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ABSTRACT 

In this study, the authors conducted a model-based, engine 
system analysis of Electro-Mechanical Actuators (EMAs). This 
effort employed an existing, NASA developed, aircraft engine 
model. A critical engine actuator within the model was replaced 
by a dynamic, physics based EMA model that includes: 
controller, motor, drivetrain and feedback sensor sub-models. 
The actuator model includes simulation of the electrical, 
mechanical and thermal response of the system. The resulting 
platform was used to simulate a range of critical actuator fault 
conditions including: feedback resolver fault, ball-screw 
degradation, motor winding short, and LVDT non-linearity.  
Since the available experimental data from propulsion system 
EMAs is very limited, this platform provides an ideal 
opportunity to evaluate and enhance prognostic capability for 
critical engine applications. 

The model fault tests were used to demonstrate a prototype 
prognostics and health management (PHM) system for engine 
EMAs. First, the system response was used to develop an 
appropriate mode detection algorithm to identify the ideal 
system conditions for collection of diagnostic evidence. Then, 
using the acquired transient and steady-state system response, 
diagnostic data features were derived from EMA related sensors 
and engine performance parameters. Using these features as a 
starting point, a system level reasoner was created using 
multiple classification techniques including LDA, QDA and 
SVM. Using model generated data with simulated system 
variance, it was demonstrated that the reasoner provides 
excellent fault detection, isolation and severity assessment 
capability for all considered fault modes. Finally, a suitable 
actuator life model was developed and a probabilistic 
prognostic approach was used to determine the remaining useful 
life of the system. The demonstrated PHM system will 
significantly enhance the ability to safely operate aircraft, 

schedule maintenance activities, optimize operational life 
cycles, and reduce support costs. 

NOMENCLATURE 
A16  LPT Mixing Plane Bypass Area 
BLDC Brushless Direct Current Motor 
C-MAPSS Commercial Modular Aero-Propulsion  

System Simulation 
EMA Electro-Mechanical Actuator 
HIL  Hardware In-The-Loop 
QDA Quadratic Discriminant Analysis 
LDA Linear Discriminant Analysis 
LVDT Linear Variable Differential Transformer 
MAPSS Modular Aero-Propulsion System Simulation 
PDF Probability Density Function 
PHM Prognostics and Health Management 
PLA Power Lever Angle 
RUL Remaining Useful Life 
SVM Support Vector Machines 
VABI Variable Area Bypass Injector 
 

INTRODUCTION 
The role of Electro-Mechanical Actuators (EMAs) in 

aerospace applications has expanded greatly as a result of the 
significant advantages offered by direct, power-by-wire 
actuation. For decades, critical aircraft applications have 
employed actuation systems powered by a central hydraulic 
fluid system. The high load transmission capabilities and long 
history of reliable system performance have made traditional 
hydraulic actuators the preferred choice in aircraft applications. 
In more recent years, fly-by-wire has become standard practice 
in military aircraft actuator systems, wherein the actuator 
control commands are transmitted via electric signal. The 
elimination of mechanical signal transmission has resulted in 
great improvements in actuator system weight, maintainability, 
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survivability and reliability. An expansion of this idea, called 
power-by-wire, uses electric transmission to distribute the 
power used for actuator force generation as well. As the 
electrical power distribution systems present in modern aircraft 
increase in capacity, there is a growing potential for utilizing 
EMAs in applications where hydraulic actuators would 
previously have been the only option. EMAs use an electric 
servomotor to directly provide actuation force though a gearbox 
assembly. This eliminates the need for the hydraulic fluid lines 
and other maintenance intensive components associated with 
distribution of fluid power. If a single point in a hydraulic 
actuator system is breached, the entire system depressurizes and 
loses the capacity to perform useful work. For this reason, a 
high level of actuation system redundancy is required, resulting 
in high weight and cost. In addition, hydraulic systems are 
leading drivers of maintenance and operational costs and put 
significant burdens on aircraft thermal management systems. 
The removal of the these highly redundant fluid power systems 
would therefore result in significant weight reduction, 
elimination of costly and time consuming maintenance 
procedures, and is consistent with the general trend of a more 
electric aircraft. 

While the conversion from hydraulic actuators to EMAs 
extends many noted advantages, it also poses new challenges. 
The major argument against EMAs is that they are relatively 
unproven in demanding aircraft actuation applications, 
especially those requiring high power levels (>10 kilowatts). 
There have been a limited number of successful 
implementations supporting the deployment of EMAs on 
military aircraft [1], however more work is required to 
demonstrate their capabilities and extend their market 
penetration into aircraft applications. Although they offer good 
temperature tolerance, a major technical challenge of EMAs is 
related to thermal dissipation. While a hydraulic system has a 
continuous flow of fluid to take away the heat generated by the 
actuator, an electro-mechanical actuator cannot rely on this 
natural thermal reservoir [2]. Also, EMAs lack the natural shock 
dissipation capabilities present in hydraulic systems. Hydraulic 
actuators transmit power though a fluid medium thereby 
providing an inherent level of shock load tolerance. EMAs 
transmit motion though a rigid gear train, thus care must be 
taken in the design process to limit gear tooth damage due to 
shock load events.  EMA technology also has issues 
accommodating transient power events and surges. In addition, 
failure modes such as jamming present unattractive situations 
where the system cannot be moved into a failsafe position. As 
such, accurate detection of wear and other potentially damaging 
failure modes is important. 

Prognostics and Health Management (PHM) systems go 
beyond purely diagnostic approaches and estimate the 
progression of component degradation, thereby generating a 
continuously updated prediction of remaining component life. A 
PHM approach offers additional benefits beyond purely 

diagnostic systems by allowing advanced scheduling of 
maintenance procedures, proactive replacement part allocation, 
and enhanced fleet deployment decisions based upon the 
estimated progression of component life usage. Prior studies 
have demonstrated the process of applying PHM techniques to 
aircraft hydraulic actuator systems and the resulting benefits 
[3,4,5]. As the role of EMAs in aircraft applications continue to 
increase, PHM technologies will be a vital part of the Condition 
Based Maintenance strategy.  

Most of the prior efforts conducted in the area of EMA 
PHM have focused on flight control and utility applications, but 
electro-mechanical actuation is also an appealing option for 
turbine engine applications including variable inlet guide vane 
and bypass flow control applications. The implementation of 
EMAs in these critical applications extends the same cost and 
reliability advantages, and would result in significant control 
performance gains over pneumatic actuation systems without 
the need for a hydraulic power and distribution system. A major 
goal of modern engine design is increased performance and 
reliability through intelligent engine design [6]. A major 
enabling technology of this shift of engine control practices will 
be suitable health monitoring technologies that will allow the 
system to detect and respond to developing fault conditions. To 
date, there is very limited data pertaining to fielded or 
laboratory tested EMAs in engine applications. In order to 
demonstrate a comprehensive approach to prognostics and 
health management, the authors developed a model-based 
simulation of an engine EMA system. This virtual test platform 
was used to simulate progressive fault conditions, and 
demonstrate the fault detection, classification, and prognostic 
trending algorithms that will enable more intelligent engine 
control capability. This is the first paper published by the 
authors to discuss this on-going research effort. 

CREATION OF SIMULATED ENGINE EMA SYSTEM  
Two publically available, NASA-developed engine models 

were evaluated for the implementation of a simulated engine 
EMA system. Eventually the Modular Aero-Propulsion System 
Simulation (MAPSS, see Figure 1) was selected over the 
Commercial Aero-Propulsion System Simulation (C-MAPSS). 
This decision was motivated primarily by two factors:  

1. The MAPPS model simulates a typical military type 
turbofan engine [7] while the C-MAPSS engine more 
closely resembles a commercial design.  

2. The MAPPS model contains seven simulated actuator 
systems that control a range of critical system parameters 
including: guide vane orientation, booster tip control and 
bypass flow area variation. 

MAPSS is a nonlinear, non real-time, generic turbofan 
engine simulation environment developed by NASA Glenn that 
provides easy access to system health, control, and engine 
parameters. This model was developed in the MATLAB® and 
Simulink® programming environments with a graphical user 
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interface (GUI) to facilitate the creation and modification of 
control system algorithms. Using a validated generic turbofan 
engine model, MAPSS allows the user to test the performance 
of the control system and also provides a suitable foundation for 
diagnostic capabilities. The simulation platform is based on an 
existing turbofan engine model developed in FORTRAN. This 
engine model is based on a low frequency, transient, 
performance model of a high-pressure ratio, dual-spool, low-
bypass, military-type, variable cycle, turbofan engine with a 
digital controller [7].  A schematic of this engine is shown 
below in Figure 1. In the figure, the locations of actuators are 
identified at the top of the diagram and sensors are labeled 
along the bottom. Several changes were made to extract the 
core model from the MAPSS GUI and simulation environment 
so that it could be directly interfaced with modules created by 
the authors for the purposes of fault insertion, operational 
profile definition and the execution of diagnostic\prognostic 
algorithms. 
 

 

Figure 1 –Military Turbofan Engine Modeled in MAPSS 
[From Reference 7] 

 
An examination of the seven system actuators identified the 

VABI area actuator as the leading candidate for replacement by 
an EMA. This decision was based upon a combination of 
component critically, duty cycle complexity and system 
response’s effect on engine performance. The VABI area 
actuator increases or decreases the area of the bypass channel 
(A16) to achieve the desired pressure ratio at the mixing plane 
aft of the low-pressure turbine. The standard MAPSS model 
contains a transfer function to approximate the response of the 
actuator to a given pressure ratio error. This model was replaced 
with an appropriate dynamic EMA model. 

The EMA model that was identified for use in this work 
was created previously by the authors and their colleagues at 
Impact Technologies [5]. This model was developed in the 
Simulink® environment of the MATLAB® software package 
and has the ability to represent the physics of degradation and 
its effects on the performance of components or subsystems 
within the overall actuator system. The model incorporates sub-
models for the various actuator system components including 

the controller, brushless DC motor, mechanical transmission, 
and feedback sensors. Also included is a full thermal model to 
track the generation and transfer of heat within the actuator. The 
model is adaptable and can be adjusted to suit the needs of the 
current application. In this case, the model was configured as a 
direct drive, ball-screw, linear EMA (Figure 2). An approximate 
bypass duct model was created to simulate the linkage between 
the actuator and the area control valve. This approximate model 
also includes a simulation of the approximate resistive loads. 
This system was put in place of the A16 response transfer 
function to create a simulated engine EMA demonstration 
platform. 
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Figure 2 – Schematic of Modeled EMA System 
 
Four operational profiles were utilized to simulate typical 

engine usage scenarios: Stationary sea-level test, cruise at 
altitude, takeoff and descent. These profiles cover a range of 
typical engine Power Level Angles (PLAs). A change to the 
PLA results in a change of the fan speed, and adjustment of the 
various internal actuators to optimize performance for the 
current setting. All the profiles with the exception of cruise, 
contain at least one alteration of the PLA, the usage event that 
presents the best opportunity to observe actuator response.  

These profiles were used to evaluate the engine 
performance and A16 response (Figure 3) to ensure that the 
inclusion of the EMA did not significantly alter the system 
behavior. Good agreement was found for the modified model 
across all four operational profiles with most of the error 
limited to the highly transient regions of system response 
towards the beginning of the simulation. To limit the effect, a 
suitable pre-program was added to the model profiles to ensure 
that a steady system state was reached prior to changing the 
PLA setting. 
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Figure 3 – Combined MAPSS\EMA Model Response 

for Takeoff (T) and Descent (B) 

CREATION OF FAULT MODELS 
To demonstrate EMA diagnostic and prognostic capability, 

a set of four critical EMA fault modes were modeled in the 
modified MAPSS/EMA system: motor winding short, LVDT 
position error, resolver winding short nonlinearity, and ball-
screw degradation [8]. All four of these fault models allow for 
the insertion of the fault at variable severity and are based upon 
the best available experimental test data. A batch processing 
program allows for the insertion and simulation of a queue of 
pre-defined fault tests. Gaussian Sensor noise models for each 
of the critical EMA and engine related parameters allow for the 
insertion of expected system variability into the quantities 
available for fault diagnosis and prognosis. 

The EMA drive motor, as modeled within the EMA, is a 
four-pole, three-phase BLDC motor.  The BLDC motor is 
modeled with the three phase windings connected in a wye 
configuration.  Under normal operation with this configuration, 
at any given instant the current flowing in one winding flows 

out of another winding, depending on which two windings are 
energized.  The BLDC motor controller commutates the motor 
by energizing one phase winding with a positive voltage, a 
second with a negative voltage, and a third is disconnected from 
the supply power. The motor winding short can be induced in 
any of the three motor phases, and results in a decrease in the 
number of effective winding turns. This affects the motor 
winding resistance, the winding inductance, torque constant, 
and back EMF constant.  

Poor position feedback in an EMA can cause a variety of 
undesired system responses from a slightly inaccurate linear 
position tracking to erratic overall system behavior.  Causes of 
poor LVDT performance range from improper calibration to a 
more severe case of sensor winding damage.  The LVDT fault 
was seeded such that it results in a non-linear error over the 
length of the sensor. Therefore, the system fault response will 
vary depending upon the current position of the actuator and is 
more difficult to detect than a simple bias. 

A new fault simulation block was created for the motor 
resolver short case. To create this model, the authors 
investigated an experimental data set with data collected from a 
feedback resolver with an induced sine coil winding short. Due 
to the operating principle of a resolver type position sensor, 
even at severe levels of winding short, the device will still 
accurately track complete revolutions. However, there will be a 
distinctive sinusoidal error induced into the resulting position 
data that will increase in peak-to-peak magnitude as the 
magnitude of fault increases. A plot of the position signal 
response for both a severe and mild simulated resolver fault is 
shown in Figure 4. 

 
Figure 4 – Simulated Resolver Short Response 
 
Also, the ability to seed ball-screw fault was enhanced for 

this study. The degradation model was designed to simulate the 
increase in force needed to move the actuator when the screw 
becomes damaged. To enable a more accurate simulation of the 
effects of screw degradation, a combined static/dynamic friction 
block was implemented. This model accounts for both a break-
away or stiction type effect when around zero velocity, as well 
as a constant dynamic friction effect that is invariant of 
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rotational speed. The two effects are variable and can be 
adjusted separately. The fault model generates a resistive load 
increase based upon the current ball-screw velocity. The 
following plot shows the resistive force created by the 
combined stiction/friction block for two levels of fault. 

 

 
 

Figure 5 – Simulated Ball-Screw Stiction\Friction Fault 

DEVELOPMENT OF MODE DETECT AND FEATURES 
To enable the creation of a system level reasoner and set of 

prognostic algorithms, it was first necessary to create a set of 
data features indicative of system fault. To create these 
condition indicators, the set of model output signals 
representative of sensor measurements available in a real-world 
aircraft EMA system were closely examined. The response 
profiles of the position command, measured ram position, motor 
speed, drive current, and motor temperature were investigated 
for correlation to the seeded EMA fault conditions. A sample 
response curve of the EMA ram position for increasing levels of 
ball-screw degradation is provided in Figure 6.  

 
Figure 6 – System Response to Ball-screw Fault 

As described above, a change in PLA setting provides the 
system response most favorable for observing EMA system 
performance using the MAPSS model. Generally, when a 
change to PLA is made, the system experiences a period of 
highly transient actuator motion as the system adjusts to the 
change. After this initial transient period, steady state actuator 
movement occurs as the engine system slowly refines the 
current area settings. A mode detection algorithm was 
developed to observe the system response for characteristics 
that are ideal for diagnostic feature extraction. This mode 
detection scheme determines when a significant change in the 
PLA has occurred, and identifies the transient and steady state 
regions of system response, and activates the feature calculation 
algorithms. Two criteria were required to trigger feature 
calculation: 

1. A change in PLA value greater than the signal noise 
floor (more than 1 degree over 1 second) 

2. At least 5 mm of actuator motion in the steady-state 
region 

An example plot of the mode detection algorithm results is 
provided in Figure 7. This data was obtained from a model 
simulation of the SSL profile with a ball-screw fault present in 
the system. In this case, two regions of data were identified as 
satisfying the mode detection criteria. The resulting transient 
(blue) and steady state (green) data blocks are passed onto the 
feature extraction algorithms. 

 

 
Figure 7 – Results of Mode Detection Algorithm  
 
A set of ten data features (Table 1) are then extracted from 

the transient and steady state data blocks of the available EMA 
system sensor data. These features characterize the effect of the 
faults on system performance and provide the critical condition 
indicators needed by the diagnostic and prognostic algorithms. 
All ten features were derived from the actuator and engine 
system controls parameters. The parameters that were used 
include: actuator position command, actuator measured position 
(LVDT), motor measured position (resolver), motor speed, 
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motor drive current, bypass pressure, and motor winding 
temperature. This set of ten features was down-selected from a 
larger list, based upon the correlation of feature value to 
changing health condition, and feature insensitivity to normal 
system variance. 

Specifically, the features target system behaviors 
observable in the controls parameters that are indicative of 
system fault. Features 1 and 9 characterize the error between the 
commanded and actual actuator position in the steady state and 
transient regions respectively. Features 2 through 4 characterize 
the disagreement between the two position sensors in system, 
namely the actuator LVDT and the motor resolver. The three 
different statistical features derived from the sensor 
disagreement provide isolation capability between the LVDT 
and resolver related sensor faults. Features 5 through 7 utilize 
statistical metrics to identify motor speed or current trends that 
are outside of the range expected for steady state system 
operation. Feature number 8 uses a model based prediction of 
actuator load and the measured drive current to create a ratio 
indicative of increased drive power needs for a given load level. 
Finally, feature 10 is used to identify a temperature increase 
over the course of the actuation cycle that is above the range of 
normal system operation. 

 
Table 1 – Description of Features 

 

DEVELOPMENT OF SYSTEM LEVEL REASONER 
A critical component of the EMA health management 

system is a system level reasoner to provide isolation and 
severity assessment of any faults present in the EMA. Impact 
utilized the combined MAPSS/EMA system model as a 
demonstration platform for a set of prototype fault isolation and 
severity assessment algorithms. Each of the four fault classes: 
motor winding short, LVDT position error, resolver winding 
short nonlinearity, and ball-screw degradation were seeded in 
the system at three severity levels. The set of ten features and 
mode detection algorithm described above was used to provide 
the health assessment needed for fault detection and 
classification. System variability was simulated by inserting 
Gaussian noise at various levels to all sensor measurements 
used for mode detection and feature extraction. Two levels of 
sensor noise (peak to peak amplitude) were considered: 0.5% 
and 1% full scale value. The techniques of Linear Discriminant 
Analysis (LDA), Quadratic Discriminant Analysis (QDA) and 

Support Vector Machines were used to perform the fault 
classification. A set of 80 observations was compiled for each 
fault class. The data was intelligently sampled to create training 
(70% of data) and testing (remaining 30%) data sets that give 
equal weight to each of the four operational profiles. 

Linear and Quadratic Discriminant Analysis  
Linear discriminant analysis (LDA) is used to find the 

linear combination of features that best separates two or more 
classes of objects or events. This feature combination is then 
used to divide the feature space into different classification 
regions using hyperplanes that act as decision boundaries [9]. 

An LDA approach accounts for not only the similarities 
within classes, but also attempts to model the differences 
between classes. LDA assumes that the class conditional 
probability distribution is normally distributed with identical 
covariance for all classes. Hence, the required probability is a 
linear combination of known observations. Quadratic 
Discriminant Analysis (QDA) a more rigorous technique, uses a 
linear combination of features with a higher order, thereby 
creating hyper surfaces to divide the feature space. However, 
with sophisticated classification divisions, there is the inherent 
risk of over-training. Such classifiers may not be as robust as a 
classifier that uses simple hyperplanes. Simplistic approaches 
may be preferred when the data is noisy to get enhanced 
robustness without compromising accuracy. 

Support Vector Machines  
Support vector machines (SVMs) use a methodology based 

on Vapnik’s Statistical Learning Theory [10]. The SVM 
approach emphasizes the idea of maximizing the degree of 
separation in training data. The SVM decision boundary 
depends on a subset of the data points, termed “support 
vectors,” close to the decision boundary. Recent analysis has 
shown that the LDA approach tends to maximize the average 
margin between the class distributions, (effectively reflecting 
the global properties of the class distributions), while the SVM 
solution is based on the local properties (support vectors) 
defined by a data subset [11,12]. The SVM approach is 
essentially a solution to a binary classification problem, i.e., the 
SVM algorithm produces a hyperplane that separates two 
classes with the maximum separation between the hyperplane 
and the support vectors in each class. A new vector would then 
be classified as belonging to either of the two classes depending 
on which side of the hyperplane the vector lay. However, in 
many cases, it is desired to separate a number of classes, and to 
be able to classify a new feature vector among these classes. 
Multi-state SVM aims to assign labels to instances by using 
support vector machines, where the labels are drawn from a 
finite set of several elements. The dominating approach for 
doing so is to reduce the single multiclass problem into multiple 
binary problems. Each problem yields a binary classifier, which 
ideally produces an output function that gives relatively large 
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values for examples from the positive class and relatively small 
values for examples belonging to the negative class. Two 
common methods to build such binary classifiers are the one-
versus-all approach, where each classifier distinguishes between 
one of the labels to the rest, or a one-versus-one approach, 
where each classifier distinguishes between every pair of classes 
[13]. 

Classification Results  
First, the techniques of LDA and QDA were used to 

develop a fault detection algorithm that combines all available 
information into two classes: baseline and faulted. A summary 
of the false negative (FN) and false positive (FP) cases is shown 
in Table 2. The QDA results provided a lower incidence of false 
positives (false alarms) for both levels of noise, and in the case 
of the high noise data, provided a lower incidence of false 
negatives (missed detections). All missed detection cases 
occurred at the incipient fault level, with the exception of the 
resolver fault, which had a 42% missed detection result for the 
medium fault case.  

 
Table 2 – Fault Detection Performance Results 

 
 
A second set of classifiers was trained to provide fault class 

separation and severity assessment. In addition to the LDA and 
QDA approaches, a SVM classifier was created to improve 
performance and reduce the possibility of overtraining to the 
assumed noise models. The results for each classifier are 
summarized in Table 3, expressed as the correct classification 
percentage for isolation only, and isolation plus severity. Both 
the QDA and SVM based classifiers provide excellent 
performance for isolation and fault severity assessment. In the 
deployed system, the results of the two classifiers will be 
combined to increase fault confidence and improve the system 
diagnostic and prognostic results. 

 
Table 3 – Fault Isolation and Severity Assessment 

Results 

 

MONTE CARLO PROGNOSTICS MODULE 
The model-based simulation platform was also used to 

develop a life usage model and Monte Carlo prognostic 
trending algorithm for the EMA fault modes. This algorithm 
uses feature values that are correlated to the current system 
damage through a mathematical model to provide an 
observation of the current system state. The resulting 
observations of system state are trended over time, and the 
mean and standard deviation are used to build a damage 
variance distribution. A random sampling of this distribution 
provides the initial conditions for the probabilistic estimation of 
the future progression of damage. A life model is used to project 
the health of the system into the future and determine the 
remaining useful life (RUL) of the component. 

