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ABSTRACT
A great deal of attention has been attracted in the analytical

model-based engine diagnostics over the past years. Meanwhile,
an increasing number of researchers and practitioners make an
attempt to gain an intelligent diagnoser in a pattern recognition
way. A question naturally emerges of how to combine the two
techniques to improve the robustness of an on-board diagnos-
tic system. In this context, this paper suggests an integrated ap-
proach that combines the unknown input observer (UIO) with
the support vector machine (SVM) technique to aircraft engine
fault diagnosis. Sensor faults and actuator faults are separately
considered. To reduce the effect of engine disturbances on di-
agnostic performance, we first design a bank of UIOs, each of
which is sensitive to all sensor and actuator faults but only one
signal. Then, the magnitudes of a set of residuals between the
UIO-based estimations and the engine measurements are fed into
an SVM classifier to detect and isolate engine faults. Experimen-
tal results demonstrate an encouraging potential of the suggested
method and that the UIO-oriented approach is superior or com-
petitive to the Kalman-based algorithm.

NOMENCLATURE
A8 Nozzle area
KF Kalman filter
LQR Linear quadratic regulator
MOP Multiple operating points
M f Fuel flow

∗Address all correspondence to this author (e-mail:dltan@buaa.edu.cn).

Nh High-pressure turbine speed
N∗h Maximum Nh
Nl Low-pressure turbine speed
P3 High-pressure compressor exit pressure
P6 Low-pressure turbine exit pressure
T6 Low-pressure turbine exit temperature
RBF Radial basis function
Rn An n-dimensional real-valued vector space
SOP Single operating point
SVM Support vector machine
UIO Unknown input observer

1 Introduction
So far, a large number of efforts have been made to achieve

robust model-based diagnostics [1–3]. For example, the UIO the-
ory has attracted many interests from researchers in the fault di-
agnosis field. The purpose of the UIO is to improve the estima-
tion robustness against model uncertainty (e.g., modeling error
and noise). The UIO strengthens the robustness of state esti-
mation by incorporating an explicit term of system disturbances
into the state model and nullifying the effect of the disturbances
by means of algebraic constraints.

Patton et al. [4] computed the parameters of a UIO estima-
tor based on canonical form transformation, in order to attenuate
the impact of model uncertainties (e.g. errors and noise). Later,
Chen and Patton [5] simplified the procedure of parameter com-
putation of a full-order UIO, bypassing the canonical transform.
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Moreover, Krzemiński and Kaczorek [6] investigated the issue of
reduced-order UIO design in an optimization manner. But there
is little work that compares the UIO and other estimators—e.g.,
Kalman filter (KF)—in the diagnostic circumstance.

On the other hand, more and more researchers attempt to
handle the issue of fault diagnosis in a pattern recognition way.
For instance, Park et al. [7] fused principal component analysis
and linear discriminant analysis to extract fault features, whereas
Zhou [8] solely used principal component analysis to improve
the discriminative power of fault signatures. The learning-based
diagnosis, however, does not make full use of a priori knowl-
edge on the dynamical system. A natural question comes into
our mind: how can we combine the model-based diagnosis with
the classification technique to enhance the diagnostic robustness?

The motivation of this paper is to integrate the model-based
UIO technique and the SVM learning for turbofan engine diag-
nosis. Specifically, we build on an integrated approach that syn-
thesizes a group of UIOs and SVM classifiers for the detection
and isolation of aircraft engine faults. A bank of UIOs are de-
signed to nullify the effect of system disturbances on estimation
accuracy. Each UIO has a good sensitivity to all sensor and actu-
ator faults but only one signal. The magnitudes of a set of residu-
als between the UIO-based estimations and the engine measure-
ments are chosen to represent fault characteristics. These sig-
natures are identified by an SVM classifier to detect and isolate
engine faults.

This paper is organized as follows. First of all, Section 2
briefly revisits the UIO estimation. Then, Section 3 discusses the
generation of engine residual signatures and Section 4 tackles
the detection and isolation of engine faults. Moreover, Section 5
gives experimental results based on the simulations of some tur-
bofan engine. Finally, this paper is concluded in Section 6.

2 State Estimation with Disturbance
The model-based diagnosis generally requires a mathemati-

cal model for the concerned plant. In this paper, we use a linear
state-space model to express the operation of an engine. Suppose
that the aerodynamics of the engine can be locally described as

ẋ(t) = Ax(t)+B11w(t)+B12u(t) (1)
y(t) = Cx(t)+D11w(t)+D12u(t) (2)

where x(t) ∈Rn indicates engine states, w(t) ∈Rd system dis-
turbances, u(t) ∈R p control inputs, y(t) ∈Rq engine measure-
ments, and A, B11, B12, C, D11, and D12 are consistent matrices.

