

INTERCOOLED-RECUPERATED GAS-TURBINE-CYCLE ENGINE COUPLED WITH PNEUMATIC MOTOR WITH QUASI-ISOTHERMAL HEAT ADDITION

Branko Stankovic Ex-Mc Master University 110-2091 Hurontario Street Mississauga, ON, Canada +1-647-618-2114 stankovb@yahoo.com

ABSTRACT

A hybrid energy system has been proposed, consisting of an intercooled-recuperated gas-turbine-cycle engine coupled with a pneumatic motor (compressed-air engine), using reciprocating linear motion of a piston or a rotary vane motor, with quasi-isothermal heat addition process. Both gas-turbine (GT) engine and pneumatic motor have their own and separate combustion processes, occurring serially one after another, owing to the fact that in the GT engine exhaust gas there is still enough oxygen needed for combustion of fuel (liquid or gaseous) in an internal combustion engine. The quasiisothermal nature of the heat addition process within the pneumatic motor is a result of averaging of the two thermodynamic processes, simultaneously interconnected within a cylinder-piston motor: isobaric heat addition and adiabatic gas expansion. The final expansion pressure at the end of the pneumatic-motor quasi-isothermal heat addition/expansion process is considered to correspond to the initial specific volume of inlet ambient air.

Three (3) possible configurations of such a hybrid energy system were analyzed, differing only in the sequence of equipment connecting in the direction of air/ working-gas flow (GT-cycle combustor, GT, pneumatic motor with combustor and recuperator). The results showed that the most efficient cycle configuration is No. 2, in which quasi-isothermal heat addition / gas expansion in the pneumatic motor occurs right after the GT-cycle heat addition in the associated GT-cycle combustor, then the partly expanded combustion gas first cools down in the GT-cycle recuperator, prior to its final expansion in the GT and exhaust to atmosphere. Estimated overall cycle thermal efficiency for the system configuration #2 ranges from ~62% for a maximum GT/pneumatic motor inlet temperature of 1500 K ($1227^{\circ}C$ or $2240^{\circ}F$) to ~66% for a maximum GT/pneumatic motor inlet temperature of 1700 K ($1427^{\circ}C$ or $2600^{\circ}F$), assuming a purely isothermal heat addition/expansion process in the pneumatic-motor cylinder. This is likely due to the fact that there is no necessity to cool the low-temperature GT of this configuration. Overall cycle thermal efficiency increases with the ambient temperature decrease for any cycle configuration.

INTRODUCTION

It is well known that increasing thermal efficiency (efficiency of thermal energy conversion into mechanical/ electrical energy) of thermodynamic cycle used for a powerplant reduces environmental pollution and climate changes phenomena ("global warming effect") caused by GHG-s, such as carbon-dioxide (CO_2) and water vapor (H_2O), as direct products of fuel combustion in fossil-fuels power-plants.

It is also very well known fact that natural-gas fired combined gas/steam turbine power plants (GTCC-s) are among those with highest cycle thermal efficiency. The best cycle thermal efficiency of GTCC-s is currently about 60% (based on lower heating value (LHV) of fuel, ISO standard conditions), for those GT-s using closed-loop steam cooling (internal convection cooling) of rotors and vanes/blades. Significance of the type of GT rotors/vanes/blades cooling for cycle thermal efficiency has been described and explained in detail in references [5], and [6]. The open-loop cooling techniques incorporate: internal convection, film cooling and transpiration cooling. Ref [6] states that: open-loop transpiration steam cooling, open-loop steam internal convection cooling, transpiration air cooling, film steam cooling, film air cooling and internal convection air cooling have been found to yield lower values of plant efficiency, in decreasing order, as compared to closed loop steam cooling.

Ref. [7] (as well as many other sources) recognizes that GT cycle thermal efficiency could benefit from introduction of a recuperative heat exchanger (recuperator or regenerator), compressor intercooler or their combination (intercooledrecuperated GT cycle).

On the other hand, it is well known that the conventional internal combustion engine (ICE), whether of the compression ignition or Diesel type, or of the spark-ignition or Otto type, has a disadvantage of being of low thermal efficiency. A principal source of the ICE-s inefficiency is its low volumetric efficiency, related to high energy losses contained in large volumes of the ICE-s exhaust gases, resulting in wasteful dissipation of the energy (pressure, temperature) contained in them. Plenty of technical solutions have been proposed and/or employed using the ICE-s exhaust gases as an energy device, with only modest (or not at all) improvements in the ICE-s thermal efficiency.

For example, the ICE-s exhaust gases have been used to drive a turbocharger, a form of supercharger, a gas compressor that is used for forced air induction of an ICE, which increases the density of air entering the ICE to create more power, thus improving the ICE-s volumetric efficiency. A turbocharger has the compressor powered by a gas-turbine, which is driven by the ICE-s exhaust gases rather than direct mechanical drive (as with supercharger). The turbocharger (or supercharger in general) is typically followed by a compressedair intercooler which contributes to the improvement of the ICEs volumetric efficiency by increasing the intake air density through an isobaric cooling process. By lowering of the intake air temperature the intercooler also eliminates the danger of pre-detonation (knock) of the fuel-air mixture prior to timed spark ignition in a spark-ignition ICE. However, while turbocharger (with intercooler) has increased the power output of the ICE, no significant increase (or not at all) of the ICE-s thermal efficiency has been achieved.

Thermal efficiency improvement of a turbocharged ICE has been considered by many researchers and has been proposed by ref. [1] and [2], among many others. This topic is also the main subject of this paper.

Ref. [2] disclosed/proposed a compound positivedisplacement internal-combustion engine having a gas turbine driven by the ICE-s exhaust gases, a recuperator for transferring the waste heat contained in the fully-expanded exhaust gases to the fresh air incoming into the ICE, and a two-stage intercooled compressor for compressing and evacuating of the cooled-down exhaust gases to the atmosphere, driven by the said gas turbine. Thus, the proposed energy system does not present a turbocharged ICE. but a compound (a hybrid energy system) between a recuperated ICE and an intercooled GT engine. Ref. [2] does not explicitly quantify the improvement of the ICE-s thermal efficiency, but states that: "the improved internal combustion compound engine is simple, rugged and highly efficient, has a wide range of applicability and is of great versatility and adaptability".

