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ABSTRACT 
This paper is intended to serve as a template for 

incorporating technical management majors into a traditional 
engineering design course.  In 2002, the Secretary of the Air 
Force encouraged the USAF Academy to initiate a new 
interdisciplinary academic major related to systems 
engineering. This direction was given in an effort to help meet 
the Air Force’s growing need for “systems” minded officers to 
manage the development and acquisition of its ever more 
complex weapons systems.  The curriculum for the new 
systems engineering management (SEM) major is related to the 
“engineering of large, complex systems and the integration of 
the many subsystems that comprise the larger system” and 
differs in the level of technical content from the traditional 
engineering major. The program allows emphasis in specific 
cadet-selected engineering tracks with additional course work 
in human systems, operations research, and program 
management. Specifically, this paper documents how individual 
SEM majors have been integrated into aeronautical engineering 
design teams within a senior level capstone course to complete 
the preliminary design of a gas turbine engine.  As the 
Aeronautical engineering (AE) cadets performed the detailed 
engine design, the SEM cadets were responsible for tracking 
performance, cost, schedule, and technical risk. Internal and 
external student assessments indicate that this integration has 
been successful at exposing both the AE majors and the SEM 
majors to the benefits of “systems thinking” by giving all the 
opportunity to employ SE tools in the context of a realistic 
aircraft engine design project. 

 
INTRODUCTION 
 Perhaps the pinnacle of academic learning is having 
students accomplish what is expected of professionals in their 

field.  Additionally, by applying professional processes, the 
course authenticity increases. (1)  In 2002, the Secretary of the 
Air Force encouraged the USAF Academy to initiate systems 
engineering (SE) and system engineering management (SEM) 
majors.  These majors were integrated into the capstone 
engineering design courses to make for a richer and more 
realistic design experience.  Currently, the gas turbine 
propulsion capstone design teams incorporate traditional 
engineering design techniques, while SEM cadets 
simultaneously provide structured technical management.  This 
additional oversight comes in the form of managing cost, 
schedule, performance, and risk.  These elements are the same 
ones balanced during major defense acquisition programs.  The 
tailored SEM curriculum provides SEM cadets with  the tools 
to help the team make justifiable decisions.  This realistic 
environment keeps all cadets aware of the many key issues 
involved with engine design beyond just achieving a particular 
technical specification:  requirements must be well defined and 
tracked;  trade-offs must be considered, resolved, and defended;  
interfaces and configurations must be controlled and 
documented; and risks must be identified, weighed, and have 
appropriate mitigations. 

This paper documents the system engineering management 
processes and products as they map to the engine design 
process.  First, the activities that professional system 
engineering managers must accomplish are presented and 
mapped to previous SEM coursework.  Second, these same 
activities are mapped to the engine design process used in the 
capstone course.  Third, each of these activities is defined, 
given an engine related example, and tied back to its usefulness 
in the overall design process.  This paper should assist other 
capstone design instructors as they consider ways to better 
integrate systems engineering topics. 
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like earned value management. (6)  This tool helps a program 
office or contractor determine the total technical progress of the 
program.  However, for the engine design course, this particular 
activity is conducted by the instructors through regularly 
assigned briefings and feedback sessions.  In this context the 
instructor acts as a coach or overall team-lead.  This instant 
assessment and feedback lets the instructor and team know the 
state of progress throughout the semester. 

The data item description or DID is a calendar driven 
review that ensures appropriate progress at specific points in 
the semester.  Each DID assignment provides specific detail for 
requirements for that particular briefing.  It includes point 
values for each item required and exit criteria for the team to 
advance to the next stage in the design process.  All SEM and 
engineering activities culminate in a briefing for each DID.  All 
DIDs coincide for SEM and engineering students except for 
DID 3 which will be discussed in Section 2.3.  Each of the next 
six sections will outline what the engineering activity is for that 
particular DID followed by the corresponding SEM activity. 

2.1 Data Item Description 1 

DID 1 establishes the Systems Engineering Management 
Plan (SEMP) for the semester.  All engineering and SEM cadets 
are involved in this activity.  There are no separate engineering 
activities for this effort.  All cadets are engaged in organizing 
the team and understanding the RFP. 

Figure 2 shows that for DID 1, the SEM products are the 
SEMP and specified RTM, i.e. products 1 and 2.1 respectively.  
The first process, technical planning, requires taking the RFP, 
determining the desired end state, the tasks required that must 
be accomplished, and the schedule to reach that final objective. 

Concurrent with technical planning, SEM majors and 
engineers scrub the RFP for specified customer requirements.  
In order to trace technical specifications back to customer 
requirements, SEM cadets employ activity 2.1, building a 
specified requirements traceability matrix (RTM). 

2.2 Data Item Description 2 

DID 2 establishes the engine performance requirements 
based on a system analysis of the integrated aircraft/engine 
platform.  The engineers use empirical engine and aircraft 
models through constraint and mission analysis to determine 
engine performance requirements.  During DID 2, the engineers 
present the thrust-loading and wing-loading as well as the 
required fuel, thrust, and thrust specific fuel consumption 
(TSFC) for each mission leg.  From this analysis, cadets also 
select the design Mach and altitude. 

The corresponding SEM products for DID 2 in Figure 2 are 
2.2, derived RTM; 3.1, Aircraft ICD, and 4.1, Aircraft Risk 
Matrix.  The SEM cadets brief each of these products for their 
portion of DID 2.  The derived requirements are the result of a 
detailed mission development that matches the.  These derived 
requirements are updated in the RTM by the SEM cadets.  This 
becomes a checklist for validation of the final design.  Does the 
aircraft have enough fuel to complete the mission?  If the 

answer is “yes” the design can work, otherwise, further 
iteration is required. 

The second product results from interface issues.  The 
SEM students track interface issues with the parallel aircraft 
design capstone.  The interface issues are managed using an 
interface control document.  The same difficulties encountered 
in industry must be addressed.  How big is the nacelle? What is 
the drag polar? What is the required thrust loading and wing 
loading?  All of these issues must be considered and agreed 
upon.  It is the SEM cadet’s responsibility to control interface 
issues with each new baseline, tracking changes and reasons for 
changes. 

The final product is the aircraft level risk matrix.  Even 
though the engine at this point is an empirical model, the 
choices for this model rely on a judgment of technical risk.  For 
example, if the turbine inlet temperature sought is aggressive it 
must be noted, weighed and given mitigation options. 

2.3 Data Item Description 3 

DID 3 establishes the thermodynamic model to be used 
through the rest of the course.  Engineers parametrically 
examine many different cycles.  After much iteration, the 
engineers select a cycle for further study based solely on 
performance.  The engineers brief how this engine will perform 
on and off design as well as the mission impact.  This briefing 
occurs several days before the corresponding SEM major’s 
assessment, and provides the baseline for SEM examination. 

The DID 3 assignment for SEM cadets is the only separate 
briefing during the semester.  The SEM cadets fully assess the 
thermodynamic engine selected by the engineers.  With 
engineering help, the SEM major will examine the impact to 
performance of increasing and decreasing Tt4 by 5%.  Then the 
SEM cadet can apply system engineering tools to examine each 
of these three engines in terms of risk, cost, and development 
schedule.  They perform a decision analysis to determine 
whether the cycle selected is the best considering lifecycle costs 
and impacts on things like maintainability and survivability.   

The SEM majors also publish the thermodynamic interface 
properties between engine stations, namely total temperatures, 
total pressures, Mach numbers, and mass flow rates.  Every 
component designer must know what the entrance and exit 
conditions are for his/her component.  This interface control 
document will help keep the team in check.  For DID 3 this is 
only done for the on-design condition, but becomes the 
template for future efforts.  The reason for only publishing on-
design values at this point is economy of effort.  If the 
instructor sees a need to further iterate, the team can develop a 
new thermodynamic cycle without the loss of a large time 
investment. 

2.4 Data Item Description 4 

DID 4 establishes the thermodynamic model for all 
mission legs and the plan for component design through the end 
of the semester.  Engineers provide the engine station properties 
at every mission leg through a simulation.  This simulation 

4
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shows the aircraft condition (Mach, altitude, and weight), 
engine throttle hook and power lever angle (PLA), and internal 
engine properties at each leg.  Additionally, a nominal 2-D 
drawing of the engine flow-path provides a means of technical 
data management.  The SEM majors re-examine the 
organization, schedule, and tasks required to meet milestones 
through the end of the semester. 

