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ABSTRACT 
An enhanced design methodology for minimizing the error 

in on-line Kalman filter-based aircraft engine performance 
estimation applications is presented in this paper. It specifically 
addresses the underdetermined estimation problem, in which 
there are more unknown parameters than available sensor 
measurements. This work builds upon an existing technique for 
systematically selecting a model tuning parameter vector of 
appropriate dimension to enable estimation by a Kalman filter, 
while minimizing the estimation error in the parameters of 
interest. While the existing technique was optimized for open-
loop engine operation at a fixed design point, in this paper an 
alternative formulation is presented that enables the technique 
to be optimized for an engine operating under closed-loop 
control throughout the flight envelope. The theoretical Kalman 
filter mean squared estimation error at a steady-state closed-
loop operating point is derived, and the tuner selection 
approach applied to minimize this error is discussed. A 
technique for constructing a globally optimal tuning parameter 
vector, which enables full-envelope application of the 
technology, is also presented, along with design steps for 
adjusting the dynamic response of the Kalman filter state 
estimates. Results from the application of the technique to 
linear and nonlinear aircraft engine simulations are presented 
and compared to the conventional approach of tuner selection. 
The new methodology is shown to yield a significant 
improvement in on-line Kalman filter estimation accuracy. 

 

INTRODUCTION  
An emerging approach in the field of aircraft engine 

controls and health management is the inclusion of real-time 
on-board adaptive models for the in-flight estimation of engine 
performance parameters [1,2,3]. These models, typically based 
on Kalman filters, enable the estimation of unmeasured engine 
performance parameters that can be used for diagnostics, 
prognostics, and controls applications. A challenge that 
complicates this practice is the fact that an aircraft engine’s 
performance is affected by its level of degradation, generally 
described in terms of unmeasurable health parameters such as 
efficiencies and flow capacities related to each major engine 
module. The level of engine performance degradation can be 
estimated using a Kalman filter, given that there are at least as 
many sensors as parameters to be estimated [4]. However, in 
an aircraft engine the number of sensors available is typically 
less than the number of health parameters, presenting an under-
determined estimation problem. The conventional approach to 
address this shortcoming is to estimate a subset of the health 
parameters, referred to as model tuning parameters. While this 
approach enables on-line Kalman filter-based estimation, it can 
introduce error in the accuracy of overall model-based 
performance estimation applications. In a departure from the 
conventional approach of selecting a subset of health 
parameters to serve as the tuner vector, Litt [5] presented a 
novel approach based on singular value decomposition that 
selects a model tuning parameter vector of low-enough 
dimension to be estimated by a Kalman filter. In this method, a 
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model tuning parameter vector, q, is constructed as a linear 
combination of all health parameters, h, given by 

 
q = V*h (1) 

 
where the transformation matrix, V*, is selected by applying 
singular value decomposition to capture the overall effect of 
the larger set of health parameters on the engine variables as 
closely as possible in the least squares sense. An enhancement 
to the work of Litt, presented by Simon and Garg [6],selects V* 
to minimize the theoretical mean squared estimation error in 
the parameters of interest at a steady-state open-loop linear 
design point. 

In this paper, several design enhancements to the optimal 
tuner selection methodology presented in Ref. [6] are discussed 
and presented. These include extending the optimal tuner 
selection methodology to encompass closed-loop control 
operating conditions, selection of a single tuner vector for 
application throughout the engine operating envelope as 
opposed to at a single design point, and design considerations 
to provide the desired Kalman filter dynamic response. The 
remainder of this paper is organized as follows. First, some 
mathematical preliminaries are given regarding the problem 
formulation including the linear model representing system 
dynamics and the formulation of the Kalman filter. Next, 
several practical design considerations are discussed including 
an approach for selecting a tuner vector optimal for full-
envelope operation, referred to as a globally optimal tuner 
vector, and design steps for adjusting Kalman filter dynamic 
response. This is followed by an example application of the 
methodology to linear and nonlinear turbofan engine 
simulations. Finally, conclusions are presented. 

NOMENCLATURE 
A, Ac, Axh, Axq 
B, Bce, Bco  
Bxh, Bxq, 
C, Cc, Cxh, Cxq, 
D, F, Fxh, Fxq, 
G,  L, M, N 

system matrices 

C-MAPSS Commercial Modular Aero-Propulsion System 
Simulation 

Fn net thrust 
HPC high pressure compressor 
HPT high pressure turbine 
I identity matrix 
K∞ Kalman filter gain 
LPC low pressure compressor 
LPT low pressure turbine 
Ph health parameter covariance matrix 
PLA power lever angle 
PWLKF piece-wise linear Kalman filter 
P∞ Kalman filter state estimation covariance matrix 
Q, Qxh, Qxq process noise covariance matrices 
R measurement noise covariance matrix 
SmLPC low pressure compressor stall margin 
SSEE sum of squared estimation errors 

V* transformation matrix relating hk to qk 
WSSEE weighted sum of squared estimation errors 
e error between control setpoint and feedback signal 
h health parameter vector 
m number of measured outputs 
p number of health parameters 
q Kalman filter tuning parameter vector 
r control setpoint 
u actuator command vector 
v measurement noise vector 
w, wh, wxh, wxq process noise vectors 
x, xxh, xxq state vectors 
y vector of measured outputs 
z vector of unmeasured (auxiliary) outputs 
  

