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ABSTRACT 
Efficiency of gas turbine condition monitoring systems 

depends on quality of diagnostic analysis at all its stages such 
as feature extraction (from raw input data), fault detection, 
fault identification, and prognosis. Fault identification 
algorithms based on the gas path analysis may be considered 
as an important and sophisticated component of these systems. 
These algorithms widely use pattern recognition techniques, 
mostly different artificial neural networks. In order to choose 
the best technique, the present paper compares two network 
types: a multilayer perceptron and a radial basis network. The 
first network is being commonly applied to recognize gas 
turbine faults. However, some studies note high recognition 
capabilities of the second network.  

For the purpose of the comparison, both networks were 
included into a special testing procedure that computes for 
each network the true positive rate that is the probability of a 
correct diagnosis. Networks were first tuned and then 
compared using this criterion. Same procedure input data were 
fed to both networks during the comparison. However, to draw 
firm conclusions on the networks’ applicability, comparative 
calculations were repeated with different variations of these 
data. In particular, two engines that differ in an application and 
gas path structure were chosen as a test case. By way of 
summing up comparison results, the conclusion is that the 
radial basis network is a little more accurate than the 
perceptron, however the former needs much more available 
computer memory and computation time. 

1. INTRODUCTION 
 
A gas turbine can be considered as a very complex and 

therefore potentially unreliable system. In order to keep its 

reliability high and reduce maintenance costs, many advanced 
condition monitoring systems have been developed in the 
recent decades. Design and use of these systems were spurred 
by the progress in instrumentation, communication techniques, 
and computer technology.  

Success of gas turbine monitoring and condition based 
maintenance is contingent on perfection of monitoring 
software and, in particular, strongly depends on degree to 
which engine critical parts are covered, as well as on the 
accuracy of diagnostic decisions. For example, even a brief 
description of an advanced power plant monitoring system 
given in [1] shows that the system is intended to cover all 
principal gas turbine subsystems. To enhance overall 
monitoring efficiency, all subsystems should be diagnosed as 
accurately as possible. For every subsystem, a diagnostic 
process can be split into four general and relatively 
independent stages: feature extraction, fault detection, fault 
identification, and prognosis, and each stage may be presented 
by specific algorithms. Thus, the monitoring system includes a 
lot of different algorithms and every algorithm needs to be 
optimized. The present paper addresses a particular 
optimization problem: selection of the best technique for gas 
path fault identification. 

In a total monitoring system the gas path fault 
identification can be considered as an important and 
sufficiently complex component. It is based on gas path 
measurements (control variables and monitoring variables), 
gas turbine models, and pattern recognition techniques. 

Since abrupt faults and gradual deterioration mechanisms 
affect gas turbine component performance, measured gas path 
variables (pressure, temperature, rotation speed, fuel 
consumption, etc.) vary accordingly. Thus, gas path 
measurements can be employed to identify gas path problems. 
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Many different types of gas path performance degradation are 
known, such as foreign object damage, fouling, tip rubs, seal 
wear, and erosion. Their detailed descriptions can be found, 
for instance, in [1,2]. With the use of gas path measurements, 
malfunctions of control and measurement subsystems [3] can 
be localized as well. 

In order to distinguish between various degradation types, 
we need to know their influence on monitored gas path 
variables. For some intensive and practically permanent 
deterioration mechanisms, it is possible to estimate such 
influence through analysis of recorded data. For example, the 
most common cause of stationary gas turbines’ deterioration is 
compressor fouling; its impact on gas turbine performance is 
well described, see [2,4,5]. In aircraft engines, especially 
helicopter engines, compressor airfoils are often affected by 
erosion because of dust and sand in the sucked air [2].  

Nevertheless, the majority of real gas turbine faults occur 
rarely or they are not so severe as to describe them using data 
recorded in field conditions. Another option – physical fault 
simulation in a test cell – seems unfeasible because of very 
high costs of such experiments. That is why mathematical 
models are involved. They connect faults of different engine 
components with the corresponding changes of monitored 
variables, assisting in this way with fault description. These 
fault simulation tools are generally nonlinear thermodynamic 
models based on mass, energy, and momentum conservation 
laws. Such models require detailed knowledge of the gas 
turbines under analysis and can be classified as physics-based 
models. The thermodynamic models are generally complex 
software. Such sophisticated models have been used in gas 
turbine diagnostics since the works of Saravanamuttoo H.I.H. 
(see, for example, [4]). Nowadays, the use of these models is a 
standard practice.  

The fault identification based on gas path measurements 
presents a complicated pattern recognition problem because of 
residual model inadequacy, normal measurement noise, and 
possible sensor malfunctions. A lot of applications of pattern 
recognition techniques for gas turbine diagnosis can be found 
in literature including, but not limited to, Artificial Neural 
Networks (ANNs) [6-12], Genetic Algorithms [6], Support 
Vector Machines [7], Correspondence and Discrimination 
Analysis [13], and Bayesian Approach [10,12]. 

Among the mentioned techniques the ANNs are most 
widespread. In turn, the multilayer perceptron (MLP), known 
as a backpropagation network, is by far the most commonly 
applied for gas turbine fault recognition [6,14]. Following this 
trend, we also employed the MLP for the fault classification 
needs [11,12]. 

On the other hand, some researchers, for example, S. 
Sampath and R. Singh [6], note a high recognition capability 
of the Radial Basis Network (RBN). Additionally, our 
preliminary study [15] indicates that the RBN can be a little 
bit more efficient than the perceptron. The above explanations 
encouraged us to conduct a comprehensive comparative study 
of these two networks, MLP and RBN. 

In this paper, the selected networks are thoroughly 
compared in order to determine what network better performs 
fault recognition in real gas turbine monitoring systems. To 
this end, both networks were embedded in a special testing 
procedure. The procedure embraces a) computing the 
monitored variables’ deviations induced by the faults 

embedded in a gas turbine thermodynamic model, b) fault 
classification formation, c) training two selected networks on 
the classification data used here as a learning set, and d) 
parallel application of the trained networks (each network 
makes its particular diagnosis) to new fault data (validation 
set). Numerous diagnosis cycles with validation set data 
enable computing probabilities of correct and wrong diagnoses 
for each compared network. These probabilities are networks’ 
diagnostic performances and criteria to choose the best 
network.  

The described procedure was developed in Matlab. This 
language of technical computing developed by the 
MathWorks, Inc. offers convenient tools for experimenting 
with different neural networks. In particular, it contains a 
neural networks toolbox that simplifies network creation, 
training, and use, thus assisting in effective software 
development. MATLAB also allows choosing between 
various training functions and calculation options. 

The probabilities computed by the testing procedure 
contain random errors caused by the stochastic nature of the 
fault simulation and network training. That is why close 
attention was paid to computational precision. In particular, 
probability distribution was analyzed and uncertainty intervals 
were estimated. 

To draw firm conclusions on the applicability of the 
analyzed networks, two different engines were chosen as a test 
case: an industrial gas turbine and a turbofan. Additionally, for 
each engine presented by its thermodynamic model, the 
following factors are varied during the comparison: operating 
mode, fault classification type, network structure, and some 
others. All factors are varied independently and therefore 
produce a great total number of variations of input data for 
determining the performances of the networks. In this way, the 
precision analysis and networks comparison under different 
conditions promise reliable conclusions.  

The present paper is structured as follows. A general 
description of the chosen recognition techniques, MLP and 
RBN, is given in section 2 followed by the methodology of 
networks-based fault identification described in section 3. 
Next, we present the network comparison results for the 
industrial gas turbine and aircraft engine in sections 4 and 5 
correspondingly. Finally, in section 6, these results are 
discussed and generalized.  

NOMENCLATURE 
 
ANN  Artificial neural network 
MLP  Multilayer perceptron 
GT1, GT2 First and second analyzed gas turbines 
RBN  Radial basis network 

Ya   Maximum deviation error 
D   Fault class 
d  Diagnosis 
e  Network error 
f1, f2   Layer transfer functions 
P   Mean probability of correct diagnoses 
S1, S2  Numbers of layer nodes 

1

→
a , 2

→
a  Layer output vectors  

1
→
b , 2

→
b  Bias vectors 
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→
p   Network input vector 
→
U  Vector of operating conditions (control variables 

and ambient conditions) 
→
w , W1, W2 Vector and matrices of weight coefficients  
→
Y   Vector of monitored gas path variables 
→

*Z   Vector of normalized deviations 
LZ , VZ  Learning and validation sets 
G∆   Flow parameter  
η∆   Efficiency parameter 

ε   Random error of the normalized deviation 
→
Yδ   Vector of relative deviations 

→
Θ   Vector of fault parameters 
Subscripts and superscripts 
*  Measured value 
0  Baseline value 
i  Index of gas path variable Y 
j,l  Fault class indices 
q  Number of fault classes 
av  Average 

2. NEURAL NETWORKS COMPARED  
 
Artificial neural networks are fast growing pattern 

recognition and approximation techniques in many fields of 
engineering applications, including condition monitoring [1]. 
Foundations of the multilayer perceptron can be found 
practically in every book on neural networks or classification, 
for example, in [16,17]. Information on the radial basis 
networks is widely available too. Therefore, two subsections 
below include only a brief description of the networks, which 
is necessary to gain better understanding of the present paper. 

Multilayer perceptron 
The ANN and, in particular, the MLP can be classified as 

a typical black-box model because it is observed only through 
its input and output without any knowledge of internal 
operation. During network learning on the known pairs of 
input and output (target) vectors, unknown network 
coefficients change in the direction of decreasing a mean 
squared difference (error) e between the target and the 
network output. To enhance network flexibility, one or more 
hidden layers can be incorporated in addition to the input and 
output layers.  

The MLP is a feed-forward network in which signals 
propagate through the network from its input to the output 
with no feedback. Figure 1 helps to better understand 
perceptron operation. For each hidden layer neuron, the sum 

of inputs of a vector 
→
p  multiplied by the weight coefficients 

of a matrix W1 is computed and the corresponding bias 

(element of a vector 1
→
b ) is added. The neuron input obtained 

in such a way is transformed by a hidden layer transfer 

function f1 into a neuron output, element of a vector 1

→
a . The 

computation is reiterated for all hidden layer neurons. The 

same calculations are then performed for the output layer 

considering 1

→
a  as an input vector. 

 

 
FIG.1. PERCEPTRON DIAGRAM 

 
The MLP has become widespread since a back-

propagation training algorithm was proposed. In this algorithm 
the error between the target and the actual network output is 
propagated backwards to correct network coefficients. If an 
incremental training mode is used, all unknown coefficients 
(weights and biases) are corrected after presentation of every 
pair of input and target vectors. This elemental corrective 
calculation (epoch) is repeated successively for all available 
input and target vectors of the learning set. Since one such 
series of epochs is not usually sufficient to reach a global 

minimum of an error function ),,,( 2211

→→
bWbWe , the series is 

repeated many times with the same data of the learning set.  
Within the bounds of the paper, the MLP training was 

performed in another mode called a batch mode because the 
Matlab training functions operate just in this mode. Such 
training means that a total error between all targets and 
network outputs of the learning set is computed and used to 
change the coefficients in every epoch. Generally, this mode is 
faster because a total number of epochs is drastically smaller.  