Ref. [1] disclosed/proposed an "Engine Turbo Compound System", that is a gas engine (ICE) – GT combined cycle, comprising: a GT engine consisting of a compressor and a GT, with a gas engine (ICE) installed between them, coupled with a bottoming steam-cycle. Thus, essentially the concept represents a turbocharged ICE with supplementary-fired GT, optionally integrated with a bottoming steam-cycle. The source claims high efficiency of the compound energy system resulting from use of the ICE, which represents a "super-high pressure and super-high temperature GT with no cooling air". Thus, for the ICE-s maximum pressure of 160 bar (16 MPa or 2320 psi) and the maximum temperature of 1700°C (1973 K or 3092°F), and for the GT inlet temperature of 1200°C (1473 K or 2192°F) and inlet pressure of 14 bar (1.4 MPa or 203 psi), the claimed cycle thermal efficiency is 45% in the GT-ICE simple-cycle mode of operation and 59% in the GT-ICE combined-cycle mode of operation, based on the lower heating value (LHV) of fuel.

Ref. [3] disclosed an improved fluid power drive system, developing pressurized fluid form a partly-expanded GT-engine (compressor + GT) exhaust gas, supplied for use in operating pneumatic motors or similar fluid responsive devices. In the case that some or all of the pneumatic motors are nonoperational for whatever reason, a normally idle GT has been provided, which is able to run on the excess pressurized fluid not required by some or all of the pneumatic motors, released by a variable pressure relief mechanism.

The motivation for this work is continued research on possible thermal efficiency improvement of hybrid intercooled GT-ICE based energy systems, especially when a pneumatic motor (compressed-air driven engine) is used instead of the ICE (engine with inherently included compression process). Thus, the work is primarily focused on hybrid energy systems combining an intercooled GT and a pneumatic motor with a separate heat addition, independent from the GT combustion process.

DESCRIPTION OF G.T. ENGINE-PNEUMATIC MOTOR HYBRID ENERGY SYSTEM

This section of the paper outlines a brief description of the proposed hybrid energy system, consisting of an intercooled-recuperated gas-turbine-cycle engine coupled with a pneumatic motor, using reciprocating linear (axial or radial) motion of a piston or a rotary vane motor or a turbine motor, with quasi-isothermal heat addition process. Both GT engine and pneumatic motor have their own and separate combustion processes, occurring serially one after another, owing to the fact that in the GT engine exhaust gas there is still enough oxygen needed for combustion of fuel (liquid or gaseous) in a pneumatic motor or an ICE. The quasi-isothermal nature of the heat addition process within the pneumatic motor is a result of averaging processes. of the two thermodynamic simultaneously interconnected within a cylinder-piston motor: the isobaric heat addition and the adiabatic gas expansion. The final expansion pressure at the end of the pneumaticmotor guasi-isothermal heat addition/expansion process is considered to correspond to the initial specific volume of inlet ambient air. Since in the pneumatic motor there really is not any internal compression, there is also no danger of predetonation of the fuel-air mixture, as typically is the case with a spark-ignition ICE with inherent internal compression.

FIG. 1 – Flow Diagram of an Intercooled-Recuperated GT-Cycle Engine Coupled with a Pneumatic Motor with Quasi-Isothermal Heat Addition – Configuration #1

FIG. 2 – Typical Thermodynamic Temperature-Entropy Diagram of an Intercooled-Recuperated GT-Cycle Engine Coupled with a Pneumatic Motor with Quasi-Isothermal Heat Addition – **Configuration #1**

The associated flow diagrams are depicted in figure FIG. 1 thru FIG. 3. Fuel (natural gas or fuel oil) supply lines are depicted by red lines, GT cooling-air flow is depicted by green lines, while electricity lines are colored blue.

Figure 1 depicts a flow diagram of the **Configuration #1** of an Intercooled-Recuperated GT-Cycle Engine Coupled with a Pneumatic Motor with Quasi-Isothermal Heat Addition, consisting of the following interconnected equipment and processes depicted in the associated thermodynamic temperature-entropy diagram in **Figure 2**:

 (a) a first-stage of air compressor for first-stage adiabatic compression of ambient air (adiabatic process 1-2);

(b) a compressor intercooler for cooling down to near ambient temperature of the air partly compressed in the firststage compressor (isobaric process **2-3**);

 (c) a second-stage air compressor for second-stage adiabatic compression of the intercooled partly compressed air (adiabatic process 3-4);

(d) a compressed-air receiver for equalizing eventual air flow surges due to coupling a GT engine and a piston engine (pneumatic motor);

(e) a recuperator/heat exchanger for internal heatexchange between the compressed air and the fully expanded combustion gas (isobaric processes **4-5** and **8-9**);

(f) a combustion chamber for isobaric heat addition to the compressed air to a maximum cycle temperature (isobaric process **5-6**);

FIG. 3 – Flow Diagram of an Intercooled-Recuperated GT-Cycle Engine Coupled with a Pneumatic Motor with Quasi-Isothermal Heat Addition – Configuration #2

FIG. 4 – Typical Thermodynamic Temperature-Entropy Diagram of an Intercooled-Recuperated GT-Cycle Engine Coupled with a Pneumatic Motor with Quasi-Isothermal Heat Addition – **Configuration #2**

(g) a pneumatic motor (compressed-air engine), typically using reciprocating linear (axial or radial) motion of a piston in a cylinder, for partial adiabatic expansion of the combustion gas; although two pneumatic-motor cylinders are shown, four or more cylinders may be needed; (h) a quasi-isothermal combustor for isobaric heat addition to the combustion gas simultaneously expanding in the pneumatic-motor cylinder, virtually maintaining the constant maximum cycle temperature during the combustion-gas expansion in the pneumatic motor (isothermal process **6-7**);

(i) a gas turbine for full adiabatic expansion to a near atmospheric pressure of the combustion gas partly expanded in the pneumatic motor (adiabatic process **7-8**);

(j) a crank shaft of the pneumatic motor for conversion of a reciprocating linear motion of the piston into a rotational motion;

(k) preferably, a flywheel of the pneumatic motor for maintaining of the crank-shaft rotational speed using its inertial forces (moment of inertia), thus equalizing a potentially fluctuating torque of the pneumatic motor during startup/ operation/transients;

(I) a gear box for transmission of relatively slow rotational speed of the crank shaft into the rotational speed needed for a rotor of an electric generator; and

(m) electric generator(s) for electricity generation.

The working-gas sequence of flow in the **Configuration #1** is as follows: quasi-isothermal heat addition / gas expansion

FIG. 5 – Flow Diagram of an Intercooled-Recuperated GT-Cycle Engine Coupled with a Pneumatic Motor with Quasi-Isothermal Heat Addition – Configuration #3

FIG. 6 – Typical Thermodynamic Temperature-Entropy Diagram of an Intercooled-Recuperated GT-Cycle Engine Coupled with a Pneumatic Motor with Quasi-Isothermal Heat Addition – **Configuration #3**

in the pneumatic motor occurs right after the GT-cycle heat addition in the associated GT-cycle combustor, then the partly expanded combustion gas continues to expand in the GT prior to its exhaust to the GT-cycle recuperator.

As the first/second compressor stage CPR increases, the overall compressor work surpasses the GT output, which is installed on the same shaft in order to drive the compressor(s). In this case, the electric generator **G** should act as an electric motor, supplied with electricity from the electric generator **G1**, driven by the pneumatic motor.

In the **Configuration #1**: the cooling-air flow (depicted with green line) for cooling of the GT is taken from the high-pressure end of the first-stage compressor.

Figure 3 depicts a flow diagram of the **Configuration #2** of an Intercooled-Recuperated GT-Cycle Engine Coupled with a Pneumatic Motor with Quasi-Isothermal Heat Addition, consisting of the same interconnected equipment/processes as depicted/explained in **FIG. 1** & **FIG. 2**, with the following variation in the working-gas flow sequence:

(i) quasi-isothermal heat addition / gas expansion in the pneumatic motor occurs right after the GT-cycle heat addition in the associated GT-cycle combustor, then the partly expanded combustion gas first cools down in the GT-cycle recuperator, prior to its continued expansion in the low-temperature GT and exhaust to atmosphere.

The working-gas flow sequence of the **Configuration #2** is depicted by the following processes, accordingly shown in the associated thermodynamic temperature-entropy diagram in **Figure 2**: first-stage adiabatic compression process **1-2**, isobaric intercooling process **2-3**, second-stage adiabatic compression process **3-4**, isobaric internal heat-exchange processes **4-5** and **7-8** in the recuperator, isobaric GTcombustor heat addition process **5-6**, quasi-isothermal headaddition (heat addition – adiabatic expansion) process **6-7** in the pneumatic motor, low-temperature GT adiabatic expansion process 8-9, and isobaric heat rejection process 9-10 to atmosphere.

For this configuration, the overall compressor work for any chosen first/second compressor stage CPR surpasses the GT output, which is installed on the same shaft in order to drive the compressor(s). Thus in this case, the electric generator Galways acts as an electric motor, supplied with electricity from the electric generator G1, driven by the pneumatic motor.

For the **Configuration #2** there is no need for cooling of the low-temperature GT and, consequently, the cooling-air flow lines are not depicted in **FIG. 3**.

Figure 5 depicts a flow diagram of the **Configuration #3** of an Intercooled-Recuperated GT-Cycle Engine Coupled with a Pneumatic Motor with Quasi-Isothermal Heat Addition, consisting of the same interconnected equipment/processes as depicted/explained in **FIG. 1**, with the following variation in the working-gas flow sequence:

(ii) after the GT-cycle heat addition in the associated GT-cycle combustor, the combustion gas first expands in the GT and then continues its quasi-isothermal heat addition / gas expansion in the pneumatic motor, prior to its exhaust to the GT-cycle recuperator and then to atmosphere.

The working-gas flow sequence of the **Configuration #3** is depicted by the following processes, accordingly shown in the associated thermodynamic temperature-entropy diagram in **Figure 2**: first-stage adiabatic compression process **1-2**, isobaric intercooling process **2-3**, second-stage adiabatic compression process **3-4**, isobaric internal heat-exchange processes **4-5** and **8-9** in the recuperator, isobaric GTcombustor heat addition process **5-6**, high-temperature GT adiabatic expansion process **6-7**, quasi-isothermal lowertemperature head-addition (heat addition – adiabatic expansion) process **7-8** in the pneumatic motor, and isobaric heat rejection process **9-10** to atmosphere.

For this configuration, with the first/second compressor stage CPR increase the overall compressor work surpasses the GT output, which is installed on the same shaft in order to drive the compressor(s). Thus, for this case also, the electric generator **G** should act as an electric motor, supplied with electricity from the electric generator **G1**, driven by the pneumatic motor.

In the **Configuration #3**: the cooling-air flow (depicted with green line) for cooling of the GT is taken from the highest-pressure end of the second-stage compressor.

ASSUMPTIONS AND RESULTS

This section of the paper summarizes assumptions and simplifications upon which associated thermodynamic calculations have been based and discusses obtained results.

There are two sets of assumptions used in associated thermodynamic calculations: (1) **simplified** (more ideal) set of assumptions; and (2) **realistic** (more real) set of assumptions.

In addition, the following general assumptions have been used throughout the calculations: ambient temperature of 15° C (288 K or 59° F), temperature of compressed air intercooling 27°C (300 K or ~81°F), two maximum cycle temperatures of 1500 K (1227°C or ~2241°F) and 1700 K (1427°C or ~2601°F), respectively, used in both the GT and the pneumatic-motor, a GT compression process isentropic efficiency of 85%, a GT expansion process isentropic efficiency of 90%, a recuperator effectiveness of 90%, a pressure drop of 2.5% in the intercooler, a pressure drop of 2% in the combustor and the pneumatic motor, and a pressure drop of 5% in each side of the recuperator.

An additional general assumption is that the final expansion pressure at the end of the pneumatic-motor quasiisothermal heat addition/expansion process in all three hybridenergy-system configurations corresponds to the initial specific volume of inlet ambient air, since the working-gas exhaust process in the pneumatic-motor cylinder is considered isochoric (constant-volume).

Thermal efficiency of the hybrid energy system has been estimated according to its definition from the First Law of Thermodynamics: 100% minus the ratio of the energy rejected to atmosphere and the total heat input.

Accordingly, thermal efficiency of the **Configurations** #1 & #2 is generally given by the following expressions, in accordance with thermodynamic states numerals shown in **FIGS. 2** & **4**, respectively:

$$\eta_{1} = 1 - \frac{\left[c_{P} \cdot \left(T_{2} - T_{3}\right) \cdot \left(1 - m_{cool}\right) + c_{P} \cdot \left(T_{9} - T_{1}\right)\right]}{\left(1 - m_{cool}\right) \cdot \left[c_{P} \cdot \left(T_{6} - T_{5}\right) + R \cdot T_{6=7} \cdot LN\left(\frac{p_{6}}{p_{7}}\right)\right]}$$
$$\eta_{2} = 1 - \frac{\left[c_{P} \cdot \left(T_{2} - T_{3}\right) + c_{P} \cdot \left(T_{9} - T_{1}\right)\right]}{\left[c_{P} \cdot \left(T_{6} - T_{5}\right) + R \cdot T_{6=7} \cdot LN\left(\frac{p_{6}}{p_{7}}\right)\right]}$$

Similarly, thermal efficiency of the **Configuration #3** is generally given by the following expression, in accordance with thermodynamic states numerals shown in **FIG. 6**:

$$\eta_{3} = 1 - \frac{\left[c_{P} \cdot (T_{2} - T_{3}) + c_{P} \cdot (T_{9} - T_{1})\right]}{\left[c_{P} \cdot (T_{6} - T_{5}) \cdot (1 - m_{cool}) + R \cdot T_{7=8} \cdot LN\left(\frac{p_{7}}{p_{8}}\right)\right]}$$

"*R*" in the above expressions designates gas constant of the working gas, typically estimated as a ratio of the universal gas constant (8.314 kJ/(k-mol*K)) and the molecular mass of the working gas (28.96 kg/k-mol for air). Also, " C_p " in the above expressions designates working-gas specific heat at constant pressure in kJ/kg. It is considered constant (invariable) or variable with gas temperature, depending on assumptions. " m_{cool} " in the above expressions designates a GT cooling-air fraction, depending on adopted assumptions.

Cycle thermal efficiency of the hybrid energy system can be rewritten in the form of ratio Total-Power-Output/Total-Heat-Input, where compressor-stages and GT outlet temperatures T_2 , T_4 and $T_7/T_8/T_9$, respectively, take into account inefficiencies in the compression and expansion processes, respectively. Thus, expressions for thermal efficiencies of Configurations #1, #2 and #3 become as follows:

$$\eta_{1} = \frac{\left[c_{p} \cdot \frac{(T_{7} - T_{8})}{(1 - m_{cool})} - c_{p} \cdot \left[\frac{(T_{2} - T_{1})}{(1 - m_{cool})} + (T_{4} - T_{3})\right] + \frac{R \cdot T_{6=7}}{(1 - m_{cool})} \cdot LN\left(\frac{p_{6}}{p_{7}}\right)\right]}{\left[c_{p} \cdot (T_{6} - T_{5}) + R \cdot T_{6=7} \cdot LN\left(\frac{p_{6}}{p_{7}}\right)\right]}$$
$$\eta_{2} = \frac{\left[c_{p} \cdot (T_{8} - T_{9}) - c_{p} \cdot (T_{2} - T_{1} + T_{4} - T_{3}) + R \cdot T_{6=7} \cdot LN\left(\frac{p_{6}}{p_{7}}\right)\right]}{\left[c_{p} \cdot (T_{6} - T_{5}) + R \cdot T_{6=7} \cdot LN\left(\frac{p_{6}}{p_{7}}\right)\right]}\right]}$$

$$\eta_{3} = \frac{\left[\left(p_{8} \right) \right]}{\left[c_{P} \cdot \left(T_{6} - T_{5} \right) \cdot \left(1 - m_{cool} \right) + R \cdot T_{7=8} \cdot LN \left(\frac{p_{7}}{p_{8}} \right) \right]}$$

The main deficiency of the above expressions for estimate of cycle thermal efficiency is assuming of the heat addition process, and in the same time work extraction process from the pneumatic motor (PM), as an ideal isothermal (constant-temperature) process. In reality, this process is a result of interference of numerous small-scale adiabatic expansions and isobaric heat additions (sort of a horizontal zigzag line in temperature-entropy diagram), simultaneously interconnected within a PM cylinder-piston motor. The larger the number of these small-scale processes, the closer is the process to the isothermal heat addition/work extraction process and the closer is the cycle thermal efficiency to an ideal one. Besides, pneumatic motors have inherent inefficiencies (internal leakage, internal friction), which reduce/limit power output than can be extracted from the compressed air at an operating PM expansion pressure ratio. Conveniently, Configurations #1 & #2 of the proposed hybrid energy system can considerably compensate any possible loss of internal PM efficiency, because of another component - GT - which is located downstream of the PM in the direction of working-gas flow and can retake and reuse whatever surplus of workinggas flow rate and/or pressure comes out from the PM.

Simplified Set of Assumptions and Associated Results

In addition to general assumptions, the simplified set of assumptions includes also the following assumptions:

(a) invariable constant-pressure specific heats of working gas;

(b) invariable ratios of specific heats at constant pressure, C_p , and at constant volume, C_v , of 1.40 for air, in both compression and expansion processes;

(c) neglecting of the GT air cooling fraction, that is, use of an uncooled GT in all three hybrid-energy-system configurations.

Figure 7 depicts a graph of the thermal efficiency change of an Intercooled-Recuperated GT-Cycle Engine coupled with a Pneumatic Motor with quasi-isothermal heat addition with the first-stage-compressor compression pressure ratio (CPR) for the maximum cycle temperature of **1500 K** (1227°C or ~2241°F), using the **simplified** set of assumptions, for all three hybrid-energy-system configurations. It is implicit that the second-stage-compressor CPR is identical to the first-stage-compressor CPR.