Assume without loss of generality that B11 is of a full-
column rank, D11 = 0, and D12 = 0. This is because we can
eliminate the disturbance term w(t) in the measurement equa-
tion (2) using a linear transformation (see Chapter 3 in Ref. [5])
and subtract the component of D12u—since the control law is

known to us in advance. Therefore, the engine model can be
transformed into a commonly desired form.

We demand that an observer of the engine state x(t) should
resist the disturbances w(t) and have the following form:

ż(t) = Fz(t)+Gu(t)+Hy(t) (3)
x̂(t) = z(t)+My(t) (4)

where z(t) is observer states and x̂(t) is the state estimation of
x(t). In practice, we need to evaluate the unknown observer pa-
rameters of F , G, H, and M. An expectation is that the estima-
tion error e(t) = x(t)− x̂(t) should be as close to zero as possible
when t→ ∞. A minor manipulation of e(t) will yield [5]

ė(t) = (A−MCA−H1C)e(t)− [F− (A−MCA−H1C)]z(t)−
[H2− (A−MCA−H1C)M]y(t)− [G− (I−MC)B12]u(t)−
(MC− I)B11w(t) (5)

where H = H1 +H2. The purpose of splitting H into H1 and H2
is to facilitate the evaluation of the possible effects of different
items on the error dynamics, from the point of view of the math-
ematical operation. Naturally, we have

F−A+MCA+H1C = 0 (6)
H2−AM+MCAM+H1CM = 0 (7)

G−B12 +MCB12 = 0 (8)
MCB11−B11 = 0, (9)

so as to make the observation error e(t) insensitive to the ob-
server states z(t), the engine measurements y(t), the control in-
puts u(t), and the system disturbances w(t). Then the dynamics
of the error e(t) becomes ė(t) = Fe(t). If all the eigenvalues of
the matrix F lie in the left complex plane, then x̂(t) must asymp-
totically approach x(t). Based on basic matrix properties, the
following results can be easily obtained.

Theorem 1. There exists a matrix M which satisfies Eqn. (9) if
and only if rank(CB11) = rank(B11).

Corollary 1. M = B11[(CB11)
T (CB11)]

−1(CB11)
T is a special

solution to Eqn. (9).

One physical explanation of the rank constraint in The-
orem 1 is that the number of system disturbances should be
less than that of available sensor measurements. Further, we
can reach the solutions to Eqns. (6)–(8): G = B12 −MCB12,
F = A−MCA−H1C, and H = H1 +FM, where H1 is the dual
matrix that assigns the poles of the pair (A−MCA,C) to the ex-
pected locations. Figure 1 shows the procedure to compute the
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(S0) Examine the relation rank(CB11) = rank(B11): If true,
go to S1; otherwise, go to S2.

(S1) Compute M, G, F , and H by

M = B11[(CB11)
T (CB11)]

−1(CB11)
T

G = B12−MCB12

F = A−MCA−H1C

H = H1 +FM,

where H1 assigns the expected poles of the pair (AT −
ATCT MT ,CT ).

(S2) There does not exist a UIO and stop.

FIGURE 1. Computational procedure for the UIO parameters

UIO parameters. More computational details can also be referred
in [5, 6]. It should be noted that this paper just makes use of the
full-order observer to estimate the operating state and does not
take into account any order reduction of the observer.

3 Residual Generation
In reality, it is often difficult to know the real state of a dy-

namical system, and the available clues reside only in system
measurements. Hence diagnostic researchers make full use of
system inputs and outputs to diagnose the system. In this paper,
we are mainly interested in sensor and actuator faults. The two
classes of faults (sensor and actuator) are addressed separately.
In general, the deviation r(t) = y(t)− ŷ(t) of the estimated out-
puts ŷ(t) from the measurements y(t) is utilized to assist in fault
diagnostics. In addition to the previous state monitoring, the di-
agnosis process consists of fault detection and fault isolation.

3.1 Detection Case
For the task of fault detection, if there occurs a fault in the

engine system, then this fault will trigger noticeable variation in
the value of r(t) due to the large mismatch between the predicted
engine outputs and the realistic jet measurements; otherwise, the
signal r(t) should remain zero, provided that the estimation of
engine states is accurate. In actuality, both control inputs and
measured outputs of the engine are used to estimate the engine
state x(t) based on the UIO (Eqns. (3)–(4)), and the subtraction
of the estimated output ŷ(t) using Eqn. (2) from the true mea-
surement y(t) will yield the fault-indicating residual r(t). It is
worth noting that there does not exist any big difference for the
detection of sensor and actuator faults from the point of view of
the logic procedure, despite their separate detectors.

3.2 Isolation Case
For the isolation of engine faults, the generation of r(t) will

differ for the sensor scenario and the actuator scenario however.
This difference originates from the construction of a dynamical
model that is essential to the computation of UIO filter parame-
ters. In the sensor scenario, the measurement from the faulty sen-
sor will not arise in the output equation of the dynamical model.
On the other hand, the model state will take into account the fault
bias in the actuator scenario. In the following, we will give these
details.

3.2.1 Sensor Fault With regard to the isolation of a
fault in one of the engine sensors, this paper creates a group of
q (the number of engine measurements) state estimators, each
of which is insensitive to the fault in one specific sensor. The
feed into each estimator consists of all the control inputs u(t) to
the engine and the entire engine measurements except the one to
whose fault this estimator is immune. Therefore, one different
UIO will be given after every application of the procedure listed
in Fig. 1 and produces a (q−1)-dimensional residual. A total of
q residual vectors can thus be obtained.

As an example, when we are faced with the design of an es-
timator UIOi that is not affected by the i-th sensor (i = 1, . . . ,q),
the inputs of the UIOi are composed of engine actuation u(t)
and engine outputs yi(t) derived from eliminating the i-th com-
ponent yi(t)—the measurement of the i-th sensor—from engine
measurements y(t). Clearly, the model [A,B11,B12,Ci] can be
used to evaluate the UIOi’s parameters, where Ci is C with the
i-th row removed. A residual vector ri(t) is thus generated. In a
similar way, we can acquire other diagnostic residuals.

For the benchmark Kalman filtering algorithm, the proce-
dure for computing a family of residual vectors will be akin to
that used in the UIO case. Additionally, according to the process
of generating ri(t) (i = 1, . . . ,q), it is easy to see that ri(t) is not
related to the measurement of the i-th sensor which, however, af-
fects other residual vectors r j(t) ( j 6= i). This fact is applicable
to both the UIO estimator and the Kalman filter.

3.2.2 Actuator Fault By contrast, there exists a slight
difference in constructing the dynamical model to produce resid-
ual vectors for the actuator fault isolation. Practically, there need
to devise p UIOs (p is the number of actuation exerted on the en-
gine) for isolating the possible bias fault in one of the actuators.
As far as the k-th UIO (k = 1, . . . , p) is concerned, an augmented
model is first build on the basis of the original engine description:

˙̃xk(t) = Ãkx̃k(t)+ B̃k
11w̃k(t)+ B̃k

12u(t) (10)
y(t) = C̃kx̃k(t)+ D̃k

11w̃k(t)+ D̃k
12u(t) (11)
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TABLE 1. Physical Meaning of Mathematical Symbols

Symbol Meaning

fk Faulty bias in the k-th actuator

ξk Gaussian white noise

Bk The k-th column of the matrix B12

Dk The k-th column of the matrix D12

where x̃k(t) =
(
xT fk

)T , w̃k(t) =
(
wT ξk

)T , Ãk =

(
A Bk
0 0

)
, B̃k

11 =(
B11 0
0 1

)
, B̃k

12 =

(
B
0

)
, C̃k =

(
C Dk

)
, D̃k

11 =
(
D11 1

)
, and D̃k

12 =

D12. In the meantime, Table 1 delineates the meanings of fk,
ξk, Bk, and Dk. The fault bias fk, which might occur in the k-
th actuator, is taken into account by the state vector x̃k of this
augmented model to simplify the isolation process.

Hence, the application of the procedure in Fig. 1 to the aug-
mented model (Eqns. (10)–(11)) will produce a UIOq+k estima-
tor, and a q-dimensional residual vector rq+k(t) is further formed.
Repeat this process and we can get other UIO filters and residual
vectors with respect to the remaining actuators. The approach to
generate Kalman filter-based residuals is analogous to that used
in the UIO context, in terms of the concerned dynamical model.

The method used in this paper differs from the classical UIO
diagnosis by Chen and Patton [5] in that rather than viewing the
malfunctioned actuation component as a disturbance term, we
explicitly consider the bias fault through the state augmentation.
In addition, the distinction between the suggested method and
the work from Kobayashi and Simon [9] lies in that this paper
replaces Kalman filters by the UIOs and makes use of intelligent
SVM classifier for fault detection and isolation.

4 Engine Fault Detection and Isolation
In the previous section, we discussed the process of produc-

ing fault residuals. Unlike earlier diagnostic research that focuses
on the aspect of fault residual generation, this paper pays further
attention to machine learning-based analysis of residual signa-
tures, since automatic and accurate fault detection and isolation
is critical to engine health management.

4.1 Detection of Jet Faults
In this paper, the magnitude ‖r(t)‖ of the residual vector

r(t) by way of the detection estimator (as described in Subsec-
tion 3.1) is extracted to represent the operational characteristics
of the engine: fault and health (no fault). The ‖r(t)‖ signature
is then given to an SVM classifier to know about whether there
exists a fault in the engine’s sensors and actuators.

The SVM detector is gained as follows: 1) A set of oper-
ating data can be collected under the faulty condition and the
healthy condition; 2) the data from the faulty mode are labeled
as “+1” (positive samples) and those from the healthy mode as
“-1” (negative samples); and 3) the labeled data constitute the
training samples to the LIBSVM program package [10] to learn
an SVM classifier.

Since the performance of the linear kernel is unsatisfactory
in detecting engine sensor or actuator faults, the kernel of the
SVM classifier is chosen as the radial basis function (RBF).
The parameters of the RBF kernel is determined in the grid-
searching way, as suggested by the SVM guide [11]. Particu-
larly, this grid includes the penalty parameter C and the sim-
ilarity parameter γ: the value of C is discretized in the set
{2−5,2−3,2−1,2,23,25,27,29,211,213,215} and the value of γ

in the set {2−15,2−13,2−11,2−9,2−7,2−5,2−3,2−1,2,23,24}. Fi-
nally, C = 0.0315 and γ = 0.5 are selected as the values of the
kernel parameters of the SVM detector.

4.2 Isolation of Engine Faults

When a fault is detected in the engine system, there needs
to find out the source of this fault (which sensor or actua-
tor) to take a prompt action to avoid flight accidents. Similar
to fault features in the detection scenario, the magnitude vec-
tor f = (‖r1(t)‖, . . . ,‖rq(t)‖)T of this array of residuals ri(t)
(i = 1, . . . ,q) serves as sensor fault signatures and the vector
g = (‖rq+1(t)‖, . . . ,‖rq+k(t)‖, . . . ,‖rq+p(t)‖)T as actuator fault
signatures. All these residuals r j(t) ( j = 1, . . . ,q,q+1, . . . ,q+ p)
are obtained by means of the isolation estimators, as is intro-
duced in Subsection 3.2.

Then, the vector of magnitude features is fed into an SVM
classifier to figure out where the fault comes from. The SVM
isolator is trained in a manner akin to that in the detector circum-
stance. First, we have to record (q+ p) classes of fault samples
and each class corresponds to the failure data in one sensor or ac-
tuator. Second, the fault data are labeled consecutively from 1 to
q+ p. Once again, the RBF is used to be the kernel of the SVM
isolator and the values of the kernel parameters are searched as
C = 0.03125 and γ = 16. Based on this setting, an SVM isolator
can be learned using the LIBSVM package.

It should be pointed out that the sensor fault and the actuator
fault are independently considered, i.e., two SVM isolators are
designed—one for sensor fault classification and the other for ac-
tuator fault classification. The use of these paralleled classifiers
is because of the inconsistency between sensor fault features and
actuator fault ones in the dimension (q 6= p in general). The Eu-
clidian norm is actually utilized to extract the features required
in the fault detection and isolation. In summary, Figure 2 shows
the flowchart of the diagnosis procedure used in this paper.
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FIGURE 2. Schematic flowchart of the diagnosis procedure

5 Experimental Results
In order to validate the performance of the proposed method,

we use the high-fidelity model package of one twin-spool turbo-
fan engine to perform simulation experiments. This in-service
engine has two control inputs and five measurements: the con-
trolled variables comprise main-burner fuel flow M f and nozzle
throttle area A8 and the measured variables include high-pressure
rotor speed Nh, low-pressure rotor speed Nl , high-pressure com-
pressor exit pressure P3, low-pressure turbine exit pressure P6,
and low-pressure turbine exit temperature T6. In addition, this
engine is locally controlled by a linear quadratic regulator [12]
and we are merely concerned with the operational mode of
Nh = constant in this paper.

5.1 Experiment Design
The fault data are generated using a series of linearized

models of this engine at a wide range of operating points from
67.5%N∗h to 100%N∗h , where N∗h is the maximum Nh. To com-
pare the performance of the UIO-based diagnosis with that of
the Kalman-based diagnosis, two kinds of experiments are car-
ried out. One is at a single operating point (SOP) and the other at
multiple operating points (MOPs). In the SOP experiments, the
training and testing samples both come from the same operating

A =

(
−2.2510 0.1459
1.6298 −1.4982

)
B11 =

(
0.0500 0.2024
0.0739 0.5662

)
B12 =

(
0.1896 0.0419
0.1550 1.7336

)
Klqr =

(
18.9874 13.7686
−0.5234 80.2041

)
C =

(
1 0 1.8592 2.4552 −0.3493
0 1 0.3193 −0.1469 −0.0506

)T

D11 = 05×2

D12 =

(
0 0 0.1247 0.1374 0.2406
0 0 0.0134 −1.5112 −0.2790

)T

FIGURE 3. Engine model parameters at 85%N∗h

point. Meanwhile, in the MOP experiments, the traing data stem
from a set of operating points and the testing data from another
set of operating points. It should be noted that all the models are
normalized and dimensionless.