Once the team has selected the thermodynamic cycle for 
further study and received instructor approval, it must now plan 
for component design.  Engineers break into smaller component 
design teams.  They will build a detailed simulation of the 
mission which shows aircraft properties, engine properties, and 
component thermodynamic properties at every mission leg.  
They will also brief their plan through the end of the semester 
for their component. 

The SEM cadets conduct all of the planning activities in 
process one, technical planning, through the end of the 
semester.  Additionally, the simulation built with the engineers 
becomes the detailed component interface control document.  
This includes the thermodynamic properties previously tracked, 
but now also includes the required areas at each station. 

With a first estimate for hub radii, the entire 2-D engine 
flow path is presented as a baseline.  This 2-D drawing with 
hub radii and tip radii at every location and an initial estimate 
for rotor angular velocities is the baseline component-level 
interface control document.  This document allows the inlet 
designer to have the same target exit Mach as the fan designer 
has for entrance Mach.  Additionally, the flow path should not 
have sharp turns when moving from the fan to the compressor.  
Component designers are expected to negotiate changes, but 
any updated property must be controlled and documented.  A 
2-D drawing at this point is quicker to produce than 3-D, which 
is desired due to the probability of multiple iterations. 

2.5 Data Item Description 5 

DID 5 provides the first review of the component design.  
Once the SEMP from DID 4 has been set, the rest of the 
semester is involved in individual component design, 
performance assessment, sensitivity studies, analysis of 
alternatives, and final decisions on physical shape and materials 
of each component.  These efforts go through much iteration, 
but with a frozen thermodynamic engine.  At this point in the 
semester, even if making a new cycle selection is attractive, it is 
documented as a recommended future effort due to time 
constraints. 

At DID 5, the SEM cadets assess component level risk.  
Any exception to published constraint values must be noted, 
weighed and mitigated through risk assessment.  Is the rotor 
speed low enough that the engine avoids tip shocks?  If not, its 
risk must be assessed.  A mitigation plan could include 
proposing funding for 3-D computational fluid dynamics 
analysis using swept blades to mitigate flow separation.  
Second, the SEM cadets reassess the cost model with better 
fidelity numbers for engine size and weight.  Lastly, SEM 
cadets assist with configuration control so that component 
designers can well document the reasoning for their final 

component design.  Such decisions must balance trade-offs 
with well-documented explanation.  More uniform burning and 
temperature distribution can be achieved in a combustor with 
twice the number of swirlers, but what about cost, complexity, 
and supportability.  In order to justify the final decision a bigger 
“systems” level picture must be taken into account.  As each 
component designer down selects to a particular design, that 
selection process should be rigorously achieved through 
decision analysis. 

2.6 Data Item Description 6 

DID 6 establishes the final component design.  The 
engineers have completed designing their component.  They 
must present the final design and provide rational explanation 
for the design through figures and analysis of alternatives. 

The SEM cadet effort for DID 6 is to assist with the overall 
presentation effort including the SEM story of the engine 
selection.  The SEM majors also continue the technical data 
management by assisting with the 3-D engine cutaway drawing.  
This final in-class presentation should be the dress-rehearsal for 
briefing industry experts at the end of the semester. 

3 ACTIVITY DEFINITIONS AND ENGINE EXAMPLES 
Now that the system engineering activities have been 

mapped to the engine design process, specific examples and 
descriptions for the engine design capstone will be used to 
illustrate the steps in the process.  The order of activity 
definition corresponds to the order shown in Table 1. 

3.1 TM Process 1: Technical Planning 

The first process, technical planning has several potential 
products.  Typically, a work breakdown structure would 
examine every detail of the tasks that must be managed. (7)  A 
similar process occurs for the course, but because of the small 
team size and scope, can be accomplished more succinctly.  The 
SEMP is accomplished through 3-tiers, each containing greater 
levels of detail.  First, an organizational chart sets high level 
areas of responsibility.  Second, detailed job descriptions 
further define specific duties.  Finally, a detailed Gantt chart 
outlines lower level tasks against a time-line with critical 
milestones and parallel efforts displayed. 