FIG. 7 – Thermal efficiency change of an Intercooled-Recuperated GT-Cycle Engine coupled with a Pneumatic Motor with quasi-isothermal heat addition with the first-stage CPR for the maximum cycle temperature of **1500 K**, using **simplified** set of assumptions

From the above graph it can be noted that, under the **simplified** assumptions, **Configurations #1** and **#2** seem to be the most thermally efficient with similar values of thermal efficiency **~62%** (LHV) for the first-stage compressor CPR of 6:1-12:1. On the other hand, **Configuration #3** seems to be the least thermally efficient, with thermal efficiency of about 55.3% (LHV) at the first-stage compressor CPR of ~4:1. For illustration purposes, the same graph depicts also thermal efficiency curve for the reference intercooled-reheat-recuperated (IRR) GT combined-cycle, reaching thermal efficiency of nearly 56% at the first-stage compressor CPR of ~5:1.

Similarly, **Figure 8** depicts a graph of the thermal efficiency change of an Intercooled-Recuperated GT-Cycle Engine coupled with a Pneumatic Motor with quasi-isothermal heat addition with the first-stage-compressor CPR for the maximum cycle temperature of **1700 K** (1427°C or ~2601°F), using the simplified set of assumptions, for all three hybrid-energy-system configurations. Likewise, it is implicit that the second-stage-compressor CPR is identical to the first-stage-compressor CPR.

From the graph shown below in **FIG. 8** it can be noted that, under the simplified assumptions, **Configuration #2** seems to be the most thermally efficient, with thermal efficiency of about **66%** (LHV) for the first-stage compressor CPR of ~12:1. **Configuration #1** is similarly but slightly less thermally efficient, with thermal efficiency of about **65%** (LHV) for the first-stage compressor CPR of ~7:1. On the other hand, **Configuration #3** seems to be the least thermally efficient, with thermal efficiency of about 59% (LHV) at the first-stage compressor CPR of ~4:1. Similarly, the graph also depicts thermal efficiency curve for the reference IRR GT combined-cycle, reaching thermal efficiency of about 59% at the first-stage compressor CPR of ~6:1.

FIG. 8 – Thermal efficiency change of an Intercooled-Recuperated GT-Cycle Engine coupled with a Pneumatic Motor with quasi-isothermal heat addition with the first-stage CPR for the maximum cycle temperature of **1700 K**, using **simplified** set of assumptions

Realistic Set of Assumptions and Associated Results

In addition to general assumptions, the realistic set of assumptions includes the following assumptions:

(a) variable constant-pressure specific heats of working gas;

(b) quasi-variable ratios of specific heats at constant pressure, C_p , and at constant volume, C_v , for air/working gas, in both compression (1.40) and expansion (1.33) processes;

(c) accounting for a realistic GT cooling-air fraction, that is, use of a cooled GT.

Related to realistic assumption (c), ref. [4] gives a very useful estimate of cooling-air fractions for GT-s, depending on the maximum GTIT and the CPR. The crucial referent value in [4] is the cooling-air fraction of about 22% for a max. GT with a TIT of 1425°C (1698 K or 2597°F) and a CPR of 17:1. The realistic set of assumptions has used this referent value at the referent parameters and has assumed a simple linear change of the real TIT for a cooled GT, $T_{IT,cool}$, with respect to the cooling-air fraction, m_{cool} , the maximum TIT, $T_{IT,max}$, and the air temperature at the compressor outlet, $T_{comp.out}$, as follows:

$$T_{IT,cool} = T_{IT,\max} \cdot (1 - m_{cool}) + T_{comp,out} \cdot m_{cool}$$

The cooling-air fraction, m_{cool} , is given by assumed proportional function of the referent parameters, $T_{IT,max,ref} \approx 1700 \text{ K}$, $CPR_{ref} = 17:1$, and $m_{cool,ref} = 0.22$, as follows:

$$m_{cool} = m_{cool,ref} \cdot \frac{T_{comp,out}}{T_{comp,out,ref}} \cdot \frac{(T_{IT,\max} - 1000)}{(T_{IT,\max} - 1000)}$$

Consequently, **Figure 9** depicts a graph of the thermal efficiency change of an Intercooled-Recuperated GT-Cycle Engine coupled with a Pneumatic Motor with quasi-isothermal heat addition with the first-stage-compressor CPR for the maximum cycle temperature of **1500 K** (1227°C or ~2241°F), using the **realistic** set of assumptions, for all three hybrid-energy-system configurations.

FIG. 9 – Thermal efficiency change of an Intercooled-Recuperated GT-Cycle Engine coupled with a Pneumatic Motor with quasi-isothermal heat addition with the first-stage CPR for the maximum cycle temperature of **1500 K**, using **realistic** set of assumptions

From the above graph it can be noted that, under the **realistic** assumptions, **Configuration #2** again seems to be the most thermally efficient, with thermal efficiency of about ~**62.5%** (LHV) for the first-stage compressor CPR of ~11:1. On the other hand, **Configuration #1** is significantly less thermally efficient, with thermal efficiency of above ~58% (LHV) for the first-stage compressor CPR of ~7:1. As with earlier results,

Configuration #3 seems to be the least thermally efficient, with thermal efficiency of about 52% (LHV) at the first-stage compressor CPR of ~4:1. For illustration purposes, the same graph depicts also thermal efficiency curve for the reference IRR GT combined-cycle, reaching thermal efficiency of about 52.7% at the first-stage compressor CPR of ~4:1.

The cycle net specific power output, both total and broken to power consumptions/generations from each of major components (compressor, GT, PM) is shown in **Summary Table of Results** on the last pages, versus maximum cycle temperature and the first/second-stage CPR.

Similarly, **Figure 10** depicts a graph of the thermal efficiency change of an Intercooled-Recuperated GT-Cycle Engine coupled with a Pneumatic Motor with quasi-isothermal heat addition with the first-stage-compressor CPR for the maximum cycle temperature of **1700 K** (1427°C or ~2601°F), using the realistic set of assumptions, for all three hybrid-energy-system configurations.

From the graph shown below in **FIG. 10** it can be noted that, under the realistic assumptions, **Configuration #2** again seems to be the most thermally efficient, with thermal efficiency of about **66%** (LHV) for the first-stage compressor CPR of ~12.5:1. On the other hand, **Configuration #1** is significantly less thermally efficient, with thermal efficiency of about ~60.5% (LHV) for the first-stage compressor CPR of ~7.5:1. As with earlier results, **Configuration #3** seems to be the least thermally efficient, with thermal efficiency of about 53.3% (LHV) at the first-stage compressor CPR of ~4:1. Similarly, the graph also depicts thermal efficiency curve for the reference IRR GT combined-cycle, reaching thermal efficiency of about 54.6% at the first-stage compressor CPR of ~4:1.

FIG. 10 – Thermal efficiency change of an Intercooled-Recuperated GT-Cycle Engine coupled with a Pneumatic Motor with quasi-isothermal heat addition with the first-stage CPR for the maximum cycle temperature of 1700 K, using **realistic** set of assumptions

Similarly, the cycle net specific power output, both total and broken to power consumptions/generations from each of major components (compressor, GT, PM) is shown in **Summary Table of Results** (the last pages), versus maximum cycle temperature and the first/second-stage CPR.

From the graphs shown in FIGS. 7, 8, 9 and 10, it can be noted that the most thermally efficient configuration of the Intercooled-Recuperated GT-Cvcle Engine coupled with a Pneumatic Motor with Quasi-Isothermal Heat Addition appears to be the **Configuration #2**, using both simplified and realistic set of assumptions. The reason and explanation for this result is most probably the absence of the cooling-air flow requirement, since there is no need for cooling of the lowtemperature GT of the Configuration #2. Consequently, the Configurations #1 and #3 are significantly sensitive to the cooling-air flow requirement and their thermal efficiencies are proportionally lower when the realistic assumptions are used. Moreover, even the net specific power output of the Configuration #2 is the largest of all three considered configurations when the realistic assumptions are used for estimation.

Overall cycle thermal efficiency increases with the ambient temperature decrease for any hybrid-energy-system configuration. For example, assuming an ambient temperature of 253 K (-20°C or -4°F), the maximum cycle temperature of 1700 K (1427°C or ~2601°F) and the realistic set of assumptions, maximum thermal efficiencies of the Configurations #1, #2 and #3 become: 62.3%, 70.5% and 54.8%, respectively.

The deficiencies/penalties associated with the use of the proposed hybrid energy system, especially its preferred **Configuration #2**, are likely the following: (1) the need for a large and an expensive recuperator, which probably has to be manufactured from special materials, like ceramics (particularly for very high maximum cycle temperatures); and (2) a large-size and potentially expensive pneumatic motor, likely to be made of a high-alloyed steel.

Typically, sizes of radial-piston pneumatic motors range up to ~35 hp (~26 kW) at speeds of ~4,500 rpm. Axial-piston PM-s have usually even smaller power outputs. Rotary-vane PM-s can operate at speeds of up to 25,000 rpm and can deliver more specific power per pound (weight) than piston PM-s. Turbine PM is the most efficient type due to absence of internal friction, which results in no need for extensive lubrication. Generally, it can be said that PM-s are best suited for small-scale applications, such as within distributed power generation systems. However, because of their constructional similarity with internal-combustion engines, especially when an additional combustion is to take place internally within them, pneumatic motors could certainly be manufactured to larger sizes, most likely resulting in an increased capital cost.

Brief Techno-Economic Analysis

Considering the above technical requirements, capital cost of this hybrid energy system could exceed capital cost of a reference 58%-efficient 400-MWe GTCC plant for more than 2 times: for example ~US\$1000/kW of power versus ~US\$450/kW of power. Assuming: current natural-gas price of US\$4 per million of BTU (November 2010), annual plant operating hours of 5000, electricity price of 5 cents/kWh and

the **Configuration #2** with very high thermal efficiency of ~66% (from the above **FIG. 10**), it is possible to roughly estimate simple return on investment periods for the reference GTCC plant and the GT-PM hybrid energy plant.

(1) Return on investment (*ROI*) period for the reference 58%-efficient 400-MWe GTCC plant is estimated at about **3.4 years**, as follows:

- 400-MWe GTCC plant capital cost:

$$CC_{plant} = \left(450 \frac{\$}{kW}\right) \cdot \left(400,000 \, kW\right) = 180 \, M\$$$

- GTCC plant annual electricity gross profit/gain:

$$G_{electric,year} = \left(5000 \frac{hours}{year}\right) \cdot \left(400,000 \ kW\right) \cdot \left(0.05 \frac{\$}{kWh}\right)$$
$$\Rightarrow G_{electric,year} = 100,000,000 \ \frac{\$}{year} = 100 \ \frac{M\$}{year}$$

- GTCC plant annual fuel consumption:

$$Q_{fuel,year} = \frac{(400,000 \, kJ/s)}{\left[0.58 \cdot \left(1.055 \frac{kJ}{BTU}\right)\right]} \cdot \left(5000 \frac{hours}{year}\right) \cdot \left(3600 \frac{s}{h}\right)$$
$$\Rightarrow Q_{fuel,year} = 11,761,054.6 \frac{MBTU}{year}$$

- GTCC plant annual fuel cost:

$$C_{fuel,year} = Q_{fuel,year} \cdot \left(4.0 \frac{\$}{MBTU}\right) \cong 47 \frac{M\$}{year}$$

- GTCC plant return on investment period:

$$ROI = \frac{CC_{plant}}{\left(C_{electric, year} - C_{fuel, year}\right)} = \frac{180}{\left(100 - 47\right)} [y] \cong 3.4 \text{ years}$$

(2) Return on investment (*ROI*) period for the 66%efficient **Configuration #2** of the GT-PM hybrid energy system is estimated at about **6.8 years**, as follows:

- 400-MWe GT-PM hybrid energy plant capital cost:

$$CC_{plant} = \left(1000 \frac{\$}{kW}\right) \cdot \left(400,000 \, kW\right) = 400 \, M\$$$

- GT-PM hybrid energy plant annual electricity gross profit/ gain:

$$G_{electric,year} = \left(5000 \frac{hours}{year}\right) \cdot \left(400,000 \ kW\right) \cdot \left(0.05 \frac{\$}{kWh}\right)$$
$$\Rightarrow G_{electric,year} = 100,000,000 \ \frac{\$}{year} = 100 \ \frac{M\$}{year}$$

- GT-PM hybrid energy plant annual fuel consumption:

$$Q_{fuel,year} = \frac{(400,000 \ kJ/s)}{\left[0.66 \cdot \left(1.055 \frac{kJ}{BTU}\right)\right]} \cdot \left(5000 \frac{hours}{year}\right) \cdot \left(3600 \frac{s}{h}\right)$$
$$\Rightarrow Q_{fuel,year} = 10,340,370 \ \underline{MBTU}$$

vear

- GT-PM hybrid energy plant annual fuel cost:

$$C_{fuel,year} = Q_{fuel,year} \cdot \left(4.0 \frac{\$}{MBTU}\right) \cong 41.36 \frac{M\$}{year}$$

- GT-PM hybrid energy plant return on investment period:

$$ROI = \frac{CC_{plant}}{\left(C_{electric, year} - C_{fuel, year}\right)} = \frac{400}{\left(100 - 41.36\right)} \cong 6.8 \text{ years}$$

CONCLUSION

A hybrid energy system has been proposed consisting of an intercooled-recuperated GT-cycle engine coupled with a pneumatic motor (compressed-air engine) with quasiisothermal heat addition process. The quasi-isothermal nature of the heat addition process within the pneumatic motor is a result of averaging of the two thermodynamic processes, simultaneously interconnected within a cylinder-piston motor: isobaric heat addition and adiabatic gas expansion. Three configurations of the hybrid energy system have been considered and compared: (1) Configuration #1: quasiisothermal heat addition/gas expansion in the PM occurs right after the GT-cycle heat addition in the associated GT-cycle combustor, then the partly expanded combustion gas continues to expand in the GT prior to its exhaust to the GTcycle recuperator; (2) Configuration #2: quasi-isothermal heat addition/gas expansion in the PM occurs right after the GTcycle heat addition in the associated GT-cycle combustor, then the partly expanded combustion gas first cools down in the GTcycle recuperator, prior to its continued expansion in the GT and exhaust to atmosphere, and (3) Configuration #3: after the GT-cycle heat addition in the associated GT-cycle combustor, the combustion gas first expands in the GT and then continues its guasi-isothermal heat addition / gas expansion in the PM, prior to exhaust to the GT-cycle recuperator and then to atmosphere. For thermal efficiency comparison purposes, two sets of assumptions have been

considered: (a) **simplified** set of assumptions (invariable specific heats/ratios of specific heats of working gas, an uncooled GT); and (b) **realistic** set of assumptions (variable or quasi-variable specific heats/ratios of specific heats of working gas, a cooled GT with a realistic GT cooling-air fraction).

The analysis has indicated that the **Configuration (2)** is the most efficient one, having an estimated overall cycle thermal efficiency of ~62-66% for the maximum GT/PM inlet temperature of **1500-1700 K** for both set of assumptions, simplified and realistic. The superiority of the **Configuration #2** compared to other two configurations results probably from the use of a low-temperature GT which does not need cooling, as opposed to two other **Configurations (1)** and **(3)**, which comprise typical high-temperature GT-s requiring comparatively large cooling-air fractions.

The deficiencies/penalties associated with the use of the proposed hybrid energy system, especially its preferred **Configuration #2**, are the following: (1) the need for a large and an expensive recuperator, which would have to be manufactured from special materials, like ceramics (particularly for very high maximum cycle temperatures); and (2) a large-size and potentially expensive pneumatic motor, made of high-alloyed steel. Nevertheless, the favored **Configuration #2** of the hybrid system could yield a reasonable return on investment period, owing to its very high thermal efficiency and also to a high specific power output (max. from ~1127 kJ/kg to ~1325 kJ/kg) and can thus be readily recommended.

REFERENCES

[1] Tadashi Tsuji, "Performance Analysis on Gas Engine – Gas Turbine Combined Cycle Integrated With Regenerative Gas Turbine", Paper GT-2007-27198, ASME TURBO EXPO 2007 Conference, Montreal, Canada, May 14-17, 2007;

[2] Lin-Shu Wang, **"Compound Engine with Plural Stage Intercooled Exhaust Pump"**, U.S. Patent 4,610,141; September 9, 1986;

[3] Louis C. Hrusch, **"Fluid Power Drive System"**, U.S. Patent 3,826,096; July 30, 1974;

[4] Maria Jonsson & Olav Bolland, "**Gas Turbine Cooling Model for Evaluation of Novel Cycles**", Norwegian University of Science and Technology, Department of Energy and Process Engineering, Proceedings of ECOS 2005, Trondheim, Norway, June 20-22, 2005;

[5] J. P. Yadav & Onkar Singh, "Study of Influence of Different Types of Cooling, Fuel Heating and Steam Generation States on Performance of Simple Gas / Steam Combined Cycle", Paper GT-2007-27359, ASME TURBO EXPO 2007 Conference, Montreal, Canada, May 14-17, 2007;

[6] Y. Sanjaya, Onkar Singh & B. N. Prasada, "Influence of Different Means of Turbine Blade Cooling on the Thermodynamic Performance of Combined Cycle", Applied Thermal Engineering, Vol. 28, Issues 17-18, December 2008, Pages 2315-2326;

[7] Jim Noordermeer, P. Eng., **Training Session 1: "Gas Turbines for Cogeneration & Combined Cycle**", Gryphon International Engineering Services Inc.

SUMMARY TABLE OF RESULTS – Total cycle net specific power output and its breakdown to power consumptions/generations from each of major components

Hybrid Energy System Configuration #1	Total Cycle Net Specific Power Output [kJ/kg]		Compressor Specific Power Input [kJ/kg]		Gas-Turbine Specific Power Output [kJ/kg]		Pneumatic-Motor Specific Power Output [kJ/kg]		Cycle Thermal Efficiency [%]	
First-Stage CPR [-]	1500 K	1700 K	1500 K	1700 K	1500 K	1700 K	1500 K	1700 K	1500 K	1700 K
3:1	418.266	468.014	244.287	239.511	473.138	551.884	189.415	155.641	54.855	55.791
4 : 1	560.570	628.825	320.455	313.554	471.364	548.359	409.660	394.020	57.368	58.755
5 : 1	663.661	744.658	383.441	374.545	470.072	545.698	577.030	573.505	58.234	59.880
6 : 1	742.834	833.108	437.560	426.771	469.091	543.599	711.303	716.280	58.511	60.334
7 : 1	806.027	903.297	485.250	472.654	468.328	541.897	822.949	834.055	58.526	60.481
8 : 1	857.864	960.534	528.035	513.706	467.726	540.490	918.173	933.750	58.408	60.468
9:1	901.263	1008.162	566.939	550.941	467.247	539.310	1000.955	1019.793	58.218	60.364
10 : 1	938.175	1048.418	602.686	585.072	466.866	538.311	1073.995	1095.180	57.988	60.207
11 : 1	969.965	1082.864	635.807	616.627	466.564	537.459	1139.208	1162.031	57.735	60.017
12 : 1	997.624	1112.630	666.704	646.002	466.327	536.730	1198.001	1221.902	57.470	59.807
13 : 1	1021.890	1138.561	695.692	673.507	466.144	536.104	1251.437	1275.965	57.199	59.584
14 : 1	1043.328	1161.301	723.020	699.388	466.007	535.565	1300.340	1325.124	56.926	59.355
15 : 1	1062.379	1181.352	748.889	723.844	465.911	535.102	1345.357	1370.094	56.653	59.121
16 : 1	1079.393	1199.113	773.465	747.037	465.848	534.705	1387.011	1411.445	56.383	58.885
17 : 1	1094.653	1214.904	796.887	769.103	465.815	534.365	1425.724	1449.642	56.115	58.650
18 : 1	1108.387	1228.986	819.270	790.157	465.809	534.077	1461.848	1485.066	55.851	58.415
Hybrid Energy Svstem	Total Cycle Net		Compressor Specific Power		Gas-Turbine Specific Power		Pneumatic-Motor Specific Power		Cycle Thermal	
Configuration #2	Output [kJ/kg]		Input [kJ/kg]		Output [kJ/kg]		Output [kJ/kg]		Efficiency [%]	
First-Stage CPR [-]	1500 K	1700 K	1500 K	1700 K	1500 K	1700 K	1500 K	1700 K	1500 K	1700 K
3 : 1	130.142	115.792	256.228	256.228	203.009	223.545	183.361	148.474	40.985	37.909
4 : 1	307.953	327.382	337.707	337.707	217.086	238.490	428.573	426.598	54.948	56.311
5 : 1	441.777	487.451	405.683	405.683	228.831	250.958	618.629	642.176	59.015	61.305
6 : 1	548.281	615.430	464.533	464.533	238.998	261.753	773.815	818.210	60.778	63.474
7:1	636.228	721.557	516.738	516.738	248.018	271.328	904.949	966.967	61.664	64.602
8 : 1	710.786	811.879	563.857	563.857	256.159	279.971	1018.484	1095.765	62.134	65.239
9 : 1	775.248	890.261	606.937	606.937	263.602	287.872	1118.582	1209.325	62.377	65.612
10 : 1	831.840	959.317	646.721	646.721	270.475	295.170	1208.086	1310.868	62.487	65.827
11 : 1	882.137	1020.898	683.757	683.757	276.874	301.963	1289.020	1402.692	62.514	65.942
12 : 1	927.289	1076.360	718.460	718.460	282.870	308.328	1362.879	1486.492	62.487	65.992
13 : 1	968.164	1126.726	751.154	751.154	288.519	314.325	1430.800	1563.556	62.423	65.998

		r			1		r		1	
14 : 1	1005.431	1172.786	782.099	782.099	293.865	320.001	1493.664	1634.884	62.334	65.971
15 : 1	1039.615	1215.162	811.502	811.502	298.945	325.394	1552.172	1701.270	62.228	65.923
16 : 1	1071.137	1254.353	839.537	839.537	303.789	330.536	1606.885	1763.354	62.111	65.858
17 : 1	1100.341	1290.764	866.346	866.346	308.420	335.453	1658.266	1821.657	61.985	65.781
18 : 1	1127.506	1324.730	892.052	892.052	312.862	340.168	1706.697	1876.613	61.853	65.695
Hybrid Energy System Configuration #3	Total Cycle Net Specific Power Output [kJ/kg]		Compressor Specific Power Input [kJ/kg]		Gas-Turbine Specific Power Output [kJ/kg]		Pneumatic-Motor Specific Power Output [kJ/kg]		Cycle Thermal Efficiency [%]	
First-Stage CPR [-]	1500 K	1700 K	1500 K	1700 K	1500 K	1700 K	1500 K	1700 K	1500 K	1700 K
3 : 1	389.169	447.918	256.228	256.228	386.426	445.654	258.971	258.492	51.419	52.567
4 : 1	480.934	551.439	337.707	337.707	384.157	441.305	434.483	447.841	51.904	53.317
5 : 1	546.633	625.576	405.683	405.683	382.505	438.026	569.811	593.233	51.720	53.313
6 : 1	596.619	682.014	464.533	464.533	381.253	435.444	679.899	711.103	51.321	53.048
7:1	636.217	726.761	516.738	516.738	380.279	433.352	772.676	810.147	50.846	52.680
8 : 1	668.503	763.286	563.857	563.857	379.511	431.623	852.849	895.519	50.351	52.272
9 : 1	695.405	793.760	606.937	606.937	378.901	430.175	923.441	970.522	49.857	51.853
10 : 1	718.203	819.627	646.721	646.721	378.415	428.950	986.509	1037.398	49.375	51.435
11 : 1	737.786	841.888	683.757	683.757	378.029	427.906	1043.514	1097.739	48.908	51.026
12 : 1	754.797	861.264	718.460	718.460	377.727	427.012	1095.529	1152.712	48.459	50.628
13 : 1	769.710	878.292	751.154	751.154	377.494	426.244	1143.370	1203.202	48.028	50.244
14 : 1	782.889	893.378	782.099	782.099	377.320	425.584	1187.667	1249.892	47.613	49.872
15 : 1	794.613	906.836	811.502	811.502	377.197	425.018	1228.918	1293.321	47.216	49.514
16 : 1	805.104	918.918	839.537	839.537	377.117	424.531	1267.524	1333.923	46.833	49.169
17 : 1	814.541	929.821	866.346	866.346	377.075	424.116	1303.812	1372.051	46.466	48.836
18 : 1	823.067	939.708	892.052	892.052	377.067	423.763	1338.052	1407.997	46.112	48.515