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ABSTRACT 
The paper deals with the relevant problem of establishing 

the statuses of degraded performance of Gas Turbine based 
Power Plant Components and with the remapping of the 
simulator models. 

The methodology is based on physical models including 
Reality and Actuality Functions that modify the model source 
terms of the Governing Conservation Equations. 

Inverse calculations based on Neural Networks are 
illustrated and the application to two GE LM6000 PA 
aeroderivative Gas Turbines is widely discussed.    

 
Keywords:  Gas Turbine based plants, Inverse Problems, 
Status Recognition, Diagnosis, Neural Networks. 
 
NOMENCLATURE 

 
ACRONYMS 
AF  Actuality Function 
ANN  Artificial Neural Network 
CHP  Combined Heat and Power 
CPU  Central Processing Unit 
DB  Database 
DCS  Distributed Control System 
EP   Extraction Pump   
F, D  Functions  
FP   Feed Water Pump 
GA  Genetic Algorithm 
GPA  Gas Path Analysis 
GT  Gas Turbine 
HPC  High Pressure Compressor 
HPT  High Pressure Turbine 
HRSG  Heat Recovery Steam Generator 

LPC  Low Pressure Compressor 
LPT  Low Pressure Turbine 
M           Number of constraints, Number of measured points 
MSE  Mean Square Error 
N  Number of measured quantities 
N&C  New&Clean 
RF  Reality Function 
 
VARIABLES  
af   Vector of plant AFs 
d   Vector of boundary conditions 
g   Vector of geometric and global quantities 
n   Order of the polynomial 
ρji  Reality Function Coefficient 
rf  Vector of plant RFs 
y  Plant dependent variable array 
Y  Variable reference  
z   Vector of process and state quantities 
αji   Actuality Function Coefficient 
ξ   Vector of quantities specifying the Plant Operating 

Point 
 
Subscripts 
i, j, k     Index 
 
Superscripts 
i, *, +, -     Index 
 
Operators 
U Union of sets 
~  Complement of a subset 
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INTRODUCTION 
Gas Turbine (GT) based power plants are playing an even 

more significant role in the field of electric power production. 
Such plants usually operate in combined gas-steam 
arrangements. Reasons for such an increasing popularity are the 
high operational flexibility and maintainability, the relatively 
low investment costs and the high electrical efficiencies which 
altogether lead to competitive electricity production costs.  

To increase profitability plants owned by independent 
producers are often designed to supply both electricity and heat 
to factories to feed industrial processes and to sell electric 
power on the free energy market.  

Optimum plant management is a rather complex task 
especially when the plant is made of several groups operating in 
parallel arrangements and various objectives (i.e. economy, 
energy saving, pollution and so on) have to be achieved. One of 
the major issues is that the overall objective function is also 
constrained by the instantaneous behavior of the various plant 
groups. In order to set up really effective optimization tools the 
above constraints substantially representing the plant simulators 
have to take into consideration the actual statuses of machines 
and apparatuses. In order to reduce operating and maintenance 
costs, Plant Users should be able to identify how the plant 
behaves in terms of component performance and how the 
deterioration of each component affects the overall plant 
efficiency. Cerri developed a methodology for CHP plant 
optimum management which includes the above aspects. A 
detailed description is given in [1, 2] 

Over the last decades, significant efforts have been devoted 
to the development of status recognition and performance 
diagnostic methodologies for GT based power plants. Although 
these techniques first made their appearance in the seventies [3] 
they are still a lively research area. Comprehensive reviews on 
Gas Turbine diagnostic techniques are provided by Li [4] and 
Marinai et Al. [5] 

Gas Path Analysis (GPA) based methods aim to evaluate 
some parameters (efficiency, flow capacity, effectiveness, etc.) 
chosen to account for performance deterioration occurring 
inside plant components. A plant simulator establishing a 
relationship between input and output quantities through the 
above performance parameters is required. Actual values of 
performance parameters are evaluated by an inverse solution of 
the plant simulator given a set of measured quantities 
(temperatures, pressures, speeds, powers and so on). 
Performance deterioration of plant components is given in terms 
of deviations of the above parameters from their reference 
values which are those for N&C (healthy) conditions.  