Subscripts  
c control parameter 
k discrete time step index 
o open-loop feedback signal 
r feedback signal 
xh augmented state vector (x and h) 
xq reduced order state vector (x and q) 
ss steady-state value 
  

Superscripts  
† pseudo-inverse 
T transpose 
- a priori estimate 
+ a posteriori estimate 
  
Diacritical marks 
ˆ estimated value 
˘ augmented 
˜ error or residual 
¯ expected or mean value 

PROBLEM FORMULATION 
The discrete linear time-invariant engine state space 

equations about a design point are given as 
 

1k k k k k

k k k k k

k k k k

x Ax Bu Lh w
y Cx Du Mh v
z Fx Gu Nh

+ = + + +

= + + +

= + +

 (2) 

 
where k is the time index, x is the vector of state variables, u is 
the vector of control inputs, y is the vector of measured 
outputs, z is the vector of auxiliary (unmeasured) model 
outputs, and h is the vector of engine health parameters. The 
vectors w and v are zero-mean white noise inputs, with 
covariance of Q and R, respectively. The matrices A, B, C, D, 
F, G, L, M, and N are of appropriate dimension. From Eq. (2) it 
can readily be observed that health parameter deviations 
induce shifts in the engine state variables and outputs. As such, 
health parameter effects must be accounted for to achieve 
accurate engine performance estimation. Towards this 
requirement, Eq. (2) can be re-written such that h is 
concatenated with x to form an augmented state vector, xxh, as 
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shown in Eq. (3). Since engine performance deterioration is 
very slowly evolving relative to other engine dynamics, h is 
here modeled without dynamics. 
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The vector wxh is zero-mean white noise associated with the 
augmented state vector, [xT hT]T, with a covariance of Qxh. wxh 
consists of the original state process noise, w, concatenated 
with the process noise associated with the health parameter 
vector, wh. 

,
,

k
xh k

h k

w
w

w
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (4) 

 
Closed-Loop State-Space Model 

This paper considers an engine operating under closed-
loop control conditions. As a point of introduction, refer to the 
architecture shown in Figure 1 depicting the interaction 
between an aircraft engine, a controller, and a Kalman filter. 
Here, the controller accepts inputs consisting of an error signal, 
ek, (i.e., a residual between a commanded parameter, rk, and a 
sensed feedback parameter, yr,k), along with additional sensed 
measurements, yo,k. The controller processes these inputs to 
produce actuator commands, uk.  

 

Controller
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k k k
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Figure 1. Aircraft engine, controller, and Kalman filter 
 

As shown in Figure 1, engine operation is effected by both 
actuator commands and the engine’s level of deterioration 
denoted by the unknown set of health parameter inputs, hk. The 

Kalman filter processes the measurements, yk, and actuator 
commands, uk, to produce the estimates ˆˆ ˆ ˆˆ, , , , andk k k k kx y z q h . 
The controller state space equations are given as 

 
, 1 , ,

,

,

c k c c k ce k co o k

k c c k

k k r k

x A x B e B y
u C x
e r y

+ = + +

=

= −

 (5) 

 
and the sensed feedback parameters, yr,k and yo,k, can be written 
as  
 

,

,

r k r k r k r k

o k o k o k o k

y C x D u M h
y C x D u M h

= + +

= + +
 (6) 

 
From Eqs. (5) and (6) the controller state variables become 
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(7) 

 
Substituting uk = Ccxc,k (from Eq. (5)) into Eq. (7) yields 
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(8) 

 
From Eqs. (2) and (5) the closed-loop engine state variables 
can be written as 
 

( )1 ,

k

k k c c k k

u

x Ax B C x Lh+ = + +
��	�


 
(9) 

 
The quantities in Eqs. (7) and (9) can be augmented with the 
health parameters to obtain 
 

1
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For simplicity the following augmented matrices and vectors 
are defined 
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allowing the closed-loop state space equations to be re-written 
in the following form using Eqs. (2), (5), (10), and (11) 
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Reduced-Order State Space Model  

To enable Kalman filter formulation when presented the 
underdetermined estimation problem a reduced-order state 
space model must be constructed. This is accomplished by 
defining a model tuning parameter vector, q, which is a linear 
combination of all health parameters, h, given by 

 
*q V h=   (13) 

 
where q ∈ Rm, h ∈ Rp, m < p, and V* is an m × p 

transformation matrix of rank m, applied to construct the 
tuning parameter vector. While q is constructed as a linear 
combination of health parameters, the elements of q do not 
have any physical meaning. Their purpose is to allow an 
accurate estimation of unmeasured engine parameters. 
However, given q, an approximation of the health parameter 
vector, ĥ , can be obtained as 
 

*†ĥ V q=  (14) 
 
where V*† is the pseudo-inverse of V*.  Substituting Eq. (14) 
into Eq. (3) yields the following reduced order state space 
equations which will be used to formulate the Kalman filter 
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For the reduced order system, the state process noise, wxq, and 
its associated covariance, Qxq, are calculated as 
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Kalman Filter Formulation  

In this study, steady-state Kalman filtering is applied. This 
means that while the Kalman filter is a dynamic system, the 
state estimation error covariance matrix and the Kalman gain 
matrix are time invariant—instead of updating these matrices 
each time step they are pre-converged and held constant at 
their final values. Given the reduced order linear state space 
equations shown in Eq. (15), the state estimation error 
covariance matrix, P∞, is calculated by solving the following 
Riccati equation [7] 

 
1( )T T T

xq xq xq xq xq xq

T
xq xq xq

P A P A A P C C P C R

C P A Q

−
∞ ∞ ∞ ∞

∞

= − +

× +

…
 (17) 

 
The steady-state Kalman filter gain, K∞, can then be calculated 
as follows [7] 
 

1( )T T
xq xq xqK P C C P C R −

∞ ∞ ∞= +  (18) 
 
The Kalman filter a priori and a posteriori estimates are given 
in Eq. (19) and Eq. (20) respectively [7] 
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, , 1 1ˆ ˆxq k xq xq k xq kx A x B u− +
− −= +  (19) 

( ), , ,ˆ ˆ ˆxq k xq k k xq xq k kx x K y C x Du+ − −
∞= + − −  (20) 

 
The reduced order state vector a posteriori estimate, ,ˆxq kx+ , 
produced by Eq. (20) can be used to produce an estimate of the 
augmented state vector and the auxiliary parameters as follows 

 

, ,*†

*†
,

0
ˆ ˆ

0

ˆˆ

xh k xq k

k xq k k

I
x x

V

z F NV x Gu

+

+

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

⎡ ⎤= +⎣ ⎦

 (21) 

 
Optimal Transformation Matrix Selection 

As presented in Ref. [6], the estimation accuracy of the 
Kalman filter is directly dependent on the selection of the 
transformation matrix, V*. This gives rise to the optimization 
problem of selecting V* to minimize the estimation error in the 
parameters of interest. This can be accomplished by 
conducting an optimal iterative search to select a V* matrix that 
minimizes the mean sum of squared estimation errors (SSEE) 
in the parameters of interest 

 

( )
*

*arg min
m pV

SSEE V
×∈\

 (22) 

 
Alternatively, a weighted mean sum of squared estimation 
errors, WSSEE, can be applied to place more/less emphasis on 
certain parameters, or to account for variation in the 
engineering units of different parameters. Ref. [6] presented 
derivations of health parameter and auxiliary parameter mean 
SSEE as a function of V* at an open-loop steady-state operating 
point. While the functional design of a Kalman filter applied to 
an open-loop versus a closed-loop system is the same due to 
the separation principle (see Ref. [8]), the transformation 
matrix, V*, which is optimal under the two scenarios is 
different. Readers are referred to the Appendix for a complete 
derivation of the closed-loop SSEE as a function of V*. As in 
the open-loop case presented in Ref. [6], once the theoretical 
derivation of the SSEE is obtained, an optimal iterative search 
can be applied to determine the V* matrix that produces the 
minimum estimation error.  
 
Practical Design Considerations  

The approach for selecting V* introduced in Ref. [6] is 
designed to provide optimal estimation results at a single 
steady-state operating point. However, in real-world 
applications an aircraft engine will operate at and transition 
between a broad range of operating points. Some practical 
design considerations for selecting V* and designing a Kalman 
filter to provide full-envelope estimation accuracy and 

satisfactory transient estimation response are given in the 
following subsections. 

 
Selecting V* for Full-Envelope Operation. A typical 

design approach for on-board adaptive aircraft engine models 
is to implement a piece-wise linear Kalman filter [1,2,4]. This 
consists of designing individual Kalman filters at multiple 
operating points spanning the engine’s operating envelope, and 
then interpolating between points as the engine transitions 
between operating conditions. This is a suitable design 
approach if one follows the conventional technique of selecting 
a fixed subset of health parameters to serve as the Kalman 
filter tuner vector, q, throughout the entire engine operating 
envelope. However, if the method of Ref. [6] is used to select a 
different V* (and thus a different q) for each design point 
comprising the piece-wise linear model, interpolation between 
the design points will yield meaningless results. Thus, an 
alternative strategy is necessary. This can be addressed by 
modifying the optimal iterative search routine to produce a 
single “globally optimal” V* transformation matrix that 
minimizes the sum of theoretical SSEE’s (or WSSEE’s) 
calculated at a number of user-specified engine operating 
points. This procedure does add computational complexity to 
the design process, but, as the selection of V* is only performed 
off-line during the design phase, it does not add any 
computational burden to the Kalman filter implemented on-
line. While the selection of a globally optimal V* matrix may 
result in sub-optimal estimation results at individual operating 
points, it will permit interpolation between operating points of 
a piece-wise linear Kalman filter suitable for full-envelope 
operation. The next section will present estimation accuracy 
results from the application of this technique to an aircraft 
engine simulation. 

 
Adjusting Kalman Filter Process Noise to Provide 

Acceptable Dynamic Response. The optimal iterative 
search for V* introduced in Ref. [6] is designed to minimize the 
Kalman filter mean squared estimation error at a steady-state 
operating point. The dynamic response of the Kalman filter 
state estimates is not considered in this process. This can lead 
to the selection of a V* matrix that produces overly sensitive or 
overly sluggish variations in the estimated state and tuning 
parameters when the engine experiences a transient. Typically, 
a Kalman filter designer directly specifies the state process 
noise covariance, Q, to provide the desired estimation 
response. However, the optimal tuner selection approach 
performs a transformation that converts the designer-specified 
full-order process noise covariance matrix, Qxh, to a reduced-
order process noise covariance matrix, Qxq (see Eq. (16)). The 
next section will discuss and present design steps that can be 
taken to improve the dynamic response of the Kalman filter. 
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TURBOFAN ENGINE EXAMPLE 
In this section the utility of the optimal tuner selection 

methodology is demonstrated by showing results from its 
application to the Commercial Modular Aero-Propulsion 
System Simulation (C-MAPSS), a NASA-developed high-
bypass turbofan engine simulation [9]. C-MAPSS is a transient 
nonlinear aerothermodynamic engine model developed for 
controls and diagnostics research and development purposes. It 
has two state variables (fan and core speed), and three 
actuators (fuel flow, variable stator vanes (VSV), and a 
variable bleed valve (VBV)). C-MAPSS also has ten 
adjustable efficiency and flow capacity health parameters that 
enable the simulation of engine performance deterioration and 
module performance faults. The state variables, actuators, and 
health parameters are listed in Table 1. In this study, a 
simplified version of the C-MAPSS engine controller 
comprised of a fuel flow controller and variable geometry 
open-loop schedules is considered. While C-MAPSS does have 
control limit logic to prevent engine over speed and operating 
instabilities, that logic is not included here. The controller 
schedules fuel flow based on the error, ek, between commanded 
and sensed fan speed. VBV and VSV actuators are open-loop 
scheduled based on sensed fan speed and sensed core speed, 
respectively. Collectively, fuel flow, VBV, and VSV commands 
form the vector of control inputs, uk, provided as inputs to C-
MAPSS. The C-MAPSS controller state variables and sensed 
feedback parameters are shown in Table 2.  

 
Table 1. State variables, actuators, and health parameters 

State variables Actuators Health parameters 

Nf – fan speed Wf – fuel flow Fan efficiency* 
Nc – core speed VSV – variable stator vane Fan flow capacity* 
 VBV –variable bleed valve LPC efficiency 
  LPC flow capacity* 
  HPC efficiency* 
  HPC flow capacity* 
  HPT efficiency 
  HPT flow capacity* 
  LPT efficiency 
  LPT flow capacity 

* Health parameters applied as tuners in conventional estimation approach 
 
Table 2. Controller state variables and sensed feedbacks 
Controller state varibles (xc) Controller sensed feedbacks 

xc(1) – fuel flow control state variable 1 yr    – corrected fan speed 
xc(2)  – fuel flow control state variable 2 yo(1) – corrected fan speed 
xc(3)  – fuel flow control state variable 3 yo(2) – corrected core speed 
xc(4)  – VBV control state variable  
xc(5)  – VSV control state variable  
 

For the purposes of this study, six sensed outputs and four 
unmeasured auxiliary outputs are defined. These parameters 
and their engineering units are listed in Table 3.  
 
 
 

Table 3. Sensed outputs and unmeasured auxiliary outputs 
Sensed outputs (y) Auxiliary parameters (z) 

Nf – fan speed (rpm) T40 – Combustor exit temp. (○R) 
Nc – core speed (rpm) T50 – LPT exit temperature (○R) 
P24 – HPC inlet total pressure (psia) Fn – Net thrust (%) 
T24 – HPC inlet total temp. (○R) SmLPC – LPC stall margin (%) 
Ps30 – HPC exit static pressure (psia)  
T48 – Exhaust gas temperature (○R)  
 
Case 1: Kalman filter point design 

As an initial evaluation, the optimal tuner selection 
methodology was applied to design a Kalman filter for 
application at a single closed-loop operating point. Here, 
model tuning parameters were selected to minimize a weighted 
sum of squared estimation errors (WSSEE) in the four auxiliary 
parameters listed in Table 3. To serve as a comparison, two 
additional Kalman filters were designed. These included a 
Kalman filter designed applying the conventional approach of 
selecting a subset of health parameters to form the model 
tuning vector, and a Kalman filter designed applying the open-
loop optimal tuner selection approach presented in Ref. [6]. 
The health parameters selected to serve as the elements of the 
tuner vector in the conventional design approach are denoted 
with an “*” in Table 1. They were selected through an 
exhaustive search that considered all possible combinations 
and determined the subset of six health parameters that 
provided the minimum WSSEE. All three designs were applied 
to C-MAPSS (a linear state space point model and the full 
nonlinear version) at steady-state closed-loop conditions at a 
cruise operating point of 35K ft, 0.65 Mach, and a power lever 
angle (PLA) setting of 60 degrees. In each case the engine was 
subjected to sensor measurement noise with covariance  R 
(with elements of the y vector in corrected engineering units, 
ordered as shown in Table 3), and health parameter 
deterioration with covariance Ph (with elements of the h vector 
in %, ordered as shown in Table 1), defined as follows 
 

5.469 1.830 0.047 0.381 1.585 2.273
1.830 131.195 0.022 16.817 18.415 4.241
0.047 0.022 0.002 0.007 0.006 0.007
0.381 16.817 0.007 3.744 1.843 0.232

1.585 18.415 0.006 1.843 7.894 1.156
2.273 4.241 0.007 0.232 1.156 6.342

R

−⎡
⎢ −⎢

− −
=

− −

− −⎣

210−

⎤
⎥
⎥

⎢ ⎥
×⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

   

 

0.508 0.596 0.259 0.515 1.098 1.913 0.278 0.259 0.057 0.029
0.596 0.894 0.350 0.700 1.480 2.593 0.370 0.348 0.077 0.039
0.259 0.350 0.230 0.334 0.693 1.230 0.165 0.158 0.035 0.018
0.515 0.700 0.334 0.749 1.384 2.473 0.326 0.315

hP

− −
− −
− −
−

=

0.070 0.035
1.098 1.480 0.693 1.384 3.213 5.670 0.691 0.669 0.147 0.075
1.913 2.593 1.230 2.473 5.670 10.468 1.182 1.165 0.258 0.132
0.278 0.370 0.165 0.326 0.691 1.182 0.206 0.179 0.037 0.019
0.259 0.348 0.158 0.315 0.669 1

−
− −
− −
− −

− − − − − − .165 0.179 0.183 0.035 0.018
0.057 0.077 0.035 0.070 0.147 0.258 0.037 0.035 0.018 0.004
0.029 0.039 0.018 0.035 0.075 0.132 0.019 0.018 0.004 0.012

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥− − − − − − − −⎣ ⎦
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Note that the R and Ph matrices shown above contain non-
zero off diagonal elements. For R, this is due to the fact that the 
engine is operated closed-loop and parameter correction [10] is 
applied. This results in non-zero covariance between each 
sensor measurement pair. To calculate R, a large simulated data 
set was generated by applying random noise to each sensor 
(i.e., the six sensors shown in Table 3 plus the inlet temperature 
and pressure sensors used for correction). The resulting 
covariance in the corrected sensor measurements yields R. The 
engine performance deterioration levels applied in this study 
are loosely based on historical aircraft engine data presented in 
Ref. [11]. This report shows that engine module deterioration 
occurs in a coupled fashion, resulting in some non-zero 
covariance between each health parameter pair. For this study, 
a routine was created to simulate random engine health 
parameter deterioration levels representative of the information 
shown in Ref. [11]. Based on a large simulated dataset 
generated by this routine, the health parameter covariance was 
calculated as Ph. 

Table 4 shows a comparison of the theoretically predicted 
and experimentally obtained mean squared estimation errors 
for the three Kalman filter designs when applied to linear and 
nonlinear C-MAPSS operating in closed-loop. The 
experimental results were obtained through a Monte Carlo 
simulation analysis in which the health parameters varied over 
a random distribution in accordance with the covariance 
matrix, Ph shown above. The test cases were concatenated to 
produce a single time history input that was provided to the C-
MAPSS models. Each individual health parameter test case 
lasted 45 s. The experimental errors shown in Table 4 are based 
on the last 10.5 s of each 45 s test case. This allowed the engine 
model and the Kalman estimator to reach a quasi-steady-state 
operating condition prior to calculating the error. The corrected 
trim point values of T40, T50, Fn, and SmLPC are 2808°R, 
1222°R, 26.5%, and 11.3% respectively. For the construction 
of WSSEE, a weighting of 1.0 was applied to the T40 and T50 
errors, and a weighting of 100.0 was applied to the Fn and 
SmLPC errors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.  Auxiliary parameter mean squared estimation 
errors 

Tuner 
vector Error  T40 

(°R) 
T50 
(°R) 

Fn 
(%) 

Sm-
LPC 
(%) 

WSSEE 

Subset of 
health 

parameters 

Theor. sqr. bias 20.48 0.69 0.003 0.031 24.51 

Theor. variance 0.50 0.07 0.007 0.047 5.99 

Theoretical 20.98 0.75 0.010 0.078 30.49 

Exp. (linear) 20.16 0.78 0.010 0.075 29.43 

Exp. (nonlinear) 24.52 1.39 0.012 0.197 46.73 

Cruise 
optimal 
(open-
loop) 

Theor. sqr. bias 1.58 0.52 0.001 0.014 3.60 

Theor. variance 0.75 0.11 0.005 0.029 4.28 

Theoretical 2.32 0.62 0.007 0.043 7.89 

Exp. (linear) 2.26 0.64 0.007 0.044 7.92 

Exp. (nonlinear) 4.49 1.19 0.007 0.163 22.73 

Cruise 
optimal 
(closed-

loop) 

Theor. sqr. bias 1.61 0.39 0.001 0.013 3.43 

Theor. variance 0.36 0.07 0.000 0.002 0.64 

Theoretical 1.97 0.45 0.002 0.015 4.06 

Exp. (linear) 2.05 0.46 0.001 0.014 4.10 

Exp. (nonlinear) 4.49 0.96 0.006 0.166 22.59 

 
From Table 4 it can be seen that the mean squared 

estimation errors experimentally obtained from the linear 
model exhibit good agreement with the theoretically predicted 
errors. This result is encouraging as it validates the closed-loop 
optimal tuner selection methodology presented in this paper. It 
is also encouraging to find that the closed-loop optimal tuner 
selection approach provides superior estimation accuracy 
compared to the other two tuner selection approaches. A closer 
comparison of the closed-loop versus open-loop theoretical 
results reveals that the improvement offered by the closed-loop 
tuners is primarily due to a reduction in estimation variance. 
The mean squared estimation bias is nearly the same in both 
cases. This suggests that the open-loop tuner selection 
approach, which is mathematically simpler and does not 
require access to detailed control design information, may be 
applied to provide comparable estimation accuracy, especially 
in applications that exhibit limited estimation variance. It is 
noted that the experimental estimation errors obtained based on 
nonlinear C-MAPSS are larger than those based on linear 
C-MAPSS. This is attributed to differences between the 
nonlinear plant model and the linear model that the Kalman 
filter is based upon. In particular, the SmLPC mean squared 
estimation error is significantly larger in the nonlinear case. 
This error, which has a WSSEE weighting of 100, causes most 
of the increase observed in WSSEE over the linear and 
theoretical results.  
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Case 2: Kalman filter full-envelope design 
The previous case presented estimation results at a single 

operating point. However, to be practical the methodology 
must be applicable for constructing an estimator that can 
provide accurate estimation performance as the engine 
transitions throughout the flight envelope. As previously 
discussed, this can be performed by selecting a single globally 
optimal V* matrix for application within a piece-wise linear 
Kalman filter (PWLKF) design, enabling estimation 
throughout the entire operating envelope. The optimal iterative 
search routine was modified to sum the theoretical WSSEE 
results over multiple user-specified operating points. Through 
trial and error it was found that optimizing over a small 
number of operating points spanning the commonly 
encountered regions of the flight envelope provided reasonable 
estimation accuracy. To illustrate this technique, a single 
globally optimal V* matrix was produced based on the nine 
engine operating points shown in Figure 2.  
 

 
Figure 2. Optimization points applied for globally optimal 

tuner selection 
 

Table 5 shows the auxiliary parameter theoretical mean 
squared estimation errors obtained when applying the globally 
optimal V* matrix and tuner vector at the same closed-loop 
steady-state cruise operating condition used in Case 1. As a 
comparison, the theoretical mean squared estimation errors 
based on the three model tuner vectors evaluated in Case 1 are 
also shown. The encouraging result is that application of the 
globally optimal tuner vector does not result in a significant 
loss in estimation accuracy. In fact, the WSSEE of the globally 
optimal tuner vector is only 1.2% larger than that of the tuner 
vector optimally selected for the given cruise operating point. 
Even more impressive is the fact that the evaluated cruise point 
is not one of the nine points used to determine the globally 
optimal V*.  

 
 

Table 5.  Auxiliary parameter theoretical mean squared 
estimation errors at steady-state cruise operating point 

Tuner vector T40 
(°R) 

T50 
(°R) 

Fn 
(%) 

SmLPC 
(%) WSSEE 

Subset of health 
parameters 20.98 0.753 0.010 0.078 30.50 

Cruise optimal 
(open-loop) 2.32 0.62 0.007 0.043 7.89 

Cruise optimal 
(closed-loop) 1.97 0.454 0.002 0.015 4.06 

Globally optimal 
(closed-loop) 1.97 0.466 0.002 0.015 4.11 

 
As an additional comparison, the average theoretical 

estimation accuracy provided by the  subset of health 
parameters, cruise optimal closed-loop, and globally optimal 
closed-loop tuner vectors was evaluated at 2000 operating 
points spanning the engine operating envelope. For this 
evaluation, separate Kalman filter point designs were 
constructed at each of the 2000 operating points. These results 
are shown in Table 6, along with the standard deviation in the 
results (shown in parentheses). Here it can be observed that the 
Kalman filter design that applies the globally optimal tuner 
vector provides a 4.2% reduction in WSSEE compared to the 
cruise optimal tuner vector. Furthermore, the standard 
deviation in all squared estimation errors is relatively small, 
demonstrating little variance in the estimation error as the 
operating point is changed. These results are highly 
encouraging as they suggest that a fixed tuner vector, which is 
near optimal over a large region of the flight envelope, can be 
found. However, additional evaluation is warranted to 
demonstrate that a globally optimal tuner vector can be 
generated and applied to other engine models in addition to 
C-MAPSS. 
 

Table 6.  Auxiliary parameter theoretical mean squared 
estimation errors (and standard deviation) averaged over 

2000 steady-state operating points 

Tuner vector T40 
(°R) 

T50 
(°R) 

Fn 
(%) 

SmLPC 
(%) WSSEE 

Subset of health 
parameters 

20.03 0.762 0.012 0.054 27.36 
(1.94) (0.155) (0.005) (0.016)  

Cruise optimal 
(closed-loop) 

1.90 0.711 0.003 0.014 4.27 
(0.16) (0.531) (0.002) (0.003)  

Globally 
optimal 

(closed-loop) 
1.90 0.634 0.003 0.013 4.09 

(0.15) (0.298) (0.001) (0.002)  
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Case 3: Kalman filter design considerations for 
transient operating conditions 

The optimal tuner selection strategy presented in this 
paper is designed to minimize the mean squared estimation 
error under steady-state operating conditions. However, it does 
not necessarily provide the desired accuracy when the engine 
is undergoing a transient. To illustrate this refer to Figure 3. 
The top half of this figure shows a comparison of nonlinear C-
MAPSS net thrust versus a PWLKF estimate of net thrust as 
the engine undergoes a power transient at a cruise condition 
(35K ft, 0.65 Mach). The lower half of the figure shows the 
corresponding variation in the estimates of the tuning 
parameters, q, produced by the Kalman filter. In this example, 
nonlinear C-MAPSS is a nominal (non-deteriorated) engine, 
whereas the PWLKF is based on a fleet average (50% 
deteriorated) engine. Before and after the transient operating 
period, the actual and estimated net thrust exhibit good 
agreement. However, during the transient the estimate 
produced by the Kalman filter responds more rapidly than the 
actual thrust; consequently the estimate is not as accurate. It 
can also be observed that the tuner estimates undergo 
significant variations during the transient. 
 

 
Figure 3. Kalman filter response with original Qxh 

 
A design step that can be taken to adjust the dynamic 

response of the Kalman filter estimates is to modify the 
specified process noise covariance matrix, Qxh. Specifying 
smaller magnitude values will slow the dynamic response of 
the Kalman filter estimates. To illustrate this, the Qxh matrix 
was divided by 1 106, and the optimal tuner selection process 
was repeated. The identified vector of tuning parameters was 
then applied to design a new Kalman filter. The response of the 
new Kalman filter to the same power transient is shown in 
Figure 4. Here it can be observed that the estimation accuracy 
during the transient is improved, and the amount of variation in 
the tuning parameters during the transient is also reduced. 
 

 
Figure 4. Kalman filter response with adjusted Qxh 

 
CONCLUSIONS 

A systematic approach to model tuning parameter 
selection for on-line Kalman filter based parameter estimation 
under closed-loop operating conditions has been presented, 
along with design considerations for applying the approach. 
This technique is specifically for the underdetermined 
parameter estimation problem where there are fewer sensor 
measurements than unknown health parameters that impact 
system outputs. The approach creates and applies a linear 
transformation matrix, V*, to select a vector of tuning 
parameters that are a linear combination of all health 
parameters. The tuning parameter vector is selected to be of 
low enough dimension to be estimated, while minimizing the 
mean-squared error of Kalman filter estimates. Evaluations 
based on an aircraft engine linear point model demonstrate that 
the theoretically predicted and experimentally obtained 
estimation errors exhibit good agreement, thus confirming the 
theory that the tuner selection methodology is based upon. The 
technique was also found to provide acceptable estimation 
results when applied to a nonlinear aircraft turbofan engine 
simulation, although, as expected, some loss in estimation 
accuracy is incurred compared to the linear evaluation. 
Additionally, a technique for selecting a single globally 
optimal V* matrix applicable throughout an engine’s operating 
envelope has been demonstrated. This is necessary to enable 
interpolation between operating points within a piece-wise 
linear design implementation. Theoretical evaluation results 
using an aircraft engine model showed that the application of a 
single globally optimal V* matrix results in only a 1.2% 
increase in mean squared estimation error compared to the 
implementation of an optimal V* matrix at a cruise operating 
point. While encouraging, additional evaluation is warranted to 
determine if this holds when the technique is applied to 
different engine operating points and different engine models. 
Finally, it was also shown that, as in a conventional Kalman 
filter implementation, the system designer can adjust the 
dynamic response of the Kalman filter estimates by adjusting 
the specified state vector process noise covariance matrix used 
in the filter design.  
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APPENDIX: DERIVATION OF KALMAN FILTER MEAN 
SQUARED ESTIMATION ERROR UNDER CLOSED-
LOOP OPERATING CONDITIONS 

This appendix provides a derivation of the Kalman filter 
mean squared estimation error at a closed-loop steady-state 
operating point. This information is used in the iterative search 
for an optimal V* matrix described in the paper. This appendix 
will first derive the control inputs, system outputs, and Kalman 
filter estimates under steady-state conditions. Next, the Kalman 
filter mean squared estimation error, which is comprised of a 
mean squared bias and a mean variance, will be derived.  

 
System Under Steady-State Conditions 

For the linear system operating at the trim point under 
steady-state conditions rk = 0 and 1+ = =� � �

k k ssx x x . We can 
leverage this information to write the x, y, and z equations as a 
function of h 
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 (A.1) 

The steady-state actuator commands, uss, and the steady-state 
state vector, xss, can also be written as functions of h, so from 
Eqs. (5) and (A.1) 
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 (A.2) 

Steady-state Kalman filter estimates can also be written as a 
function of h. To make this derivation we will begin by re-
writing the a priori and a posteriori Kalman filter equations 
previously given in Eqs. (19) and (20) as follows 
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a priori equations 
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a posteriori equations 

( )
( ) ( )

( ) [ ]

, , ,

, ,

, ,

ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ

xq k xq k k xq xq k k

xq k xq xq k k k

k
xq k xq xq k

k

x x K y C x Du

x I K C x K y Du

y
x I K C x K K D

u

+ − −
∞

+ −
∞ ∞

+ −
∞ ∞ ∞

= + − −

= − + −

⎡ ⎤
= − + − ⎢ ⎥

⎣ ⎦

 
(A.4) 

Next, the following expected value properties at steady-state 
operating conditions are defined  
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Substituting (A.5) into (A.3) allows the a priori Kalman filter 
equation under steady-state conditions to be written as 
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Then, substituting Eqs. (A.1) and (A.2)  into (A.6), the steady-
state Kalman filter a priori equation can be written as a 
function of h. 

