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Abstract A new general scenario of turbulence theory is proposed and applied to pipe-flow turbulence. The theory supports transverse
traveling waves accompnied with considerabl dissipation of energy by internal friction (Joule-like effect). Its predictions are consistent
with some characteristic features of pipe turbulence found in recent experiments and transition analyses: (i) existence of traveling
waves and their important function and (i3) existence of two large scales (LSM and VLLSM). In fact, predicted waves are characterized
by two scales (wave-length and damping-length). Bulk energy dissipation is expressed unexpectedly in a form analogous to a model of
eddy-viscosity.

INTRODUCTION

In the turn of the century, a number of publications on turbulence have appeared. To mention a few, in addition to self-
contained textbooks on turbulence such as [1], a new-formulation or a formulation-by-analogy of the turbulence theory are
proposed. Insufficiencies of the theory or ill-defined concepts are reviewed by some of papers or books such as [2, 3, 4, 5].

Large scale feature is one of the main subjects in the study of wall turbulence: boundary layer, pipe flow and chan-
nel flow [6, (a)~(d)]. There is substantial evidence of existence of large scales, LSM (large-scale motions) and VLSM
(very-large-scale motions), containing a significant fraction of total kinetic energy. In pipe turbulence, VLSM-motions
are not only energetic, but also contribute a large fraction of the Reynolds shear stress [7, (a)~(d)]. From observed
power spectrum ®,,,,(k,,) of streamwise velocity u (z-direction) with respect to the streamwize wave-number k., a pre-
multiplied spectrum is defined by k; @, (k;). It is now recognized that the pre-multiplied spectra have two peaks, at
LSMof \;,/R =~ 1 ~ 3 and at VLSM of A\,,/R = 15 ~ 30, and decays beyond VLSM, where R is the pipe radius and

A the streamwise scale. The power spectrum takes a scaling form ®,,, oc k! between the two, while ®,,,, o k{s/ % at
higher k,’s. These features were known since Bullock er al. (1978) [6, b]. The spectrum range of ®,,,, k;l contains
essentially all the streamwise kinetic energy.

It is clarified by recent studies of pipe flow [8, (a)~(e)] that the flow supports traveling waves with multi-fold ro-
tational symmetries in turbulent state. From the experimental study of transitional flows in a pipe [8, (e)], formation of
finite-length slugs is observed at transition from laminar to turbulent state. The structure of a slug has turbulence properties
similar to those of developed pipe-turbulence, and its front and back faces propagate forward and backward respectively
with respect to the flow-velocity averaged over the cross-section.

From the aboves, following two features can be summarized and in fact are regarded to be essential in the present
formulation and analysis. (¢) Turbulence fields support propagation of waves which are transverse. They exist even in in-
compressible fluids. Existence of transverse traveling waves in turbulent pipe flows is confirmed both experimentally and
computationally. (i7) The scale VLSM is regarded as the largest coherent scale of pipe turbulence containing essentially
all the streamwise kinetic energy. Mechanical origin of the scale VLSM is not clear at the moment. Present analysis of
the next section gives a hint why it is much larger than the characteristic scale R of the experimental device.

New scenario of turbulence theory is currently developed. In one approach, the system of fluid equations is trans-
formed to that of Maxwell-type equations and applied to turbulence [2, 4]. However in [5, (b)], it is proposed that a new
field should be introduced in turbulence and governed by Maxwell-type equations. This approach is based on a Theorem
stating that current conservation implies a field of Maxwell equations [5, (a)]. It is called Transverse-Wave (TW) field
here (it was termed Vortex Field by Scofield & Huq [5, (b)]). In fluid turbulence, the current conservation is a basic
property, so that one can introduce a TW-field in turbulence. The TW-field accompanies its own mechanism of energy
dissipation by a fluid-Joule effect. Present study is carried out according to this scenario, and new findings are obtained
regarding some features of pipe turbulence. It is in fact unexpected to find that bulk dissipation of the fluid-Joule effect
takes a form analogous to a model of eddy-viscosity.

Alternative pipe-flow solutions consisting of streamwise roll, streaks and waves were studied by [8, (¢)] and [9].
Present scenario gives a new insight into this problem. A small perturbation velocity u to a steady streaky flow U excites
a TW-field described by a fluid-vector-potential a, defining fluid-electric field e and fluid-magnetic field b respectively by

e=—-0a— Vo, b=V xa.
Time-dependent current flux is given by § = pu + j, where pu is a convection current of density p, while j,;, = oe is
a drift current with ¢ a positive constant (inverse internal friction), which is a fluid-Ohm’s law. From the Maxwell-type
equations of Eq.(1) of the next section, one can derive the following transverse-wave equation under forcing and damping:

Vie —c; 20}2e = pudiu + pode, [wave equation)

where ¢; = 1/,/u€ is the wave velocity with p and e field parameters introduced there. The first term on the right is a
forcing term driven by the fluctuating flow u and the second is a damping term due to the fluid-Joule current oe. Note
that the TW-field exerts fluid-Lorentz-force F'j, on the flow, while external forces were introduced in [8, (¢)] and [9].
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(i) Governing Equations: In order to represent the TW-field, we introduce a four-vector potential (¢, a) depending on
time ¢ and space coordinates @ = (x1, x2, x3). Then the dynamics of TW-field is defined by the following equations:

Oib + curle = 0, divb =0, —Oid + curlh = j, divd = p, (1: a,b,cd)
where d = ee and h = ;= 'b with € and y being field parameters analogous to those of the Electromagnetic (EM) theory.
Here, lower-case bold-letters are used for the TW-field vectors in order to show clear analogy to the Maxwell equations
of EM theory with corresponding upper-case letters. Transverse waves are naturally supported in the system (1a) ~ (1d).
In turbulence field too, transverse waves are naturally accommodated by the equation system defined below.

From (la) ~ (1d), conservation equations of energy and momentum are immediately derived:

Ow+divgry = —j-e, 09+ 0,,Ti;j =—Fr, where qryy =exh, Fp=pe+3jxb, (2:a,b,c,d)
w = %(e -d + h - b) is a field energy density, gy is fluid-Poynting-vector (TW-energy flux), and g = d x b = q/c/
is a field momentum, and T5; is fluid-Maxwell-stress, where ¢; = 1/,/€j is the velocity of transverse waves. The right
hand sides of (2a) and (2b) are fluid-Joule term and fluid-Lorentz-force reaction, respectively.

Whole field consists of Fluid Flow (FF) and TW field. The energy equation is given by 0 [p(%zﬂ +e)+ w] +
div (gpp + gy ) = 0, where ¢ is the internal energy of fluid, and g is the FF-energy flux, given by pv(3v* + ¢ +
P)—wv- 7)) _ e VT, with 7(Y*) the viscous stress tensor, T the temperature and s the thermal diffusivity. The FF-momentum
equation is given by .

8tpv + az]. Hij =Fp, where Hij = puvv; + ptsij — Ti(?)zs) (4)
([5, (b)]). Adding (2b) and (4) side by side leads to the momentum equation of whole field: 9;(pv+g)+09;(IL;;+T;;) = 0.

(i4) Dissipation: Our system is dissipative, and the fluid-Joule heat is given by Q; = j, - € = ole|*(> 0). Owing
to this dissipative heat, the equation for the specific entropy s is described by pT'(D/Dt)s = Q; + Qyis, Where D/ Dt is
the convective derivative and (Q,;s the viscous heat. The first term is new due to the Joule heat.

(i17) Application to pipe turbulence: Let us examine whether the present theory gives any insight into observed fea-
tures of pipe turbulence, compactly summarized in the Introduction. In view of transverse waves existing in turbulence,
the problem of wave propagation within the pipe turbulence reduces to that of wave guide filled with a medium charac-
terized by the parameters e and . This is studied by the equations (1a ~ 1d) with assuming that the wave propagation is
one-dimensional along the pipe axis (denoted by z-axis) with a frequency w. Its cross-section is described by the coordi-
nates (r, #) for0 <r < Rand 0 < # < 27. