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ABSTRACT 
Recently, the health monitoring system of major gas path 

components of gas turbine uses mostly the model based method 

like the Gas Path Analysis (GPA). This method is to find 

quantity changes of component performance characteristic 

parameters such as isentropic efficiency and mass flow 

parameter by comparing between measured engine 

performance parameters such as temperatures, pressures, 

rotational speeds, fuel consumption, etc. and clean engine 

performance parameters without any engine faults which are 

calculated by the base engine performance model. 

Recently, the expert engine diagnostic systems using the 

artificial intelligent methods such as Neural Networks (NNs), 

Fuzzy Logic and Genetic Algorithms (GAs) have been studied 

to improve the model based method. Among them the NNs are 

mostly used to the engine fault diagnostic system due to its 

good learning performance, but it has a drawback due to low 

accuracy and long learning time to build learning data base if 

there are large amount of learning data. In addition, it has a 

very complex structure for finding effectively single type faults 

or multiple type faults of gas path components. 

This work builds inversely a base performance model of a 

turboprop engine to be used for a high altitude operation UAV 

using measured performance data, and proposes a fault 

diagnostic system using the base engine performance model 

and the artificial intelligent methods such as Fuzzy logic and 

Neural Network. 

The proposed diagnostic system isolates firstly the faulted 

components using Fuzzy Logic, then quantifies faults of the 

identified components using the NN leaned by fault learning 

data base, which are obtained from the developed base 

performance model. In leaning the NN, the Feed Forward Back 

Propagation (FFBP) method is used. 

Finally, it is verified through several test examples that the 

component faults implanted arbitrarily in the engine are well 

isolated and quantified by the proposed diagnostic system. 
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INTRODUCTION 

In operation of the aircraft propulsion system, high 

reliability, high availability and low operational cost are very 

important issues for both engine manufacturer and user. 

Therefore, development and application of aircraft propulsion 
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condition monitoring and diagnostics are recently generalized. 

Especially, in case of the propulsion system which is operated 

for long time in severe operating conditions of high altitude 

more than 11Km (36000ft), the health monitoring system must 

be required for precaution and maintenance action against 

faults or performance degradation of the engine. Therefore, a   

condition monitoring is needed to enhance reliability and 

availability of the propulsion system. The model based 

condition monitoring method which can monitor quantitatively 

the condition of major gas path components can be realized by 

analyzing changes of mass flow parameter and efficiency of 

each component [1]. However, because direct measured of 

these component performance characteristic parameter changes 

is impossible during the flight, they can be indirectly obtained 

from changes of measurable performance parameters such as 

temperature, pressure, rotational speed, fuel flow, etc. Therefore, 

a step to monitor the performance trend must be performed 

before the engine diagnostics. The performance trend 

monitoring can be realized by using performance differences 

between the real measured engine performance data and the 

base performance data calculated by the base engine 

performance simulation program. 

Recently, advanced diagnostic methods using NNs, Fuzzy 

Logic, GAs, the knowledge and rule based Expert System, etc. 

have been studied to improve the model based diagnostic 

methods of gas turbine engines. Among them, the NNs is 

mostly used in diagnostic systems due to good learning 

capability, but it has drawbacks due to taking longer learning 

time and lower accuracy if learning data are increased[2].  

Moreover, the NNs structure becomes more complex in 

effective diagnostics of the multiple component faults.   
  

 

Fig. 1 Flowchart of proposed diagnostic system 
 

Therefore, this work proposes a new effective diagnostic 

system using the accurate base engine performance model of 

PWC PT6A-67 turboprop engine, Fuzzy and NN.  Figure 1 

shows the flow of the proposed diagnostic system in this work. 

In order to obtain measured performance parameter changes 

as input data for the diagnostic system, firstly the base engine 

performance model, which can accurately estimate clean engine 

performance, must be needed. Therefore this work generates 

inversely component maps of the PWC PT6A-67 turboprop 

engine using limited performance deck data provided by engine 

user and considering the high altitude engine behaviors, and 

then develops the base engine performance simulation program 

using the generated component maps.  

Using the obtained measured performance parameter changes, 

the faulted components are isolated using Fuzzy Logic, and 

then the isolated components are quantified using the NN 

learned by the learning data set. The verification is carried out 

by showing several test examples how well the proposed 

diagnostic system can detect the component faults due to 

intentionally implanted faults. 

 

TARGET ENGINE AND INVERSE MODELING 

The target engine for this work is PWC PT6A-67 turboprop 

engine which will be used for a long endurance UAV in the 

high altitude operation. This engine is composed of 4 stages 

axial and 1 stage centrifugal compressor, reverse annular 

vaporizing combustor, 1 stage axial compressor turbine, and 2 

stages axial free power turbine with constant speed control. 

Moreover it has 2 stage reduction gear box, and the power is 

flat-rated to 1200 hp. 

Figure 2 shows the schematic view of PT6A-67 turboprop 

engine, and Table 1 illustrates design point performance data of 

this engine [3]. 

 
Fig.2 Schematic view of PT6A-67 turboprop engine 

 

Table 1 Design point performance of PT6A-67 turboprop 

Operation Conditions Static Standard 

Gas Generation rpm 39,000 

Power Turbine rpm 29,894 

Propeller rpm 1,700 

ITT (K) 1,113 

Shaft Power (SHP) 
1,726(Flat-rated to 

1200) 

 

Gas turbine engine performance relies on its components’ 

performance characteristics. Because component maps can be 

generally obtained by lots of experimental tests at various 

operating conditions, it takes long time and needs high cost. 

Thus, most engine manufacturers do not want to provide 

component maps to engine purchasers. Therefore engine users, 

who want to develop the engine performance simulation model, 

have generated component maps using the scaling method from 

similar component maps. However this method is generally 

inaccurate at off-design points. Especially, because the high 

altitude operation of the engine influences greatly the engine 
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performance due to getting worse compressor surge 

characteristics by much lower ambient temperature and 

pressure than design point performance, the scaling method has 

much greater error. 

 
 

Fig.3 Flowchart of component map generation 

 

Therefore this work proposes a new method which can 

generate inversely component maps of PT6A-67 turboprop 

engine using limited engine performance deck data and 

considering high altitude operation behavior. The previous map 

generation method using the system identification method was 

an extended scaling method considered only the shaft rotational 

speed without consideration of altitude and flight speed 

variation [4]. Figure 3 illustrates the flow how to generate 

inversely the component maps from engine performance deck 

data. Figure 4 shows the inversely generated component maps 

such as compressor map, compressor turbine map and power 

turbine map considering high altitude operation behavior using 

the proposed map generation method.  

 

 

 

 
Fig. 4 Component maps generated by the proposed inverse 

method 

 

Figure 5 shows the steady-state base performance model of 

the turboprop engine and the compressor subsystem using 

SIMULINK. The performance model is composed of Ambient 

& Intake subsystem for analyzing flight and ambient conditions 

and intake losses, the compressor subsystem for analyzing 

compressor performance, the combustor subsystem for 

analyzing combustor performance, the compressor turbine 

subsystem for analyzing compressor turbine performance, the 

power turbine subsystem for analyzing power turbine 

performance, and the matching subsystem for matching work 

and mass flow rate between components. 
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Fig. 5 a : Compressor Subsystem module, b : Base 

performance simulation program using SIMULINK 
 

FAULT DIAGNOSTIC PROGRAM 

The proposed fault diagnostic program is composed of the 

Fuzzy Logic program for isolating faults from the monitored 

performance parameter changes and the Neural Network 

program for quantifying the isolated faults. 

Major component fault patterns are considered as the single 

component fault patterns such as compressor fouling, 

compressor turbine erosion and power turbine erosion, and 

multiple component fault patterns combinations of two or three 

single component faults. Table 2 shows seven fault component 

pattern cases of the turboprop engine considered in this work. 

 

Table 2 Considered component fault pattern cases 

 

Fault Cases 

(FC) 
Causes of faults 

FC1 Compressor fouling 

FC2 Compressor turbine erosion 

FC3 Power Turbine Erosion 

FC4 Comp. Fouling & Comp. turbine erosion 

FC5 Comp. Fouling & Power turbine erosion 

FC6 
Comp. turbine erosion & Power turbine 

erosion 

FC7 
Comp. Fouling & Comp. turbine erosion 

& Power turbine erosion 

 

According to Diakunchak’s experimental results [5], the 

compressor fouling give rise to decrease both air mass flow 

parameter and isentropic efficiency of the compressor, and the 

turbine corrosion or erosion give rise to increase air mass flow 

parameter of the turbine but decrease isentropic efficiency of 

the turbine. These component performance parameter change 

trends due to several types of faults are directly applied to the 

proposed fault diagnostic program. 

Table 3 shows the measured parameter change (MPC) 

trends depending on various component fault patterns. Where +, 

++ and +++ mean low, medium and high increase of parameter 

changes respectively, and -, -- and --- mean low, medium and 

high decrease of parameter changes respectively. 

In order to isolate the faulted components, the MAMDANI 

type Fuzzy Inference System (FIS) shown as Figure 6, which is 

developed using FIS editor of MATLAB. The detail of the FIS 

editor and SIMULINK are explained in references [6][7].  

This program can isolate the faulted components from 

measured performance parameter changes and trends. Moreover, 

it can link easily with the proposed health monitoring system 

for the PT6A-67 turboprop engine using MATLAB and 

SIMULINK.    

Table 3 Measured parameter change (MPC) trends 

depending on component fault patterns 

 

MPC 

FC 
ΔITT ΔEGT ΔMF ΔTRQ 

FC1 + + ++ + 

FC2 + + +++ + 

FC3 - - - -- 

FC4 ++ ++ +++ ++ 

FC5 ++ ++ ++ + 

FC6 ++ ++ +++ + 

FC7 +++ +++ +++ + 

 

 
  

Fig. 6 MAMDANI type Fuzzy Inference System for 

isolating faulted components 
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Input data for fuzzyfication of the inference system are   

deltas between the measured engine performance data with 

faulted components due to 7 fault pattern cases and the 

calculated clean engine performance data. The MAMDANI 

theory is applied to fuzzyfication, and the Centroid method is 

applied to defuzzyfication. The fuzzy rule following measured 

parameter change trends is generated as Figure 7 [8][9]. 

 

 
 

Fig. 7 Fuzzy rule generated by measured parameter change 

trend 

 

The Feed Forward Back Propagation (FFBP) algorithm 

shown as Figure 8 is used for learning the proposed NNs using 

measured performance data changes and component 

performance characteristic parameter changes due to faulted 

components. The NN is composed of an input layer with 4 

neurons, a hidden layer with a neuron and an output layer with 

6 neurons. Because the proposed fault diagnostic system can 

isolate the faulted components using Fuzzy Logic prior to using 

the NN, the proposed system is simplified by a hidden layer to 

avoid the computational complication. The 4 neurons of input 

layer are measured parameter changes of ITT, EGT, MF and 

TRQ, and the 6 neurons of output layer are changes of mass 

flow parameters and isentropic efficiencies of compressor, high 

pressure turbine and power turbine, respectively. 

 

 
Fig. 8 Feed forward Neural Network program using 

SIMULINK 

 

The proposed NN is made of neurons, each performing a 

weighted sum of its own inputs. The sum is the passed through 

the activation function. The out of the j-th neuron is expressed 

as:  

 

          
 
                (1) 

 

where   is the activation function applied to the weighted 

sum of the inputs (  ). In this step, both bias and noise are not 

considered because the on-line performance monitoring system 

linked to the NN which can remove the bias and the noise prior 

to applying the fault diagnostic system.  The weights    are 

updated through Back Propagation learning using equation (2) 

until satisfying the target RMS error shown as equation (5). 