Main difficulties in assessing the actual statuses of plant 
components are represented by the small number of measured 
data and by errors in measurement (noise, sensors bias).  

Researchers have investigated methods based on both 
linear and non-linear approaches. A comprehensive comparison 
between linear and non linear approaches is given in [6]. The 
former assume a linear relationship between performance 
parameter deviations and shifts of measured data [7, 8]. Non-

linear methods take into account that implicit relationships 
between measured quantities and performance parameters are 
highly non-linear in most of the cases. The higher accuracy 
makes up for the higher computational complexity. The 
assumption of linearity leads to inaccuracy when high 
performance degradation levels cause relevant shifts from the 
reference N&C conditions. In order to overcome such a 
limitation recently Xia et al. [9] proposed a methodology to 
improve linear Gas Path Analysis. They start from the 
consideration that the actual engine operating point is defined 
by the matching of components whose maps change due to 
deterioration phenomena. Matching coefficients are introduced 
to isolate and eliminate the matching deviations which are a 
consequence of deterioration but should not contribute to the 
estimation of the engine health indexes.  

Kalman Filter based methods are widely used in GT 
diagnostics. A comparison between various Kalman Filter 
approaches for the evaluation of aircraft engines health is given 
in [10]. The Author concludes that the Extended Kalman Filter 
appears the best choice for engine health parameters estimation 
taking both accuracy and computational effort into 
consideration. The introduction of constraints on health 
parameters together with the adoption of quadratic 
programming techniques able to manage the above constraints 
seems to bring benefits in terms of stability and accuracy [11]  

Generally speaking the issue of status recognition is treated 
as an optimization problem. Parameters introduced to take into 
account degradation phenomena are evaluated by minimizing 
the difference between predicted and measured data. Usually a 
sum-of-square of errors is assumed as objective function. This 
approach has been adopted by Cerri et al. [12] to simulate the 
actual behavior of axial compressors. The method is based on 
the stacking of re-shaped generalized stage characteristic 
curves. The effect of deterioration phenomena on compressor  
performance is taken into account by introducing shape factors 
which modify N&C stage characteristic curves. Shape factors 
are evaluated by minimizing MSE between measured and 
calculated quantities. 

Methods are still being proposed to improve diagnostic 
capabilities. Advanced techniques such as Artificial Neural 
Networks (ANNs) and Genetic Algorithms (GAs) have opened 
new opportunities in the field of on-line, real-time diagnostic. 

Artificial Neural Networks  based techniques have been 
introduced in Gas Turbines diagnostics in the late 80’s. ANNs 
have the capability to establish a relationship between input and 
output quantities by storing the knowledge during a training 
process and making it quickly available for applications. ANNs 
have been successfully applied in a number of engineering 
problems which are highly non-linear in nature. In Gas Turbine 
diagnostics ANNs are used to replace physical-empirical plant 
simulators in order to reduce the computing time required by 
iterative solutions and CPU occupancy [13]. Another relevant 
advantage of ANNs in  Gas Turbine diagnostic applications is 
represented by their tolerance to noise affecting measurements.  
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ANNs have been applied by Cerri et Al. [14-17] to evaluate 
accurately thermodynamic process quantities avoiding iterations 
and to perform real time load allocations on machines and 
apparatuses constituting complex CHP plants taking the actual 
performance level of the various plant components into 
consideration. DePold and Glass [18] and Kobayashi and 
Simon [19] investigated ANN applications to Gas Turbine 
prognostics and diagnostics. More recently a unified non linear 
adaptive approach including engine neural modeling for 
detection and isolation of engine faults has been presented [20].  

As stated before, the identification of component 
performance parameter can be treated as an optimization 
problem. Genetic Algorithms (GAs) are emerging as powerful 
tools in Gas Turbine diagnostics due to the ability of searching 
the global minimum, the capability to retain full non-linearity 
and deal with measurement noise [21-23]. It has to be pointed 
out that GA based techniques are more computationally 
burdensome than the abovementioned approaches. 

Finally, hybrid techniques conjugating features of  ANNs 
and GAs show interesting potentialities as reported in [19].  

The paper deals with an innovative methodology to set up 
GT based plant simulators capable of replicating the real plant 
behavior in the whole field of operations. This is achieved by 
introducing into the plant simulator suitable Reality and 
Actuality Functions. Such functions act on the mechanism of 
modeled phenomena occurring inside the plant components 
(work and heat transfer, losses, flow capacities, etc.) allowing 
the modification of the operating maps.  

Reality Functions (RFs) are introduced to replicate the 
plant behavior at a reference condition (usually N&C). 
Actuality Functions (AFs) allow to update the model of each 
plant component to account for performance degradation with 
operations. Both RF and AF coefficients are calculated on the 
basis of measured data according to Gas Path Analysis 
technique.  

An application of the proposed approach to a real plant is 
given and discussed. 

SCIENTIFIC BACKGROUND  
In order to achieve an effective plant management 

performance deterioration of components has to be taken into 
account. Accordingly a crucial aspect is to establish a plant 
simulator capable to replicate instant by instant the real plant 
behavior.  

The set up of the plant simulator is based on a modular 
description at level of components in a really broad sense. Each 
module can represent a single component or a group of them. 
The module library allows a really easy configuration.  

Each component module contains the physical-empirical 
behavior that mathematically can be expressed by a set of linear 
and non linear equations which represents the conservation of 
Mass, Energy, Momentum, Entropy and includes constitutive 
and auxiliary equations. The last ones describe processes and 
phenomena occurring in the machines and apparatuses allowing 
the calculation of quantities related to source terms in the 

conservation equations. A library of component models suitable 
to arrange Gas Turbine based power plant has been established. 

Models of compressors, combustion chambers, gas and 
steam expanders, heat transfer devices, pumps, mixers, valves, 
connections, splitters, junctions, electric generators etc. have 
been developed. The above models are generic in nature and 
can be applied to commercially available and “ad hoc” designed 
components.  

For each component model quantities are evaluated at 
relevant stations (e.g. at the exit of each compressor or 
expander row, upstream and downstream the filter, and so on). 
Three dimensional flow features at each station are taken into 
account by lumping into a single value the distributions of the 
various quantities of interest (pressure, velocity, temperature, 
etc.). 

Component models include databases (DBs) containing 
shapes, architectures and related correlations (for example 
profile cascade features and related losses and deviations, 
finned tube bundles features and related heat transfer 
coefficients). Such DBs are adopted to select arrangements on 
the basis of manufacturer information or default choices. 
Moreover boundary conditions as well as surface qualities and 
geometric data are required to set up the model. 

Sizing of Components 
If all the constructive details and empirical relations 

characterizing each component were known, this model would 
represent correctly all the thermo-fluid-dynamic phenomena 
occurring in the real component. However, when building a 
model usually only some of the geometric data, shapes and 
correlations are available and quantities involved in the process 
(i.e. work and heat exchanged, losses, velocity distributions, 
etc.) are evaluated through empirical correlations applying 
similarity concepts.  

The identification of unknowns quantities is performed by 
solving a first level inverse problem where component 
performance quantities are constraints. Such an inverse problem 
leads to a “slack” solution due to the fact that the model DBs do 
not necessarily fit exactly the real machine details. This means 
that imperfect similarity exists between elements of the real 
machine or apparatus and the DB shapes and correlations. As a 
consequence, the characteristic curves of the component fit only 
one or few points while no agreement exists in the remaining 
range of operations. 

To fully establish the model of each plant component two 
concepts have been introduced: Reality Functions (RFs) which 
account for the deviation of the response of the model from the 
real situation observed in a reference condition (usually N&C) 
and Actuality Functions (AFs) which allow the model to 
reproduce the real component behavior in any situation 
characterized by a certain level of performance degradation.  

Reality Functions  
As stated before, a vector of RFs is introduced in the model 

to adapt the DB correlations to reproduce the real component 
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behavior. Suitable RFs affecting correlations describing relevant 
processes occurring inside each plant component (heat and 
work transfer, entropy production, flow functions, etc.) are 
defined. Polynomials whose order is usually less or equal to two 
are adopted: 

∑
=

=
n

0i

i
jij Yrf ρ     (1) 

being ρji the coefficients of the j-th RF, Y a relevant 
quantity influencing the process (e.g. temperature, power, a 
suitable flow quantity, etc.) and n the order of the polynomial.  

RF coefficients are calculated by solving a minimization 
problem whose objective function is a MSE, errors representing 
differences between measured and calculated quantities. The 
former can be obtained by carrying out “ad hoc” campaigns or 
at least collected at acceptance tests. The assumption that 
component statuses do not change during such tests leads to the 
reference N&C model. 

After the sizing is performed and the RFs are determined, 
the model is capable of replicating N&C behavior of a specific 
real component. As the manufacture of the machine terminates 
with the acceptance test, which establishes the true N&C map, 
so the making of its simulator, which represents the virtual 
“real” machine, terminates with the model RF calculations by 
using the acceptance test data. 

Actuality Functions 
Plant component performance changes during their life due 

to phenomena like fouling, corrosion, erosion of parts etc., 
affecting the actual behavior of plant units. 

This means that going on with operations instant by instant 
different machines and apparatuses exist. Accordingly, 
characteristic curves of components and performance maps are 
continuously changing, thus they need to be continuously re-
established inside the model if an accurate plant operation 
management is to be accomplished. 

AFs have been introduced to represent the actual plant 
status. Since really slow changes occur in plant component 
features and since in a really short time a complete set of data is 
available, such set actually represents an instantaneous 
operating point of the plant monitored components. Such data 
are appropriate to identify the actual behavior of the previously 
established N&C real component.  

Theoretically there is the possibility of using AFs for every 
single phenomenon typology (e.g. wakes, tip and secondary 
vortices, turbulence enhancement, etc), but in that case their 
number would be too high to be handled. In the adopted models 
the choice of using global AFs influencing component 
performance has been made. More specifically, AFs allow the 
model to reproduce the behavior of the real actual plant 
component with reference to: 
• work exchange (afw) and heat transfer (afq) 
• dissipative phenomena related to internal friction and 

coupling between fluid and surfaces (afl) 

• effective flow function modifications (afb) 
Actuality Functions are conceived in a way that their value 

is less than 1 when the actual performance is degraded with 
respect to a reference status (e.g. N&C status or after a major 
overhaul). 

For each component or a portion of it (e.g. single rows in 
turbomachinery) a vector of af coefficients can be found 
depending on the number of available monitoring data. This 
affects also the polynomial form of the Actuality Functions 
utilized, that can be generalized by Eq. (1’): 

∑∑∑∑
====

====
n

0i

i
jij Yαaf     (1’) 

 
being n the order of the polynomial generally comprised 

between 0 and 2 and Y a relevant variable like temperature, 
power, mass flow, etc. AFs formulation is similar to that 
adopted for RFs. However, it should be pointed out that their 
implementation, number and location in the model formulae are 
not necessarily the same. They depend on various issues, such 
as test and monitoring data availability and model (and real 
component) complexity. 

The AFs allow to re-establish the actual component 
characteristic curves and performance maps into the model. The 
instant by instant knowledge of the actual plant statuses is really 
useful to perform: 
• the short term load allocation (or re-allocation) taking into 

account the present health statuses of power generation 
groups; 

• the assessment of performance deterioration trends when 
dealing with long term production planning. 

SOLUTION METHODOLOGY 
The physical-empirical plant simulator is made up of 

assembled component models. Plant behavior is described by a 
set of equations: 

 
F (g, z, d, rf, af) = 0   (2) 

 
and inequalities : 

 
D (g, z, d, rf, af) ≥ 0   (3) 

 
representing conditions establishing the feasibility domain. 
Vector g contains geometric and global quantities calculated 
after the preliminary sizing of components, z being a vector of 
process and state quantities such as pressures, temperatures, 
mass flows, fluid compositions, flow angles, rotational 
velocities, stresses and so on defined at characteristic stations. d 
represents the vector of boundary conditions, namely site 
pressure, temperature and relative humidity, temperature of 
cooling water and so on. When economic aspects are treated 
also costs of consumables, prices of electricity, tariffs and so on 
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are included in d. rf  is the vector of plant RFs and af is the 
vector of plant AFs. 

The plant physical-empirical simulator represented by Eq. 
(2) and Eq. (3) can be applied to solve both direct and inverse 
problems, such as the RFs and af coefficient identification. 

Direct problem solution is aimed at plant performance 
analysis or optimum management. Model parameters and 
boundary conditions are given: g = g*, r f = rf * , af = af*, d = d* . 
The array z can be subdivided into two subsets ξξξξ and y. ξξξξ 
contains the quantities required to specify the plant operating 
point (i.e. loads allocated on machines and apparatuses). 
y = ξξξξ ~ z  is the plant dependent variable array.  

The identification of RF coefficients leads to the solution 
of a RMSE minimization problem. RF coefficients refer to 
N&C condition so af are set equal to one. Measured data 
referring to M plant operating points are available after 
acceptance test campaign. For each point, a set of N plant 
quantities z∗∗∗∗

k is measured together with boundary conditions 
d*

k. The array of plant variables zk related to k-th operating 
point  can be expressed as zk = z++++

k U z−−−−
k ,  z++++

k    being a subset 
whose elements correspond to those of z∗∗∗∗

k  measured quantities. 
The problem is stated as follows: 
 
Search rf  that minimizes:  
 

∑

















∑ 












−=

= =

+M

1k 1i

2

ki

ki

k *z

z1
N
1

M
1MSE

kN

  4) 

 
with the constraints represented by the M direct problem 
equations: 
 

F (g* , d*
k, af*, rf, zk ) = 0     

k= 1,2,…,M       (5) 
                                                           

  D (g* , d*
k, af*, rf, zk ) ≥ 0  

 
        Since calculations for RFs identification are performed few 
times - after acceptance test or after a massive overhaul - 
computational time is not so relevant. The Authors have 
investigated the potentialities of hybrid techniques based on 
Natural Evolutionary Algorithms coupled with deterministic 
ones [12]. The AFs identification is always based on a single 
measured point because it has to be done in real time using 
DCS data. g=g∗∗∗∗, d=d∗ ∗ ∗ ∗ and r f=rf ∗ ∗ ∗ ∗  are given. Plant DCS provides 
a set of monitored quantities z∗∗∗∗ corresponding to a subset of 
plant variables z++++⊆    z. The unknowns to be determined are x = z 
U af. 
Three situations may occur: 
1) The monitored data for every component are in excess in 
respect to the number of af coefficients. In this case a 

minimization problem based on MSE has been adopted to solve 
the inverse problem for the identification of af coefficients: 
Search af that minimize: 

∑ 












−=

=

+N

1i

2

i

i

*z

z
1

N
1MSE   (6) 

with the equality constraints: 
 

F (g* , d* , rf *, af, z ) = 0  (7) 
and inequalities: 
 