Specifically, we employ 85%N∗h to be the operating point
in the SOP experiments. At this operational mode, Figure 3
presents the parameters of the normalized model and its con-
troller. A UIO filter is designed for the 85%N∗h model and at the
same time is also used to estimate the state of the engine at all
the other operating points. The motivation behind one UIO filter
is to examine the robustness of the UIO estimator against model

5 Copyright c© 2011 by ASME



0 2 4 6 8 10 12
0
1
2

r

0 2 4 6 8 10 12
0
1
2

r 1

0 2 4 6 8 10 12
0
1
2

r 2

0 2 4 6 8 10 12
0
1
2

r 3

0 2 4 6 8 10 12
0
1
2

r 4

0 2 4 6 8 10 12
0
1
2

r 5

t/s

(a) Residual magnitudes by an Nh fault
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(c) Residual magnitudes by a P3 fault
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(d) Residual magnitudes by a P6 fault
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(e) Residual magnitudes by a T6 fault
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(f) Residual magnitudes by an M f fault
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(g) Residual magnitudes by an A8 fault
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FIGURE 4. Residual signatures generated by the UIO method for engine fault detection and isolation in the SOP scenario

variation. For another thing, in the MOP experiments, the set of
operating points {67.5%N∗h , 75%N∗h , 81%N∗h , 83%N∗h , 85%N∗h ,
87%N∗h , 89%N∗h , 91%N∗h , 93%N∗h , 95%N∗h , 97%N∗h , 99%N∗h}
are leveraged to trigger training samples and the set {70%N∗h ,
77.1%N∗h , 82%N∗h , 84%N∗h , 86%N∗h , 88.1%N∗h , 90%N∗h , 92%N∗h ,
94%N∗h , 96%N∗h , 98%N∗h , 100%N∗h} to induce testing samples.

In the course of simulation experiments, a step fault is auto-
matically activated at the moment of t = 6s in every fault class.
In detail, the sensor faults consist of the measured bias in the Nh,
Nl , P3, P6, and T6 and the actuator faults contain the actuation
bias in the M f and A8. The magnitude of the fault is configured
to be one and the white noise with zero mean and unity standard

deviation is added into the engine models to simulate system dis-
turbances. This scheme is also applied to the Kalman method
to give a fair comparison. In current study, we do not take into
account measurement noise.

5.2 Engine Fault Diagnosis in the SOP Scenario
The purpose of the SOP experiments is to illustrate the ad-

vantage of the UIO method over the Kalman one from the per-
spective of fault signatures. Figure 4 depicts UIO-based mag-
nitude signatures in seven abnormalities: five sensor faults—
Nh, Nl , P3, P6, T6—and two actuator faults—M f , A8. The de-
tection signature ‖r(t)‖ (denoted as r) and the isolation signa-

6 Copyright c© 2011 by ASME



0 2 4 6 8 10 12
0
1
2

r

0 2 4 6 8 10 12
0

0.05
0.1

r 1

0 2 4 6 8 10 12
0
1
2

r 2

0 2 4 6 8 10 12
0
1
2

r 3

0 2 4 6 8 10 12
0
1
2

r 4

0 2 4 6 8 10 12
0
1
2

r 5

t/s

(a) Residual magnitudes by an Nh fault

0 2 4 6 8 10 12
0

0.5
1

r

0 2 4 6 8 10 12
0

0.5
1

r 1

0 2 4 6 8 10 12
0

0.05
0.1

r 2

0 2 4 6 8 10 12
0

0.5
1

r 3

0 2 4 6 8 10 12
0

0.5
1

r 4

0 2 4 6 8 10 12
0

0.5
1

r 5

t/s

(b) Residual magnitudes by an Nl fault

0 2 4 6 8 10 12
0
1
2

r

0 2 4 6 8 10 12
0
1
2

r 1

0 2 4 6 8 10 12
0
1
2

r 2

0 2 4 6 8 10 12
0

0.05
0.1

r 3

0 2 4 6 8 10 12
0
1
2

r 4

0 2 4 6 8 10 12
0
1
2

r 5

t/s

(c) Residual magnitudes by a P3 fault

0 2 4 6 8 10 12
0
1
2

r

0 2 4 6 8 10 12
0
1
2

r 1

0 2 4 6 8 10 12
0
1
2

r 2

0 2 4 6 8 10 12
0
1
2

r 3

0 2 4 6 8 10 12
0

0.05
0.1

r 4

0 2 4 6 8 10 12
0
1
2

r 5

t/s

(d) Residual magnitudes by a P6 fault
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(e) Residual magnitudes by a T6 fault