The back-propagation algorithm requires that all layer 
transfer functions be differentiable. Usually, they are of a tan-
sigmoid, log-sigmoid, or linear type. 

Let us consider now the other analyzed network, RBN.  
Radial basis network 

A radial basis function neuron differs from a perceptron 
neuron. The input n to a radial basis transfer function is a 

distance between a weight vector 
→
w  and an input vector 

→
p , 

multiplied by a bias b i.e. bpwn
→→

−= , where  denotes the 

Euclidean norm. The transfer function computes a neuron’s 
output as )exp( 2na −= . When the distance is 0, this function 
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has a maximum value a=1 and the function decreases when 
the distance increases. The bias b allows changing the neuron 
sensitivity. 

Figure 2 illustrates operation of a whole network based on 
the radial basis functions. The RBN presented here includes 
two layers: a hidden radial basis layer of S1 nodes and an 

output linear layer (S2 nodes). The input vector 
→
p  and an 

input weight matrix W1 produce a distance vector that includes 

S1 elements. The bias vector 1
→
b  scales these distances and a 

radial basis transfer function converts the scaled distances into 

a hidden layer output vector 1
→
a . The output layer works 

similarly to a usual perceptron output layer with a linear 

transfer function producing an output vector 2
→
a  of S2 

elements. As in the case of the perceptron, unknown 
coefficients to be determined during the training are elements 

of the matrices W1 and W2 as well as the vectors 1
→
b  and 2

→
b . 

 

 
FIG.2. RBN DIAGRAM 

 
In a basic variation of the RBN algorithm, every input 

vector of the learning set forms a new radial basis neuron. 
Since the set size equals the radial basis layer size and the 
latter is limited by available computer time and memory, such 
a network cannot operate with a large learning set. In contrast 
to the basic variation, the efficient variation that was used 
operates in an iterative mode, adding one neuron at a time to 
the radial basis layer. At every iteration, the input vector that 
results in the lowest network error is used to create this new 
neuron. The iterative calculation completes when a network 
error decreases below an error goal or a maximum neuron 
number is reached. Although the efficient variation of the 
RBN can operate with a larger learning set than the basic 
variation, the maximal volume of this set is usually smaller 
than the volume of the perceptron’s set. This is explained by 
greater computer memory required for the RBN. 

The radial basis network tends to have more neurons than 
a comparable perceptron. This is explained by the fact that the 
sigmoid neurons can cover a large region of the input space, 
while the radial basis neurons only cover a relatively small 
region. The larger the input region, the more such neurons are 
required. Although the RBN usually needs more neurons than 
the perceptron, the former can often be trained within the time 
necessary for the perceptron. It is noted below in section 3 that 
in our case the learning set comprises thousands of input and 
target vectors (patterns). This is favorable for the RBF because 
this network works better when many training patterns are 
available [18]. 

Network validation 
The network should follow only general systematic 

dependencies between simulated variables but not take into 
account random measurement errors of every input. That is 
why the errors between the network’s outputs and targets 
decrease but do not completely disappear during the training 
process.  

A neural network capability to generalize data is 
commonly verified on a new portion of data called a validation 
set. If the network describes learning data well but loses 
accuracy on validation data it is an indication of an 
overlearning (overfitting) effect. The network takes into 
consideration random peculiarities of the learning set and 
therefore loses its capability to generalize validation data. In 
this case we need to stop the training when the overlearning 
begins. If a number of training epochs is sufficiently large and 
the overlearning does not appear, the difference between the 
network performances obtained on the learning and validation 
sets will be small. The network’s tendency to overfit the data 
depends on the proportion between a volume of the training 
set and a number of unknown network coefficients. Since 
excessive hidden layer neurons can provoke the overfitting, 
the number of these neurons must be optimized. 

Let us now consider a total gas turbine diagnosis process 
that involves two networks described above into recognizing 
gas path faults.  

3. FAULT RECOGNITION PROCESS  
 
A general recognition process can be divided into three 

principal stages: forming the classification, decision making, 
and estimating the recognition accuracy. Using monitored gas 
path variables directly is not convenient to form necessary 
multidimensional classification space. Although monitored gas 
path variables reflect the influence of gas turbine degradation, 
it is difficult to discriminate the degradation effects from the 
changes that are due to different operating modes when we 
analyze the variables themselves. That is why to form a fault 
classification and to recognize faults, a preliminary procedure 
of computing deviations is fulfilled. These deviations are 
practically free of the mode influence and therefore they can 
be good degradation indicators. 

Deviations 
The deviation, also called a “delta,” is defined as a 

difference between measured and baseline values of a 
monitored variable. In a relative form the deviation *Yδ  of the 
variable Y is computed according to an expression  

)(

)(

0

0
*

*
→

→
−

=
UY

UYY
Yδ ,                            (1) 

where *Y  and 0Y  are measured and baseline values, 
respectively. As an engine baseline depends on operating 
conditions (atmospheric conditions and engine control 

variables all together) united in a vector 
→
U , the baseline value 

is given as a function )(0

→
UY , which is usually called a 

baseline function.  
Due to measurement inaccuracy and baseline function 

uncertainty, the deviations always contain random errors and 
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their level is individual for every monitored variable. If we 
denote by Ya  a maximum amplitude of the errors in the 

deviation *Yδ , the corresponding normalized deviation will be 
written down as 

YaYZ ** δ= .                                  (2) 
As a result of the normalization, random errors of the 

deviation *Z  (but not the deviation itself) of every monitored 
variable are limited by the same value of one. That is why a 
description of fault classes in a space of these deviations is 
more uniform and fault diagnosis becomes simpler. 

As mentioned in the introduction, the thermodynamic 
model is widely used to simulate different gas turbine 
degradation mechanisms. The model relates the gas path 
variables with the operating conditions and with special fault 

parameters 
→
Θ ; therefore it can be given by the following 

expression 

),(
→→→
Θ= UFY .                                 (3) 

The fault parameters are used to displace performance 
maps of engine components that allow simulating the gas path 
faults. Let us denote a random error of the normalized 
deviation by a scalar ε , the fault parameters corresponding to 

a healthy engine by a vector 0
→
Θ , and faults embedded in the 

model by a vector 
→
Θ∆ . Given these designations and 

expression (1), formula (2) is converted to an expression 

ε+
Θ

Θ−Θ∆+Θ
=

→→

→→→→→

YaUY

UYUYZ
),(

),(),(

0

00* .                (4) 

Thus, the normalized deviations are computed by means 
of the thermodynamic model in accordance with the above 
formula. The deviations of all m monitored variables compose 

a vector 
→

*Z  that is a point in the diagnostic space and a 
pattern to be recognized. Fault classification is formed from 
these patterns as described below.  

Fault classification 
Since an existing variety of the gas path faults is too great 

to distinguish between all of them, the faults are grouped into 
limited number of classes. The hypothesis is usually accepted 
in gas turbine diagnostics that an engine state D can belong to 
only one of q previously determined fault classes 

qDDD ,...,, 21 . Within the scope of the paper, each class is 
constructed from numerous patterns in a m-dimensional space 

of deviations 
→

*Z .  
The principle to group the faults into classes is commonly 

related with gas path components in which the faults occur. It 
is believed that two fault parameters of one component, 
usually a flow parameter G∆  and an efficiency parameter 
η∆ , are sufficient to describe all faults of this component. 

Two types of classes and two corresponding classification 
variations are dealt with: a single fault type and a multiple 
fault type. The single fault class has one fault parameter, 
variation of which allows simulating faults of variable 
severity. In contrast, the multiple fault class has two 
independently varied parameters ∆Θ  of the same component 

and unites all possible faults of the component. In the present 
paper one multiple and two single classes are formed for each 
engine component.  

Variations ∆Θ  are given by the uniform distribution 
within the interval [0, 5%], while random errors ε  are 
generated according to the normal distribution. An optimal 
number of simulated patterns per class was determined in [19]. 
As a rule, it equals 1000. A whole classification unites patterns 
of particular classes and all these patterns are employed to 
train the neural networks chosen. From this point of view a 
totality of classification’s patterns LZ  can be called a learning 
set. The trained network, MLP or RBN, is ready to recognize 
the faults i.e. to make diagnostic decisions. 

Diagnostic decision 
A nomenclature of possible diagnoses qddd ,...,, 21  

corresponds to the accepted classification qDDD ,...,, 21 . To 

make a diagnosis d for a current pattern 
→

*Z , each computed 
network’s output jy  is considered as a measure of pattern 

membership in the class jD . A decision rule 

),...,,max(y  if , 21 qll yyydd ==             (5) 

is then applied.  
Since many negative factors affect the diagnosis process, 

the diagnosis d will not always be correct and it should be 
accompanied by any confidence assessment. 

Diagnostic accuracy 
Although neither MLP, nor RBN compute accuracy 

estimations for every diagnosis, it is possible to obtain 
averaged estimations by means of network testing on 
numerous input and output vectors. To check the overlearning 
effect, the network trained on one portion of the random data 
should be tested on another portion. Consequently, to verify 
the MLP and RBN, in addition to the learning set, we need one 
more set. Let us call it a validation set VZ . This set is formed 
like the learning set with only exception: other series of 
random numbers are generated to specify the fault severity and 
the deviation errors ε . A special number called the seed is 
used to change a random number series. 

During the statistical testing the proper class of every 
pattern is known a priori. That is why we can compute 
probabilities of correct and incorrect diagnoses for all fault 
classes and form the so-called confusion matrix. Each 
diagonal element of the matrix known as the true positive rate 
is a probability of correct diagnosis of the corresponding class. 
A quantity P  that is computed as a mean number of the 
diagonal elements can be called as an overall true positive 
rate. It characterizes a total level of engine diagnosability and 
will be applied as a criterion to compare the analysed 
networks, MLP and RBN.  

On the basis of the described above approach to gas path 
fault recognition, a special procedure to test these networks 
has been developed. By means of this procedure the MLP and 
RBN were tested and compared on the data of two different 
engines. The first is a two-shaft free turbine driver for natural 
gas compressors (referred to as GT1). The second engine, 
referred to as GT2, is a three-shaft high bypass ratio turbofan. 
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The networks’ comparison conditions and results are given 
separately for each engine in the two sections below.  

4. NETWORKS’ COMPARISON: THE CASE OF THE 
INDUSTRIAL GAS TURBINE (GT1) 

 
Comparison conditions 

In all comparative calculations executed for GT1, a 
structure of monitored gas path variables is constant and 
includes 6 items. The structure corresponds to a standard GT1 
measurement system. Fault simulation during the comparison 
is based on the variation of nine fault parameters. The 
monitored variables and fault parameters are described in 
Table A1 and Table A2 of Appendix I. Further details on the 
variables and parameters of GT1 can be found in [11]. The 
structure of these quantities does not change. The other 
computational conditions (factors) described below are 
varying. 