 

                             (2) 

where initial weight values are randomly assumed, and they 

not influencing the learning process because of obtaining 

optimal values through the following algorithm. 

Figure 9 shows the flow of the proposed Back Propagation 

algorithm. 

 
 

Fig. 9 Back Propagation algorithms for training Neural 

Network 

 

The tangent sigmoid function (3) is used as an activation 
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function of the hidden layer, and the piecewise-linear (4) 

function is used as an activation function of the output layer 

[10], [11]. 

 

  
       

        
                (3) 

 

             (4) 

 

In order to increase learning speed as well as to maintain 

stability during training process, LRF (Learning Rate Factor) is 

increased by 10% of the previous LRF if the error is decreased, 

but LRF is decreased by 50% of the previous LRF if the error is 

increased. Here the error is defined in the form of RMS (Root 

Mean Square) value (5). Where T is target value, y is the output 

value calculated by Neural Network, and n is the number of 

output layer neurons. The target maximum RMS error is fixed 

as 1.5%, here. 

 

          
        

  
   

 
      (5) 

 

In order to build data base for learning the Neural Work, 

1~5% decreases of both mass flow parameter and isentropic 

efficiency due to compressor fouling are assumed, and 1~5% 

increase of mass flow parameter and 1~5% decrease of 

isentropic efficiency due to turbine erosion are assumed. In 

addition, engine operating conditions are assumed as 9.1Km 

(30000ft), 12.2Km (40000ft) and 13.7Km (45000ft) of altitudes, 

Mach No. 0.1, 0.2, 0.3, 0.4, 0.5 of flight speeds, and 100%, 

80%, 60%, 30% changes from engine cruise conditions. These 

operating conditions are provided by the special flight vehicle 

system requirements. Data base of faulted components for 

training Neural Network with operating conditions mentioned 

as the above are obtained by engine model program. 

Figure 10 shows changes of measured performance 

parameters due to 1~5 % degradation of component 

characteristic values such as mass flow parameter and 

isentropic efficiency at 13.7Km (45000ft), Mach No. 0.3, 80% 

cruise condition. The horizontal axis values of Fig. 10 are 

differences in % between clean engine performance parameters 

and deteriorated engine performance parameters due to 

implanted component degradations. These training datasets are 

used only for training the proposed NN. The validation datasets 

are separately produced from the training datasets. 

All datasets have 4811 by 283 degradation cases with 17 

altitude, flight speed and RC (flight rating code) conditions. 

Figure 10 shows only few cases for demonstration. 
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Fig. 10 Measured Performance Parameter Changes due to  

implanted faults  

 

VERIFICATION OF PROPOSED DIAGNOSTIC 

PROGRAM 

 

Through the following example, the proposed diagnostic 

program is verified. Measured parameter changes shown as 

Table 5 are obtained by implanted faults assumed as Table 4 

using the base engine model program. If the diagnostic program 

can identify the implanted faults with the measured parameter 

changes and trends, it is confirmed that this diagnostic program 

is verified. 

Firstly, measured parameter changes due to 7 component 

fault pattern cases are entered as input data of the Fuzzy 

Inference System program. This Fuzzy Inference System 

isolates 7 component fault pattern cases from input data though 

fuzzyfication and defuzzycation using the previously generated 

Fuzzy rules. Table 6 shows results of faulted components 

isolated by Fuzzy Inference System are given as input to the 

Neural Network diagnostic program learned by training data 

based. Here, if the largest value among fault pattern results 

calculated by given measured parameter changes using the 

Fuzzy Inference System is approaching to 1, the largest value 

becomes a possible component fault pattern. In the Table 6, 

IFC1, i.e. input (or implanted) fault case 1, has 0.51 at OFC1, 

i.e. output fault case 1, which is the highest value among 7 fault 

patterns, so this case has high possibility about a single fault 

with contamination fault of compressor. IFC7 has the highest 

value of 0.56 at pattern 7; therefore this case has high 

possibility about a multi fault case with contamination fault of 

compressor, erosion of compressor turbine and erosion of 

power turbine. As explanation the above, IFC2, IFC3, IFC4, 

IFC5 and IFC6 also have highest values at fault pattern 2, 3, 4, 

5 and 6, respectively. 