Two snapshots of the prognostic algorithm output are 
shown in Figure 8. The ball-screw fault feature values collected 
to date are shown as blue x’s and the future damage predictions 
are represented by the multi-colored curves. Distributions of the 
damage (vertical slices) and time (horizontal slices) at critical 
times in the component life area shown as PDFs on the left and 
bottom of the progression plot. The horizontal time slice at the 
condemning damage threshold is used to develop an RUL 
estimate based upon the location of mean probability within the 
PDF.  Also, a 95% confidence life estimate is found by 
determining the point in the condemning damage threshold 
where 95% of the specimen health projections lie below the 
line. The probabilistic nature of the prognostic algorithm 
ensures a suitably conservative estimate of RUL that accounts 
for expected level of system variability. 
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Figure 8 – Prognostic Algorithm Output for Ball-screw 

Fault at T=750 hr (T) and 1000 hr (B) 

SUMMARY/CONCLUSIONS 
The goal of this work was to create a comprehensive 

demonstration of a Prognostics and Health Management (PHM) 
system for engine electro-mechanical actuators. The role of 
EMAs in aircraft engine system applications is expected to 
grow, and it is critical to have a suitable health management 
strategy in place. During the creation of this demonstration 
PHM system the following was achieved: 

• A model-based simulation of an engine EMA system was 
created using the NASA developed, MAPSS model and a 
dynamic EMA model created by Impact Technologies. 
The model simulates an EMA that is used to control the 
LPT bypass area of a turbofan engine. A set of four 
simulated fault conditions were seeded in the system that 
are consistent with the available experimental EMA fault 
response data.  

• The project team developed a mode detection algorithm 
and data feature set to provide a complete assessment of 
the simulated engine EMA system health. 

• Using the model-based demonstration platform, a system 
level reasoner was developed for the engine EMA. The 
reasoner provided excellent detection performance with 
no false alarms and less than 10% missed detection using 
Quadratic Discriminant Analysis (QDA). The reasoner 
also demonstrated high performance metrics for both 
fault isolation and severity assessment using QDA and 
Support Vector Machines 

• The model-based simulation platform was also used to 
develop a Monte Carlo prognostic trending algorithm for 
the EMA fault modes. A probabilistic approach to 
damage progression is employed to arrive at a suitably 
conservative estimate of actuator RUL that takes into 
account the expected level of system variance. 

The resulting model-based simulation provides a convincing 
demonstration of how advanced diagnostic and prognostic 
methods can be applied to engine EMA systems. The 
technologies described within this work form a prototype 
system architecture for the effective health management of 
electro-mechanical actuators. 

FUTURE WORK 
While the work conducted by the authors demonstrates an 

effective prototype health management architecture using model 
generated data, further development in needed in several key 
areas to turn this system design into a deployable solution. First, 
the simulated model response does not account for all sources 
of expected system variability present in real-world actuator 
system that could mask diagnostic feature fault response, and 
increase prognostic prediction uncertainty. Also, physical 
actuation systems are subject to wide range of fault modes that 
extend beyond the critical subset of cases considered in this 
analysis. Finally, for effective system prognostics, it is 
necessary to develop appropriate health based and usage based 
actuator life models. 

At this time, the availability of test data from fielded 
propulsion system EMAs is very limited. To improve this 
situation and to address the open issues listed above, the authors 
have formulated a series of hardware in the loop (HIL) tests that 
will build upon the work described within this paper. The 
existing MAPPS/EMA engine actuator simulation will be 
converted to work as a real-time model that will be interfaced to 
a physical, aircraft grade EMA system. As the engine simulation 
executes, and changes to the engine power setting or operating 
conditions are made, the physical actuation hardware will move 
to create the changes necessary to the LPT Mixing Plane Area 
(A16) to ensure proper engine function. The area command will 
be transferred from the model into the actuator servo-controller 

Expected RUL: 1257 hrs 
95% Conf. RUL: 1045 hrs 

Expected RUL: 1020 hrs 
95% Conf. RUL: 784 hrs 
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and the resulting position will be fed back into the model to 
influence the engine performance parameters accordingly. Also 
a full load model will be included to simulate the effect of area 
change on actuator load. The resulting load profile will be sent 
as a command to a physical mechanism for application to the 
output shaft of the test specimen. The specimen will be located 
inside an environmental enclosure that will simulate appropriate 
engine temperature conditions. Throughout all testing, critical 
sensor output will be streamed into an embedded 
implementation of the mode detection, feature extraction, 
system reasoning and prognostic assessment algorithms.  
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