0 2 4 6 8 10 12
0

0.5

1

r

0 2 4 6 8 10 12
0

0.2

0.4

r 6

0 2 4 6 8 10 12
0

0.5

1

r 7

t/s

(f) Residual magnitudes by an M f fault
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(g) Residual magnitudes by an A8 fault
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FIGURE 5. Residual signatures generated by the KF method for engine fault detection and isolation in the SOP scenario

tures ‖r1(t)‖–‖r5(t)‖ (denoted as r1–r5) for the sensor faults are
shown in Subfigs. 4(a)–4(e). Meanwhile, Subfigures 4(f)–4(g)
display those signatures for the actuator faults. By plotting the
first two features in the two-dimensional plane, Subfigures 4(h)–
4(i) visualize the distributions of the sensor and actuator fault
signatures (or summarize fault samples in Subfigs. 4(a)–4(g)) in
the isolation condition, respectively.

Before t = 6s, the magnitudes of residuals almost retain zero
due to accurate state estimation. When one fault occurs at t = 6s,
all the residual signatures except the one that is insensitive to this
fault exhibit an increase from the zero owing to the impact of
an incorrect measurement or actuation signal on the estimation.

These facts can be easily seen in Fig. 4.

For instance, if the Nh sensor malfunctions at t = 6s, then the
detection signature r (or ‖r(t)‖) has a sudden rise, compared with
its zero value before 6s. In the meantime, each of the isolation
signatures r2–r5 gives a differing jump, while the signature r1
keeps approximately unchanged, for the value of r1 is immune to
the Nh fault. This can be readily understood from Subfig. 4(a).

The analysis for other fault cases is similar. From the sta-
tistical standpoint, the compactness of signature samples in the
same fault class and the salient difference between the samples
of distinct fault classes shown in Subfigs. 4(h)–4(i) manifest the
ease of fault isolation in the UIO-based SOP experiments.
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TABLE 2. Detection Decision Matrix of Sensor Faults by UIO Signa-
tures in the MOP Experiments

Predicted State

Fault No Fault

Tr
ue

St
at

e

Fault 39600 0 TPR = 100%

No Fault 0 41900 FPR = 0%

TABLE 3. Detection Decision Matrix of Actuator Faults by UIO Sig-
natures in the MOP Experiments

Predicted State

Fault No Fault

Tr
ue

St
at

e

Fault 15840 0 TPR = 100%

No Fault 0 16760 FPR = 0%

Figure 5 delineates the corresponding results for the Kalman
method. Analogously, we can decipher Fig. 5 in a way like that
used for Fig. 4. Making a comparison between Fig. 4 and Fig. 5
leads us to that the UIO method is superior to the Kalman one
in the intra-class compactness and the inter-class disparity. A
good pair of intra-class compactness and inter-class disparity are
expected to greatly simplify the classification of residual signa-
tures. Actually, we do not present the diagnosis performance in
the SOP experiments, as it is trivial to classify these highly clus-
tered residual signatures shown in Figs. 4–5. Instead, the empha-
sis is laid on the diagnostic accuracy of the MOP experiments.

5.3 Engine Fault Diagnosis in the MOP Scenario
Likewise, Figures 6–7 display residual signatures under the

MOP condition. These features are generated in the following
way. The estimators designed for the 85%N∗h setpoint model are
used to monitor the state of the engine models extended from
67.5%N∗h to 100%N∗h as well. At each operating point, a bunch
of fault signatures can be extracted according to the simulation
setting in Subsection 5.1. As a consequence, the features on the
twelve training operating points (see Subsection 5.1) are collec-
tively plotted in Figs. 6–7. Figures 6–7 demonstrate that the UIO
signatures outperform the Kalman ones not only from the point
of view of temporal steadiness but also from the perspective of
cluster compactness. The assessment of the diagnostic perfor-
mance, however, are highly desirable for quantitative metrics.