Therefore, it is confirmed that the isolating fault patterns 

obtained from fault monitoring program are same as the 

implanted fault patterns. 

 

Table 4 Implanted fault values (IFV) of engine major 

components 

 

IFV 

FC 

COMA 

(%) 

COEF 

(%) 

HTMA 

(%) 

HTEF 

(%) 

PTMA 

(%) 

PTEF 

(%) 

FC1 -5 -3 0 0 0 0 

FC2 0 0 5 -3 0 0 

FC3 0 0 0 0 5 -3 

FC4 -4 -2 4 -2 0 0 

FC5 -4 -2 0 0 4 -2 

FC6 0 0 4 -2 4 -2 

FC7 -5 -5 5 -5 4 -4 
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Table 5 Measured parameter changes due to implanted 

faults (%) 

MPC 

FC 
∆ITT ∆EGT ∆MF ∆TRQ 

FC1 7.435 8.067 8.571 2.446 

FC2 7.817 7.027 14.367 8.231 

FC3 -3.051 -0.933 -4.408 -6.078 

FC4 14.385 14.072 21.714 10.588 

FC5 5.196 7.226 5.959 -0.762 

FC6 5.463 6.372 10.531 3.643 

FC7 19.986 21.518 27.755 10.456 

 

Table 6 Results of faulted components isolated by Fuzzy 

Inference System (IFC: Input fault cases, OFC: Output 

fault cases) 

OFC 

IFC 
1 2 3 4 5 6 7 

IFC1 0.51 0.09 0.08 0.08 0.43 0.26 0.09 

IFC2 0.47 0.58 0.08 0.08 0.09 0.45 0.09 

IFC3 0.09 0.09 0.68 0.08 0.09 0.08 0.09 

IFC4 0.09 0.41 0.08 0.57 0.09 0.08 0.43 

IFC5 0.40 0.09 0.20 0.08 0.56 0.08 0.09 

IFC6 0.43 0.09 0.22 0.08 0.28 0.52 0.09 

IFC7 0.45 0.27 0.08 0.45 0.28 0.47 0.56 

 

In the next step, measured performance parameter changes 

of the faulted components isolated by the FIS are given as input 

to the NN diagnostic program learned by training data base. 

Figures 11 shows degraded characteristic values of the 

single and multiple faulted components found by the proposed 

NN diagnostic program. In the figures, case 1~7 means 

implanted degradations respectively, and the N.N. means the 

identified degradations of each fault pattern by the NN 

diagnostic program.  
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Fig. 11 Results of faulted components quantified by Neural 

Network diagnostic program 

 

As shown in Fig. 11, the proposed Fuzzy-Neuro diagnostic 

program isolates exactly the faulted components for all the 7 

fault pattern cases, but the degradation results of the isolated 

faulted components quantified by the program have some 

amounts of errors.  The error will be decreased by leaning 

with more various case learning data and best selection of 

measured parameters. 

 

CONCLUSION 

 

The present work develops the performance analysis 

program using inversely generated component maps and 

SIMULINK, and the fault diagnostic program which can 

monitor, isolate and quantify the component faults using Fuzzy-

Neuro algorithms for the PT6A-67 turboprop engine of a long 

endurance UAV in the high altitude operation. 

The proposed diagnostic system isolates firstly the faulted 

gas path components using Fuzzy Logic, and then quantifies 

the isolated components using the FFBP NN learned by 

learning data sets of various fault patterns. Through the 

verification examples, it is confirmed that the proposed 

diagnostic system can isolate accurately the faulted gas path 

components as well as quantify the isolated components. 

 In the next work, the proposed fault diagnostic system will 

be applied to the real engine under consideration of sensor 

fault, noise and bias. 
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