D (g* , d* , rf *, af, z ) ≥ 0  (8) 
 
2) The monitored data are sufficient to establish for every 
component a set of non-linear equations whose number equals 
the af coefficients. In this case there is only one physical 
solution. Thus af coefficients identification is performed by 
solving the system of Eq. (7) and Eq. (8) with the additional 
conditions: 

z+    = z∗                      (9) 
 
3) In the case that data are not sufficient to establish the right 
set of equations for every component (i.e. the data are fewer 
than the number of af coefficients) the problem has been solved 
by analyzing component by component the available data and 
reducing the order of polynomials or as a last resort setting 
equal to one the related AFs. Of course the availability of 
measured Y quantities related AFs introduced in the model 
leads to a decision on the above. This occurs in plants with 
reduced capacity monitoring systems. The difficulty related to 
this situation can be overcome upgrading the monitoring system 
by implementing new stations for the measure of relevant 
quantities. The best should be to bring back the problem to that 
of situation 1.  

In determining af coefficients, that have an instantaneous 
value connected to a particular operating point, ANNs are used 
in order to obtain in short times information on component 
actual performance and status to estimate component efficiency 
and availability and to decide prompt and appropriate 
maintenance interventions. 

PLANT NEURAL SIMULATOR 
An ANN derives its computing power from the ability to 

capture from experience and to represent highly non-linear 
input/output relationships. The physical knowledge of the plant 
with its mathematical complexity is stored in the ANN during a 
training phase and can be successively extracted in a very short 
computing time. The plant physical-empirical model is  utilized 
to generate the input-output map (database) needed for ANN 
training and testing. Single-layer feed-forward networks are 
trained with a back-propagation algorithm. The application of 
physical models to generate training databases allows providing  
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Fig.1 –  LM6000 Combined Cycle typical plant 
arrangement 

 
 

ANNs with large amount of training data. This made it possible 
to produce reliable ANNs with one hidden layer only. 

In order to reduce the massive computational effort 
required to generate the plant training database, a peculiar 
approach based on intermediate neural models of plant 
subsections used in cascade arrangement has been pursued. The 
adopted approach is extensively discussed in [16]. ANN 
performance depends heavily on the size of the database used 
for training it and on other relevant parameters such as Learning 
Rate and number of Hidden Neurons. 

The database is populated by solving in direct mode the 
physical-empirical plant simulator as described in the previous 
chapter. Input quantities are ξ*, d* and af*, randomly spread in a 
suitable domain. ξ*, d*  and plant simulator dependent variables 
y. The database constituted by strings of input and output: 
 

ξ U d U y U af     (10) 
 
is utilized for the training phase selecting as NN input the 
quantities: 

 ξ U d U y     (11) 
 
and as output the af coefficients. In order to minimize the 
global Mean Square Error optimum number of Hidden Neurons, 
Learning Rate and Training Epochs is searched. The trained NN 
is validated to verify its general performance with a new set of 
data (testing process). Errors are calculated as difference 
between the values obtained by the NN and the desired ones 
calculated by the physical-empirical simulator. From previous 
experience has been found that the majority of ANN errors are 
in the range of ±1% [24, 25]. 

  

 

 

Fig.2– Plant #1 and Plant #2 GT electric output and 
efficiency versus LPC inlet temperature. Comparison 

between manufacturer data and model results. 
 
 

 

Fig.3– Plant #1 and Plant #2 LPT Exit Temperature 
 versus LPC inlet temperature. Comparison between 

manufacturer data and model results. 
 

CASE APPLICATION 
Hereafter the previous methodology is applied to a real 

case. In order to highlight the relevance of reproducing 
accurately the plant behavior in a reference situation (e. g. New 
and Clean) two  combined  plants  of the same  kind installed  in 
different sites have been taken into consideration. Both plants 
are based on an aero-derivative General Electric LM6000 PA 
Gas Turbine and equipped with a two-pressure level Heat 
Recovery Steam Generator (HRSG) and a steam turbine. The 
combined cycle arrangement is schematically depicted in Fig. 1. 
For each plant performance curves at base load operation 
corrected on the basis of acceptance test data were provided by 
the manufacturer. 

