution is 

shown on Figure 16. 
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Figure 16: Gas path performance Pareto plot of eigenvalues 

contribution 

 After the conventional PCA, the PPCA is carried-out, and 

two principal components are retained (99.917% of information 

content). This is shown in Table 4.  

Table 4: Retained PC for gas path performance sensors 

Sensors PC1 PC2

X1 0.4769 -0.13152

X2 0.40805 0

X6 0.47494 0

X7 0.4299 0.18129

X8 0.44293 0

X9 0 0

X10 0 0.96825

X11 0 0  
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The reconstructed 1-d signal for gas path performance sensors 

is shown on Figure 17.  
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Figure 17: Reconstructed signal for performance sensors  

 The fault threshold is calculated and the hypothesis testing 

is applied to the damage indicator for gas path performance 

sensors and one failure precursor event is detected as shown on 

Figure 18.  
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Figure 18: H-Function for performance sensors only 

4.2.3 Combination of Vibration and Performance sensors 
  In this section both the gas path performance measurement 

and vibration sensors are combined and all the steps of the 

anomaly detection process are performed. The eigenvalues 

contribution of the eleven variables are shown on Figure 19. 
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Figure 19: Pareto plot of Eigenvalues contribution for combined 

sensors 

 The result of the PPCA is three retained principal 

components representing 98.28% of information content as 

shown in Table 5. 

Table 5: Retained PC for ALL sensors combined 

Sensors PC1 PC2 PC3

X1 0.1897 0.34279 0.28134

X2 0.1664 0.28797 0.22198

X3 0.60303 -0.30941 0

X4 0.63522 0.36886 0

X5 0.26122 0.5137 0.80535

X6 0.19144 0.33751 0.28019

X7 0.17847 0.29981 0.21548

X8 0.1778 0.31576 0.26381

X9 0 0 0

X10 0 0 0

X11 0 0 0  

The reconstructed 1-d signal is obtained using the three PC and 

shown for all the sensors combined in Figure 20. 
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Figure 20: Reconstructed signal for ALL sensors combined 

 The hypothesis testing is applied to the damage indicators 

for  the combined sensors case and shown on Figure 21. In this 

case, there are four failure precursory events detected, three of 

which have signatures within the vibration sensors (green circle) 

and one within the gas path performance sensor (red circle).  
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Figure 21: H-Function for ALL sensors combined 

 In this case the combination of both types of sensors 

allowed the detection of the failure precursor confirmed by the 

manufacturer’s past-failure analysis as initiated on September 8, 

2009 at 18:30. However, any failure detection procedure which 

relies on anomaly within the vibration domain anomaly would 

have missed the precursor which had a more visible signature 

within the gas path performance domain. 



 11 Copyright © 2011 by ASME 

5 CONCLUSION 

In this paper, a systematic approach that combines both 

types of monitoring sensors in a heavy duty gas turbine is 

offered to detect precursory anomalies that could lead to 

catastrophic gas turbine compressor failure in an effort to 

reduce or even eliminate unplanned power plant outages. The 

proposed approach is promising as it has successfully detected 

previously known failure precursory anomalies as well as 

potential missed warning signs.  

The proposed methodology of combining both the 

vibration and gas path performance sensor data appear to be 

robust as it can detect failure  precursors which have signatures 

contained within the vibration sensors domain or within the gas 

path performance domain. Thus, it can be stated that the 

combination of the two types of sensors through the proposed 

approach can decrease the number of missed precursory 

anomaly.   

 Also, the proposed approach can easily be implemented to 

the failure detection of other sub-systems of the gas turbine or 

systems that are monitored with installed sensors. The use of 

this statistical approach allowed the handling of practical issues 

specific to heavy-duty gas turbines such as machine-to-machine 

variation and the wide variation in operation condition. 

Importantly, the proposed methodology has the ability to not 

only detect an anomaly, but also its severity and its length which 

can help trained technicians make the right decisions.   

 Overall the proposed approach is a novel as it is based on 

the fusion of information from both the gas path performance 

measurement sensors as well as the vibration sensors. Current 

practical industry standard relies on either vibration sensors or 

gas path performance sensors. Consequently whenever a sensor 

monitored system is based on either one of the sensor types, any 

failure signature that lies entirely within the other domain would 

be missed.  

 However, it is important to note that the successful 

implementation of this approach has been shown for the base 

load operation only. The authors are aware of the fact that this 

technique may most likely need some fine-tunings to be 

applicable to other load operating conditions (e.g. part-load or 

peak load). Also, the authors plan to extend the presented 

methodology to the case of transient engine operation as future 

work. 
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