 
 

 

 

 

( )
( )

( )

( )( )
( )

( )

1

, ,
1

1

1

,
1

ˆ ˆ
0

ˆ
0

xq ss xq xq xq ss xq xq xq

c

xq ss xq xq xq xq xq

c

C I A L M
x A I K C x A K B A K D h

C I A L

C I A L M
x I A I K C A K B A K D h

C I A L

−

− −
∞ ∞ ∞

−

−

−
−

∞ ∞ ∞
−

⎡ ⎤⎛ ⎞− +⎜ ⎟⎢ ⎥⎝ ⎠⎡ ⎤= − + − ⎢ ⎥⎣ ⎦
⎢ ⎥−⎡ ⎤⎣ ⎦⎣ ⎦
⎡ ⎤⎛ ⎞− +⎜ ⎟⎢ ⎥⎝ ⎠⎡ ⎤= − − − ⎢ ⎥⎣ ⎦
⎢ ⎥−⎡ ⎤⎣ ⎦⎣ ⎦

� � �

� �

� � �

� �

 (A.7) 

 
Next, proceed to the a posteriori Kalman filter equations, which can also be written as a function of h  
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Steady-State Mean Squared Estimation Error  
Using Eqs. (21), (A.8), and (A.2), the steady-state mean estimation error bias is given as 
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(A.9) 

The steady-state auxiliary parameter estimation error bias can 
also be derived using Eqs. (15), (A.1), and (A.8) 
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(A.10) 

 
Mean squared estimation error bias 
The average sum of squared estimation error biases across a 
fleet of engines can be calculated from Eqs. (A.9) and (A.10) 
as follows 
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 (A.11) 
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 (A.12) 

   

 
where tr{●} represents the trace (sum of the diagonal elements) 
of the matrix. 
 
Estimation error variance 

Next, derivations are presented for the covariance matrix 
of the augmented state estimate and of the auxiliary parameter 
estimate, 

ˆˆ ,xh k
P  and 

,̂z kP respectively. These matrices will each be 

calculated as a function of the reduced-order state vector 
estimation covariance matrix,

ˆ ˆ,xq kP , which is defined as  

( )( )
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Txq k xq k
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⎢ ⎥⎣ ⎦
���	��
���	��


ε ε

 (A.13) 

 
where the vector εxq,k is defined as the residual between ,ˆxq kx+  at 
time k and its expected value. Since , ,ˆ ˆxq k xq ssE x x+ +⎡ ⎤ =⎣ ⎦ , εxq,k can be 
obtained by subtracting Eq. (A.8) from Eq. (20) 
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(A.14) 

While the actuators will exhibit some variance due to 
measurement noise in the control feedback sensors, their 
contribution to the overall estimation variance is not as large as 
that of the sensor measurements. Therefore, to help simplify 
this derivation we will assume that the actuator commands are 
held constant at uss (they have no variance). With this 
simplifying assumption uk = uk+1 = uss, allowing Eq. (A.14) to 
reduce to 
 

( ) ( ) ( ), , 1 ,ˆ ˆxq k xq xq xq k xq ss k ssI K C A x x K y y+ +
∞ − ∞= − − + −ε (A.15) 

 
Next, we can substitute Eq. (A.15) into Eq. (A.13) and 
manipulate to produce the following Riccati equation: 
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(A.16) 

 
The above Riccati equation can be solved to calculate the 
covariance in the state and health parameters estimates, or in 
the auxiliary parameter estimates: 
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 (A.17) 

 

*† *†
ˆ ˆ,̂ ,

T

z k xq kP F NV P F NV⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ (A.18) 

 
Sum of Squared Estimation Errors 

Once equations (A.11), (A.12), (A.17), and (A.18) are 
obtained, they may be used to analytically calculate the mean 
sum of squared estimation errors over all engines by 
combining the respective mean squared estimation error bias 
and estimation variance information. The mean sum of squared 
estimation errors of the augmented state vector, ˆˆ,x h

SSEE , and 

the mean sum of squared estimation errors of the auxiliary 
parameter vector, ẑSSEE , become 
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 (A.19) 

 
A weighting, Wz, can be applied to calculate a “weighted” sum 
of auxiliary parameter squared estimation errors given as 
 

{ }ˆ ,̂
T

z z z h z z kWSSEE tr W G P G P⎡ ⎤= +⎣ ⎦ (A.20) 

 
The SSEE or WSSEE equation, given in Eqs. (A.19) and (A.20) 
respectively, can be directly applied within the iterative search 
for an optimal V* matrix as denoted in Eq. (22). 
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