 

            Plant #1                Plant #2 
Manufacturer Data 

            Plant #1                Plant #2 
Manufacturer Data 
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Tab. 1 – Percentage errors between manufacturer’s curves 
and calculated values after RFs identification 

LPC inlet 
temp. [°C] 

Electric. 
Power 

Efficiency LPT 
exhaust 

temperature 
Plant#1 

0 -0.76 +0.08 -0.68 
3 -0.51 +0.13 -0.48 

8.3 -0.75 +0.32 -0.84 
10 -0.72 +0.26 -0.62 
15 -0.66 +0.13 -0.44 
20 -0.57 -0.11 -0.44 
25 -0.61 -0.33 -0.46 
30 -0.65 -0.28 +0.31 
35 -0.75 -1.06 -1.01 

Plant#2 
8.3 +0.24 +0.13 -0.16 
10 +0.03 +0.48 -0.07 
15 +0.02 +0.40 +0.04 

16.8 -0.26 +0.11 +0.01 
22.2 +0.06 -0.13 +0.02 
27.7 +0.48 -0.41 +0.04 
32.4 -0.64 -0.88 -0.43 

 
The above curves give GT electric output, efficiency and LPT 
exhaust temperature versus LPC inlet temperature. Such data  
have been used to carry out RFs identification, expressed as a 
function of LPC inlet temperature. Details about RFs and the 
values found for the two plants are reported in [25]. It has to be 
pointed out that the modeling of machines of the same type has 
lead to different values of RFs to account for peculiar features 
due to manufacturing and installation which make the real 
machines, to some extent, different. 

In Fig. 2 calculated and given electric power at base load 
operation vs LPC Inlet Temperature are compared. The 
introduction of RFs in the plant model has led to a really 
satisfactory agreement with manufacturer curves. The relevant 
difference in electric output between the two plants is due to 
quite different site conditions. 

For clarity only Plant #1 electric efficiency curve has been 
reported in Fig. 2, Plant#2 electric efficiency curve being 
practically superimposed to that of Plant#1. Figure 3 shows for 
both plants the good agreement achieved between calculated 
and given exhaust temperatures at GT expander exit. 

Percentage errors between given and calculated quantities 
are reported in Tab. 1. It can be noticed as the absolute value of 
errors is almost well below 1%. 

The physical empirical simulator of the whole plant has 
been established according to the developed methodology. For 
sake of brevity the discussion will be focused on the Gas 
Turbine section. 

An investigation concerning the degradation of GT 
performance and the related AFs describing the actual machine 
has been carried out. Such an investigation has regarded the 
capability of the theoretical approach to model the performance 
deterioration  by  the AFs. A set of 17 measured quantities were  

Tab. 2 – Plant #1: GT Actuality Function recognition from 
DCS data and comparison with Plant Simulator solution 

 Boundary conditions 
  Unit Measured  

1 Ambient Pressure  bar 0.972 - 
2 Ambient Temperature  °C 17.4.0 - 
3 Relative Humidity  % 67.0 - 
4 LPT Exit Pressure * bar 0.996 - 

Gas Turbine Operating Quantities 
  Unit Measured Simulator 

1 LPC Inlet Pressure bar 0.968 0.971 
5 LPC Inlet Temperature °C 17.4 17.4 
3 LPC Exit Pressure bar 2.47 2.43 
4 LPC Exit Temperature °C 118.2 119.4 
5 Fuel Mass Flow kg/s 2.01 2.03 
6 HPC Exit Pressure bar 27.20 26.95 
7 HPC Exit Temperature °C 541.7 541.7 
8 LPT Inlet Pressure bar 6.11 6.13 
9 LPT Inlet Temperature °C 783.5 782.6 
10 LPT Exit Temperature °C 444.0 446.1 
11 Electric power MW 33.93 33.95 
12 HP rotational speed rpm 9853.0 9864.0 
13 LP rotational speed rpm 3602.0 3600.0 

Actuality Function values 
1 afl_fil 0.720 
2 afl_LPC 0.952 
3 Afb_LPC 0.992 
4 Afw_LPC 0.972 
5 afl_HPC 0.972 
6 Afb_HPC 0.996 
7 Afw_HPC 0.985 
8 afl_LPT 0.987 
9 Afb_LPT 0.997 
10 afw_LPT 0.983 
11 afl_HPT 0.982 
12 afb_HPT 0.996 
13 afw_HPT 0.991 

 
available from Plant#1 DCS. Such data allowed the adoption of 
13 zero order AFs, i.e. one for the inlet filter and three for each 
machine constituting the Gas Turbine (i.e. LPC, HPC, HPT and 
LPT). An ANN for AFs identification has been set up according 
to the previously described procedure. 

 A set of data collected at a certain instant (listed in Tab. 2) 
by plant DCS has been used to calculate the thirteen af 
coefficients also reported in the lower part of Tab. 2. Results 
achieved inputting such af values  into  the model are given  in 
the simulator column of the table. As it can be seen the 
reproduction of measured data is excellent. 

The computing time required to perform AFs identification 
is of some 50 µs by using an Intel Pentium IV based personal 
computer. As an example of the satisfactory accuracy of the 
ANN in identifying the status of the various components, GT 
performance has been re-calculated by using the direct 
simulator, given the boundary conditions and AFs. Results 
reported in the last column of Table 1 show a good agreement 
between calculated and measured data. 
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Fig.4– Actual (red lines ) and New&Clean (black lines) High 

Pressure Compressor characteristic curves 
 
 

AFs allow to re-establish into the plant simulator the actual 
performance maps. Figures 4 gives HPC performance maps 
evaluated for the actual operating condition taken into account 
(red lines) and maps evaluated at New and Clean condition 
(black lines). The loss of performance at various speeds in 
terms of flow capacity, pressure ratio and efficiency are clearly 
put in evidence. Finally the effect of components deterioration 
of GT base load performance are shown in Fig. 5. 

CONCLUSIONS 
Innovative techniques capable of making possible to set up 

models to replicate the real plant behavior in the whole Domain 
of Definition of the Plant Degree of Freedom and boundary 
conditions have been presented. Reality Functions allow to 
establish the N&C plant behavior replica interacting with the 
mechanisms of modeled phenomena that describe the work and 
heat  transfer,  the  dissipation  due  to  irreversibility    (entropy 
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Fig.5– Actual (red lines ) and New&Clean (black lines) 
base load performance curves.  

 
 

production) and to the fluid flow blockage inside channels and 
orifices. 

The adoption of Neural Models established for inverse and 
direct solutions shows fast calculations to allow evaluations in 
real time. 

The identification of rf s and af coefficients poses two 
inverse engineering problems which ask for different strategies 
and solution techniques. In general, RF identification from 
available acceptance test data leads to a problem of error 
function minimization. Among the applicable solution 
techniques those based on hybrid Evolutionary-Deterministic 
Algorithms have been selected.  

Component status recognition (i.e. identification of af 
coefficients) is based on a single measured point because it has 
to be done in real time using DCS data. In order to meet the 
requirement of a fast and sufficiently accurate solution ANNs 
have been proposed and successfully applied. This satisfactory 
accuracy and the really short computational time required  
(some 50 µs) show the potentialities of the neural approach for 
on-line or quasi on-line applications to support plant 
management decisions.  

The case studies applied to two plants based on GE 
LM6000 PA aeroderivative Gas Turbine have demonstrate the 
capabilities of the methodology. 
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