The metrics recommended by Simon et al. [13] are adopted
in this paper to evaluate the accuracy of the UIO- and KF-based

TABLE 4. Detection Decision Matrix of Sensor Faults by KF Signa-
tures in the MOP Experiments

Predicted State

Fault No Fault

Tr
ue

St
at

e

Fault 39420 180 TPR = 99.5%

No Fault 566 41334 FPR = 1.4%

TABLE 5. Detection Decision Matrix of Actuator Faults by KF Sig-
natures in the MOP Experiments

Predicted State

Fault No Fault

Tr
ue

St
at

e

Fault 15810 30 TPR = 99.8%

No Fault 1378 15382 FPR = 8.2%

approaches. In practice, the detection decision matrix and the
Kappa coefficient are used for the detection evaluation and the
classification confusion matrix and the Kappa coefficient are for
the isolation evaluation. The Kappa coefficient is a metric that
sums up general diagnosis performance to facilitate algorithm
assessment. On one hand, the detection decision matrix can be
further deduced to calculate True Positive Rate (TPR) and False
Positive Rate (FPR) that are defined as the percentage of cor-
rectly detected faults in the population of failure samples and the
proportion of wrongly detected faults with respect to the total
nonfaults, respectively. On the other hand, the classification con-
fusion matrix can be utilized to provide Percent Correctly Clas-
sified (PCC) [13] for the various fault classes. For each fault
type, PCC is represented as the ratio of the number of correct
recognitions of samples belonging to the fault of interest to the
entire number of examinations in this fault class. As an exten-
sion of PCC, we also describe diagnostic performance using de-
tection/classification accuracy which is computed as the fraction
of correctly classified data in the whole samples.

5.3.1 Fault Detection Evaluation Tables 2–3 give
the detection decision matrices and related TPRs and FPRs for
the sensor and actuator faults using the UIO-based signatures.
The performance metrics due to the KF-induced features are
shown in Tables 4–5. We can see from these tables that the UIO
method achieves perfect detection performance (as is listed in Ta-
bles 2–3), whereas the Kalman approach might raise false alarms
or miss reasonable notifications (as is indicated in Tables 4–5).
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(c) Residual magnitudes by a P3 fault
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(d) Residual magnitudes by a P6 fault
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(e) Residual magnitudes by a T6 fault
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(f) Residual magnitudes by an M f fault
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(g) Residual magnitudes by an A8 fault
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FIGURE 6. Residual signatures generated by the UIO method for engine fault detection and isolation in the MOP scenario

TABLE 6. The Kappa Coefficient and Detection Accuracy for the Sensor and Actuator Faults in the MOP Experiments

UIO+SVM KF+SVM

Sensor Fault Actuator Fault Sensor Fault Actuator Fault

Kappa Coefficient 100% 100% 98.168% 91.375%

Detection Accuracy 100% 100% 99.085% 95.681%

The disparity in the number of nonfaults in between Table 2 and
Table 3 comes from that the numbers of sensors and actuators
are different. Moreover, Table 6 shows the Kappa coefficient and
overall accuracy metrics for the sensor and actuator fault mon-

itoring. It can be noted from Table 6 that the UIO signature is
better than the Kalman one in engine fault detection, in terms of
the Kappa coefficient and detection accuracy. In brevity, the UIO
algorithm can bring more desirable detection performance.
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(e) Residual magnitudes by a T6 fault
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(f) Residual magnitudes by an M f fault

0 2 4 6 8 10 12
0

10

20

r

0 2 4 6 8 10 12
0

10

20

r 6

0 2 4 6 8 10 12
0

10

20

r 7

t/s

(g) Residual magnitudes by an A8 fault
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FIGURE 7. Residual signatures generated by the KF method for engine fault detection and isolation in the MOP scenario

5.3.2 Fault Isolation Evaluation Table 7 presents the
classification confusion matrix and its inferred PCC metric for
the combination of the UIO signatures with the SVM classifier.
It can be safely claimed that the UIO and SVM combination
almost produce satisfying PCC performance apart from the A8
fault. By contrast, Table 8 tabulates the corresponding metrics of
the Kalman-based method. We can notice that aside from the A8
fault, the Kalman approach is a bit inferior to the UIO method
with reference to the PCC metric.

In addition, Table 9 records the Kappa coefficient and clas-
sification accuracy metrics of the UIO and KF approaches in the
MOP fault isolation experiments. It seems that for the isolation

of sensor faults the UIO and SVM integration is slightly supe-
rior to the fusion of the KF signatures and the SVM classifier.
But the UIO approach is weaker than the Kalman one for the ex-
periments of actuator fault isolation, in terms of both the Kappa
coefficient and classification accuracy. Nonetheless, the UIO-
oriented diagnosis solution is comparable to that provided by the
Kalman-based scheme.