A. Operating modes. Two gas turbine operating modes, 
Mode 1 and Mode 2, are analyzed. They are close to engine 
maximal and idle regimes and are set by different high 
pressure rotor speeds under standard ambient conditions.  

B. Classification variations. Two classification variations 
are considered. The first variation incorporates 9 single classes 
with 700 patterns in each class. This number of patterns is less 
than the recommended value of 1000, because otherwise 
available computer memory is not sufficient for the RBN. The 
second variation includes 4 multiple classes corresponding to 
the principal GT1 components (compressor, combustion 
chamber, compressor turbine, free turbine). Each multiple 
class is presented by 1000 patterns.  

C. Number of nodes in the hidden layer. According to the 
structures of monitored variables and fault classes, both 
networks have 6 nodes on the input layer and 9 nodes (single 
type classification) or 4 nodes (multiple type classification) on 
the output layer. All these parameters do not change. As to the 
hidden layer, two different nodes numbers, basic and enlarged, 
are considered in order to better understand the influence of a 
hidden layer size on networks’ performances. For the MLP 
these numbers are 12 and 27, while for the RBN they are 24 
and 90.  

Comparison results 
Each of three described above factors (operating mode, 

classification variation, and hidden layer node number) has 
two values. They are varied independently therefore a total 
number of considered comparison cases is eight. Each case 
implies a new variant of the compared networks because when 
any factor changes, the network structure is varied 
accordingly. In other words, eight variants of the perceptron 
are compared one by one with the corresponding eight RBN’s 
variants.  

For all these cases calculations were first executed with a 
constant seed (quantity that determines a consequence of 
random numbers). The results are shown in Table 1. It can be 
seen for the basic node numbers (cases 1, 3, 5, and 7) that the 
perceptron is a little better. However, for the enlarged node 
numbers the RBN demonstrates slightly higher diagnosis 
accuracy compared with the perceptron: we can see the 
corresponding increment 0.0032-0.0050 (0.32-0.50%) of the 
mean probability P .  

During the experimentation with different seeds, we found 
that random spread of the probability P  can be larger than the 
observed difference between the networks. Consequently, the 
above comparison can only be considered as preliminary. One 
way to reduce the errors is to perform numerous comparative 
calculations with different seeds and to average the results. To 
plan such numeric experiments we need the information on the 
computational time required.  

 
Table 1. Networks’ accuracy comparison on GT1 data  
(probabilities P , Seed 1) 

Mode 1 Mode 2  
Class  
type 

 
Network 

type 
Basic 
node 

numbers 

Enlarged 
node 

numbers 

Basic 
node 

numbers 

Enlarged 
node 

numbers
 
MLP 

 
Singular

RBN 

Case 1 
0.8129 
0.8110 

Case 2 
0.8135 
0.8167 

Case 3 
0.8025 
0.7986 

Case 4 
0.8027 
0.8078 

 
MLP 

 
Multiple

RBN 

Case 5 
0.8755 
0.8733 

Case 6 
0.8760 
0.8805 

Case 7 
0.8665 
0.8662 

Case 8 
0.8650 
0.8700 

 
In order to make as many calculations as possible and for 

the sake of a better networks’ comparison, computational time 
was estimated for the same cases as in Table 1. It was found 
that the time does not depend on an engine operating mode 
that is why we will analyze below only Mode 1 of GT1 and 
the corresponding cases 1, 2, 5, and 6. Execution time values 
are presented in Table 2 separately for these cases and for 
network’s training and diagnosis stages. First of all, a huge 
time difference between the training and diagnosis is striking. 
Nevertheless, such difference is easily explainable: one 
diagnosis cycle implies one network computation, while the 
training includes millions of such computations. Comparing 
time values of the analyzed networks for each case presented 
in Table 2, one can see that the perceptron is always 
considerably faster. This difference is not perhaps so 
important at the diagnosis stage because of very short 
execution time. However, to tailor a neural network to a 
specific diagnostic application, we may need to repeat the 
training several thousand times. In this case, longer training 
time of the RBN can be a serious problem.  

 
Table 2. Networks’ execution time comparison on GT1 data 
(the time is given in seconds for Toshiba Tecra: Intel Core 2 
Duo CPU, 2.53GHz, and 3.0 GB of RAM) 

Training stage Diagnosis stage  
Class  
type 

 
Network 

type 
Basic 
node 

numbers 

Enlarged 
node 

numbers 

Basic 
node 

numbers 

Enlarged 
node 

numbers
 
MLP 

 
Singular

RBN 

Case 1 
10.3 
72.6 

Case 2 
14.9 
216.2 

Case 1 
7.5×10-6

22.4×10-6

Case 2 
10.0×10-6

69.4×10-6

 
MLP 

 
Multiple

RBN 

Case 5 
5.1 
26.5 

Case 6 
8.4 

79.2 

Case 5 
7.7×10-6

19.5×10-6

Case 6 
11.8×10-6

66.3×10-6
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As mentioned before, averaging the probabilities obtained 
by calculations with different seeds will improve the precision 
of probability estimations. It is clear that a number N of such 
calculations should be as large as possible but it is limited by 
available computational time. As the network training 
occupies almost all computer time, the training stage time 
values from Table 2 helped us to choose the number N. This 
number was assigned to 100 for all the cases considered before 
and each comparative calculation of Table 1 was repeated 100 
times, each time with a new seed.  

The resulting probabilities avP  averaged for 100 
calculations are given in Table 3, which has the same format 
as Table 1. It can be seen that the enlargement of the hidden 
layer results in a probability increment for all considered 
cases. To estimate a level of this effect, a mean probability 
increment due to the node number increase was calculated 
separately for each network. The increment is 0.0027 for the 
MLP and 0.0049 for the RBN. Thus, we can state that the 
node number increasing is more favorable for the RBN; 
however, the observed effect is moderate even for this 
network.  

It becomes clear that a potential advantage of the RBN 
will be more visible for an enlarged hidden layer. Let us 
therefore compare MLP and RBN probabilities just in the 
columns “Enlarged node numbers” of Table 3. We can see that 
both networks are practically equal for the singular classes, 
while the RBN is a bit better for the multiple classes. On 
average for both operating modes and both classification types 
presented in the table, the RBN gains 0.0009 (0.09%) only. 
Thus, more precise data of Table 3 allow us to conclude that 
an advantage of the radial basis network is almost negligible, 
at least in a diagnostic application to GT1. Nevertheless, the 
networks’ comparison will not be complete without estimating 
the precision of the Table 3 data. 
 
Table 3. Results of the network comparison on GT1 data 
(probabilities avP  averaged for 100 seeds) 

Mode 1 Mode 2  
Class  
type 

 
Network  

type 
Basic 
node 

numbers 

Enlarged 
node 

numbers 

Basic 
node 

numbers 

Enlarged 
node 

numbers
 
MLP 

 
Singular 

RBN 

Case 1 
0.8157 
0.8115 

Case 2 
0.8184 
0.8186 

Case 3 
0.8031 
0.8009 

Case 4 
0.8059 
0.8058 

 
MLP 

 
Multiple 

RBN 

Case 5 
0.8738 
0.8745 

Case 6 
0.8765 
0.8783 

Case 7 
0.8660 
0.8663 

Case 8 
0.8686 
0.8701 

 
Analysis of computational precision  

Along with average values avP  presented in Table 3, 
standard deviations σ for the probabilities P  have been also 
estimated. They are placed in Table 4, which conserves the 
format of the previous tables. It can be seen from the table that 
the precision is higher for the single class type than for the 
multiple one. On the other hand, the probabilities for the radial 
basis networks are generally more precise than the 
perceptron’s probabilities. However, the differences are not 
large. That is why to quantify an overall precision level, we 

will use in the sequel a constant value Pσ  = 0.0047 obtained 
by averaging Table 3 data.  

 
Table 4. Computational precision of the probabilities P  
computed for GT1 (standard deviations σ estimated for 100  
seeds) 

Mode 1 Mode 2  
Class  
type 

 
Network 

type 
Basic 
node 

numbers 

Enlarged 
node 

numbers 

Basic 
node 

numbers 

Enlarged 
node 

numbers
 
MLP 

 
Singular

RBN 

Case 1 
0.0045 
0.0045 

Case 2 
0.0044 
0.0039 

Case 3 
0.0049 
0.0043 

Case 4 
0.0042 
0.0041 

 
MLP 

 
Multiple

RBN 

Case 5 
0.0052 
0.0051 

Case 6 
0.0049 
0.0052 

Case 7 
0.0054 
0.0048 

Case 8 
0.0054 
0.0050 

 
As a result of the same calculations with 100 seeds, the 

distributions of the analyzed estimations P  have been 
determined for all considered cases. The corresponding 
diagrams included in Table A5 of the Appendix II help to 
conclude that the estimations P  have the normal distribution. 
If that is the case, an uncertainty interval for P  is 
±2 Pσ =±0.0094 with 97.7% confidence probability. It 
becomes clear that the precision of Table 1 data is not indeed 
sufficient for a final conclusion on the networks.  

Let us now estimate precision of the probabilities avP . 
Since they are computed by averaging random independent 
quantities P , the standard deviation of the probability avP  

can be estimated by a statistical formula NPavP σσ = , 

which results in avPσ =0.00047. As is well known, the sum of 
independent random variables tends to the normal distribution. 
Therefore, an uncertainty interval for avP  can be estimated as 
±2 avPσ =±0.00094 with the same confidence probability of 
97.7%. Thus, this interval characterizes computational 
precision of the data in Table 3. 

Since the conclusion on networks’ applicability is made 
on the basis of a difference between the probabilities RBNP  

and MLPP  of the compared networks, an uncertainty interval 

for a random quantity MLPRBN PPP −=∆  is to be determined 
as well. In this case, it is not obvious that the estimations 

RBNP  and MLPP  are independent. Change of a seed may alter 
fault classes’ distinguishability and, in this way, may influence 
both estimations in the same direction. Figure A1 of Appendix 
II illustrates the behavior of these estimations for Case 1 of 
Table 3. It can be clearly seen that certain correlation between 
RBN and MLP probabilities takes place. To proceed with the 
precision analysis, we computed directly a standard deviation 
of the quantity P∆  and obtained the result P∆σ =0.0043. 

Concerning quantities P∆  obtained for different seeds as 
random and independent, we come to the following results: a 
standard deviation for the difference between the averaged 
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probabilities RBN
avP  and MLP

avP  is equal to 

NPavP ∆∆ = σσ =0.00043 and the corresponding 
uncertainty interval is ±0.00086. Returning back to Table 3, 
we can conclude now that the RBN probability increments for 
Case 6 and Case 8 as well as the mean increment of 0.0009, 
although being small, are still statistically significant. 

In order to have greater confidence in the conclusions on 
the analyzed networks, the comparative calculations were 
repeated for GT2, which differs from GT1 in application and 
gas path structure. 

5. NETWORKS’ COMPARISON: CASE OF THE 
AIRCRAFT ENGINE (GT2) 

 
Five variables are used to monitor GT2 health condition 

and 14 fault parameters are involved in fault simulation. These 
variables and parameters are described in Table A3 and Table 
A4 of Appendix I. Single and multiple fault classifications 
consist from 14 and 7 items, respectively. More information 
about the monitored variables and the classification variations 
for the given engine can be found in [20].  

After numerous preliminary experiments with 
classification and network parameters, the following optimal 
values have been found:  

- 500 patterns per a single fault class and 1000 patterns 
per multiple one, 

- 36 perceptron hidden layer nodes,  
- 77 RBN hidden nodes for a single fault classification 

and 105 nodes for multiple one. 
We consider the chosen node numbers as enlarged. The 

comparison will be performed only for these numbers because 
they allow to better reveal possible RBN’s advantages.  

Given the chosen parameters, calculations with 100 
different seeds were performed and the same probabilities avP  
were obtained as in the case of GT1. The results for two 
operating modes and two class types (four computational cases 
in total) are shown in Table 5. The case numeration for the 
enlarged node numbers is conserved here. 

First, we compared Table 3 and Table 5 to conclude on 
diagnosability of the analyzed engines. Averaging the data in 
these tables separately for single and multiple class types, we 
can state that GT2 has lower overall diagnosability than GT1: 
the true positive rate decreases from 0.8082 (GT1, enlarged 
node numbers) to 0.7410 (GT2) for the single class type and 
respectively from 0.8734 to 0.7694 for the multiple class type. 
This result has a natural explanation: as described above, GT2 
has less monitored variables and more fault classes. 

The given above probabilities also allows estimating the 
effect of a classification type change from single to multiple. 
For both gas turbines the true positive rates rises: by 0.0654 
for GT1 and by 0.0284 for GT2. The increase of diagnostic 
accuracy can be interpreted as a result of two opposite 
tendencies. On the one hand, a multiple type classes occupy 
greater areas than single ones resulting in higher class’ 
intersection and lower diagnostic accuracy. On the other hand, 
the change to the multiple type classification means 
considerable reduction of a total number of fault classes and 
the corresponding increase in accuracy. As can be seen, the 

second tendency prevails for the analyzed engines and their 
classifications.  

 
Table 5. Results of the network comparison on GT2 data 

(probabilities avP  averaged for 100 seeds) 

Class  
type 

Network 
type 

Mode 1 Mode 2 

 
MLP 

 
Single 

RBN 

Case 2 
0.7338 
0.7349 

Case 4 
0.7470 
0.7485 

 
MLP 

 
Multiple

RBN 

Case 6 
0.7749 
0.7787 

Case 8 
0.7596 
0.7643 

 
Returning to the main purpose of this paper of selecting a 

diagnostic technique, let us compare the performances of the 
networks under analysis. We can see from Table 5 that the 
RBN is slightly better in all four considered cases and the 
difference is greater for the multiple fault classes. The 
corresponding average probability increment is 0.0028 
(0.28%). In this way, an advantage of the radial basis network 
in the application to the analyzed turbofan seems to be a little 
more notable than in the case of the industrial gas turbine. 

As regards the computational precision, it was analyzed 
for GT2 like it was done in the previous section for GT1. 
Standard deviations σ of the probabilities P  are included in 
Table 6. We can see that the presented data do not differ 
considerably from the corresponding GT1 data given in Table 
4. A new standard deviation mean value Pσ  = 0.0051 is close 
to the previous one Pσ  = 0.0047 as well. As explained before, 
the uncertainty interval for averaged probabilities of Table 5 
will be NPσ2± =±0.00102. Consequently, one can 
conclude that the RBN probability increments observable in 
this table are statistically significant. 

 
Table 6. Computational precision of the probabilities P  
computed for GT2 (standard deviations σ obtained  
for 100 seeds) 

Class  
type 

Network 
type 

Mode 1 Mode 2 

 
MLP 

 
Single 

RBN 

Case 2 
0.0053 
0.0054 

Case 4 
0.0047 
0.0046 

 
MLP 

 
Multiple

RBN 

Case 6 
0.0050 
0.0051 

Case 8 
0.0050 
0.0052 

6. DISCUSSION 
 
The presented network comparison has shown that the 

change from the multilayer perceptron to the radial basis 
network can enhance gas turbine diagnosis accuracy. This 
positive effect is statistically significant but very small: the 
corresponding increase of correct diagnosis probability is 
0.09% for the first analyzed gas turbine and 0.28% for the 
second one. On the other hand, the RBN is much more 
demanding in terms of necessary computation time and 
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physical computer memory. In general, the advantage of this 
neural network seems to be disputable. We can conclude that 
there is no reason to change from the MLP to the RBN in gas 
turbine diagnostic applications.  

The fact that the fault recognition performances of two 
different neural networks are very close is worthy of 
discussion. Furthermore, comparing different gas turbine 
diagnostic techniques in our previous study [12], we arrived to 
a similar conclusion that the perceptron and the Bayesian 
approach provide equal levels of diagnostic accuracy. So, 
three different recognition techniques have the same accuracy. 
What explanation can be provided for this? We believe that all 
three techniques are sophisticated enough and are well suited 
for solving this specific problem – gas turbine fault 
recognition. No one of these techniques can further enhance 
diagnostic accuracy because the accuracy level achieved is 
near a theoretical accuracy level inherent to the analyzed 
engine with its fault classification. Following this idea, we 
suppose that within the approach used and the classification 
accepted no other recognition technique will be capable to 
considerably enhance diagnostic accuracy.  

Instead, all efforts should be made to reduce fault class 
intersections, for example, by reducing measurement 
inaccuracy, installing more sensors in the gas path, and 
decreasing deviation errors. The options of multipoint 
diagnosis and diagnosis at transient operation will also result 
in a higher diagnostic accuracy. They are now considered in 
gas turbine diagnostics and it would be interesting to compare 
the networks in the application to these options. However, as 
shown in [20], both options imply a drastic increase of the 
number of network’s unknown coefficients. At the same time, 
the radial basis network is already demanding of computer 
memory. For these reasons, it will be too difficult to perform 
calculations with an elevated number of the coefficients.  

As can be seen, in the present paper we tried to perform 
the network comparison in maximally varying conditions of 
engine health, operation, and diagnosis. Nevertheless, we 
could not embrace all possible conditions within the limits of 
one paper. For example, classes that suppose simultaneous 
faults in two gas turbine modules were not considered. It was 
not possible to realize them in the presented study because the 
number of considered cases is already large and a new 
classification type will require a lot of additional calculations. 
However, we are going to extend the network comparison on 
the case of multiple module faults in our further studies.  

Although the idea to compare different fault recognition 
techniques is not new, we think that this paper makes a 
practical contribution to gas turbine diagnostics. The point is 
that this discipline has a history of approximately five decades 
and embraces a lot of approaches, particular methods, and 
their variations. However, a designer of a real monitoring 
system would lack practical recommendations to develop the 
system in an optimal manner. To help him, more comparative 
investigations should be conducted beforehand. Such 
investigations focused on elaborating practical advices will 
allow optimal design of all monitoring system’s elements in a 
short time. In this way, the present paper contributes to a 
better selection and tuning of a fault classification technique.  

 

CONCLUSIONS 
 
Thus, the comparison of two recognition techniques, 

multilayer perceptron (MLP) and radial basis network (RBN), 
has been performed in the present paper. The necessary fault 
classification was formed with the use of the thermodynamic 
model. The classification and the recognition techniques were 
embedded into a special testing procedure that computes for 
each technique the probabilities of a correct diagnosis.  

In order to reduce random computational errors, every 
comparative calculation was repeated many times by means of 
the mentioned procedure under the same conditions and the 
resulting probabilities were averaged. In addition, to draw firm 
conclusions about the compared techniques, the comparative 
calculations were executed under varying conditions: different 
engines, their operating modes, network parameters, and 
diagnostic conditions. 

Summing up the comparison results for all considered 
cases, it can be stated that the application of the RBN can 
bring in only slight enhancement of gas turbine diagnosis 
reliability. Moreover, greater memory and computation time 
required for the RBN should be also taken into account when a 
recognition technique is chosen for a real gas turbine 
monitoring system. In general, it seems to be unnecessary to 
change from the multilayer perceptron traditionally used in gas 
turbine diagnostics to the radial basis networks.  
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APPENDIX I. MONITORED VARIABLES AND FAULT 
PARAMETERS 
 
Table A1. Monitored variables of GT1. 

№ Variables 
1 Compressor total pressure 
2 Gas generator turbine total pressure 
3 Compressor total temperature 
4 Gas generator turbine total temperature 
5 Power turbine total temperature 
6 Fuel consumption 

 
Table A2. Simulated fault parameters of GT1. 
№ Parameters 
1 Compressor flow parameter 
2 Compressor efficiency parameter 
3 High pressure turbine flow parameter 
4 High pressure turbine efficiency parameter 
5 Power turbine flow parameter 
6 Power turbine efficiency parameter 
7 Combustion chamber total pressure recovery parameter 
8 Combustion efficiency parameter 
9 Inlet device total pressure recovery factor 

 
Table A3. Monitored variables of GT2. 

№ Variables 
1 Intermediate pressure turbine temperature 
2 Low pressure rotor speed  
3 Intermediate pressure rotor speed 
4 High pressure rotor speed 
5 Total pressure ratio 

 
Table A4. Simulated fault parameters of GT2. 

№ Parameters 
1 Low pressure compressor flow parameter 
2 Low pressure compressor efficiency parameter 
3 Intermediate pressure compressor flow parameter 
4 Intermediate pressure compressor efficiency parameter 
5 High pressure compressor flow parameter 
6 High pressure compressor efficiency parameter 
7 Low pressure turbine flow parameter 
8 Low pressure turbine efficiency parameter 
9 Intermediate pressure turbine flow parameter  

10 Intermediate pressure turbine efficiency parameter 
11 High pressure turbine flow parameter 
12 High pressure turbine efficiency parameter 
13 Combustion chamber total pressure recovery parameter 
14 Combustion efficiency parameter  
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APPENDIX II. BEHAVIOR OF PROBABILITY ESTIMATIONS 
 
Table A5. Distributions of the probabilities P  (GT1) 

Mode 1 Mode 2 Class  
type 

Network  
type Basic node numbers Enlarged node numbers Basic node numbers Enlarged node numbers 
 
 
 
MLP 
 
 
 
 

 
 
 
 
 
 
 

Singular 
 
 
 
 
RBN 

 
 

 
 

 
 

 

 
 

 
 

 

 
 
 
 
MLP 
 
 
 
 

 
 
 
 
 
 
 

Multiple 
 
 
 
RBN 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
Fig. A1. Correlation of the networks’ probabilities P  (GT1, Case 1)  