Figure 3 shows an example organizational chart broken 
into two parts.  The first effort, part 1, takes cadets from RFP 
through DID 3, roughly half of the course.  Once the cadets 
have frozen the thermodynamic design, the part 2 chart 
presented during DID 4 provides the organization through the 
end of course.  The organizational charts provide a quick glance 
of work breakdown that keeps everyone in the class, including 
instructors aware of individual responsibilities.  The key 
attributes are cadet names, areas of responsibility, and lines of 
communication.  Another critical feature is that all parts of the 
design process and all engine components must have an owner. 
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This extra level of effort is the expectation for professionals in 
the field.  It is also expected that some 3-D stereo-lithograph 
model will be built for demonstration purposes at the end of 
course briefing. 

3.7 TM Process 7: Technical Assessment 

Process 7, technical assessment is conducted formally by 
the instructors through written and oral feedback during each 
DID.  Additionally, informal feedback during class time work 
sessions helps cadets and instructors understand the current 

technical status.  Key features of technical assessment are clear 
guidance on the aspects of the design that are on target, those 
that are off-target, and recommended follow on procedures. 

In order to optimize feedback, cadet briefings must be clear 
and concise.  Each presentation should have the big picture 
bottom line up front.  Each slide should be able to stand alone 
and have a boxed written take-away.   
 

Table 3. Configuration Control Document: Fan  
  

Not only does this help in understanding the current 
status, but it provides critical documentation that will be 
important later in the semester.  In other words, when cadets are 
2-months into the design, they can return to the DID 2 briefing 
and see clearly why they decided to use a particular thrust 
loading. 

3.8 TM Process 8: Decision Analysis 

Process 8, decision analysis separates a working design 
from an excellent optimized design.  The only formal 
application of the house of quality is for the SEM major DID 3.  
However, a logical explanation of trade-offs is required at every 
level of the design effort.  Proper use of sensitivity studies and 
analysis of alternatives must be shown for every decision from 
thrust loading at the system level, to fan pressure ratio at the 
thermodynamic level, to nozzle length at the component level. 

An excellent use of available resources in deciding the 
Thrust Loading and Wing Loading is to plot the cadet design 
against historical data.  Figures 2.2 and 2.3 in Aircraft Engine 
design each plot thrust and wing loading for many cargo and 
fighter aircraft respectively.  This sanity check proves that the 
design is in line with historical aircraft having similar missions. 

The carpet plot is the tool of choice for selecting design 
cycle parameters.  The parameters to vary are Tt4, compressor 
pressure ratio, fan pressure ratio and bypass ratio.  These design 
choices can be varied two at a time for each carpet plot.  Each 
cycle is then plotted against the uninstalled specific fuel 
consumption on the y-axis and uninstalled specific thrust on the 
x-axis.  Through system level analysis, cadets determine the 
maximum allowable TSFC and can determine a reasonable 

maximum SFC to limit the design space.  Additionally, with the 
thrust requirements and an estimate of size, the cadets can also 
determine the minimum specific thrust.  The  maximum SFC   
and minimum specific thrust limit the design space to the 
bottom right quadrant of the carpet plot. 

The final decisions to make concern component level 
analysis.  The documentation for making these decisions must 
show variations in geometric choices and their effect on 
performance.  Figure 6 shows an example plot for selecting a 
particular combustor design.  Here the y-axis shows the 
geometric choice of combustor length, which in this case is 
determined by exit Mach on the y-axis.  This particular 
compares the effect of using single or dual annular design.  
From this figure it is clear that the combustor length can be 
greatly decreased using a double annular design. 

3.9 Process 9: Cost Model 

The SEM cadets apply the RAND cost-estimating 
relationships (9) for turbofan engine development cost, 
development time, and production cost based upon inputs they 
receive from the AE 483 cadets on their design team.  The 
specific inputs for a new engine with advanced technologies (or 
a new centerline) are 

Rotor Inlet Temperature (deg F) 
Overall pressure ratio 
Dry engine weight (lbf) 
TSFC (1/hr) 
Afterburning (yes =1; no = 0) 
Full-scale test hours = 6000 

 
 

Parameter Value Date Reason Impact Filename 

Baseline Baseline 22 Mar Baseline =0.3 
dTt=70degR 

B_22Mar.comp

1 70deg 22 Mar + 1 10 deg 
=0.35 

dTt=90degR 
a170_22Mar.comp
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