Thus far, the current study has considered the sole magni-
tude of engine faults: unity one (i.e., 100% bias if the maximum
is one relative to the normalized model). Hence one natural ques-
tion involves what about the effect of smaller fault magnitudes
on the diagnostic performance. In this situation, this order of
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TABLE 7. Classification Confusion Matrix and PCC by UIO+SVM
in the MOP Experiments

Nh Nl P3 P6 T6 M f A8 PCC

Nh 7920 0 0 0 0 0 0 100%

Nl 0 7876 0 44 0 0 0 99.4%

P3 0 0 7920 0 0 0 0 100%

P6 0 0 0 7920 0 0 0 100%

T6 0 0 0 0 7920 0 0 100%

M f 0 0 0 0 0 7920 0 100%

A8 0 0 0 0 0 1201 6719 84.8%

fault magnitudes 0.0001, 0.001, 0.01, and 0.1 (corresponding to
0.01%, 0.1%, 1%, and 10% bias) were additionally triggered to
create synthetic data samples for diagnostic simulation. The ex-
perimental setting is like the one for the unity magnitude case.
Figure 8 displays the Kappa coefficient and classification accu-
racy metrics for the MOP isolation of sensor and actuator faults
with different fault magnitudes. The performance of the KF ap-
proach is worse than that of the UIO one at moderately smaller
magnitudes; both the UIO and Kalman diagnosis, however, are
unable to give satisfactory results at such tiny 0.01% magnitude.
In short, the UIO-based algorithm is competitive to the Kalman
one for engine fault diagnosis.

5.4 Discussion
The state estimator and the fault classifier differentiate

the proposed method and the pioneering work by Dewallef et
al. [14]. Instead of the KF in Ref. [14], this paper exploits the
UIO technique that can deal with non-white noise to estimate
engine state. Furthermore, the SVM classifier is employed in
this work to diagnose engine faults, rather than Bayesian Belief
Network used in Ref. [14].

This paper makes an implicit assumption that the category of
a detected engine fault is known in isolation—it belongs to a sen-
sor failure or an actuator one. This assumption does not greatly
weaken the applicability of the suggested method. In fact, using
input and output signals selection, we can seamlessly incorpo-
rate the scheme of Fault Class Isolation [15] into the proposed
method to automatically figure out this category. For the sake of
space limitation, this paper does not explore this issue in depth.

Another issue is related to the under-determined challenge
when there exist more system disturbances than available mea-
surements. In reality, the UIO method can not be directly used to
address the under-determined issue. Fortunately, we can lever-
age the idea of parameter reduction (e.g. the research work in
Refs. [16, 17]) to satisfy the rank constraint in Theorem 1. This

TABLE 8. Classification Confusion Matrix and PCC by KF+SVM in
the MOP Experiments

Nh Nl P3 P6 T6 M f A8 PCC

Nh 7849 0 0 71 0 0 0 99.1%

Nl 0 7807 0 113 0 0 0 98.6%

P3 0 0 7867 52 1 0 0 99.3%

P6 0 0 0 7915 5 0 0 99.9%

T6 0 0 0 24 7896 0 0 99.7%

M f 0 0 0 0 0 7861 59 99.3%

A8 0 0 0 0 0 7 7913 99.9%

will be left as future work and be beyond the scope of this paper.
Currently, this paper does not consider health parameters in

the engine model. One may be skeptical of the effect of engine
deterioration on diagnosis performance. It appears that the on-
line SVM learning offers a promising remedy as long as we are
able to acquire a diversity of training samples beforehand under
different deteriorating conditions. Alternatively, we can add an
explicit term of health factors that are viewed as unknown distur-
bances into the engine model and apply the proposed framework
once again. The shortcoming of our research work is that we re-
quire that there should exist only one fault at a time. The future
work will investigate the problem of multiple fault diagnosis for
the engine system.

6 Conclusions
This paper has investigated an approach that combines the

UIO estimator with the SVM classifier learning to perform the
robust diagnosis of aircraft engine systems. To improve the ro-
bustness of engine diagnostic, the effect of system disturbances
is nullified by a set of algebraic constraints. A variety of mag-
nitude signatures are extracted to represent distinct fault charac-
teristics and are recognized by an SVM classifier. In terms of
the intra-class compactness and the inter-class disparity, the sug-
gested method outperforms the KF-based algorithm in the SOP
simulation experiments of one turbofan engine. In the MOP
experiments, the UIO signatures are superior or competitive to
the KF ones, measured by the conventional diagnostic metrics.
All these illustrate an encouraging potential of this proposed ap-
proach. Finally, it is worthwhile to explore the multiple faults
diagnosis and the under-determined issue in our future work.
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TABLE 9. The Kappa Coefficient and Classification Accuracy for the Sensor and Actuator Faults in the MOP Experiments

UIO+SVM KF+SVM

Sensor Fault Actuator Fault Sensor Fault Actuator Fault

Kappa Coefficient 99.861% 84.836% 99.160% 99.167%

Classification Accuracy 99.889% 92.418% 99.328% 99.583%
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FIGURE 8. MOP isolation performance with respect to different fault magnitudes
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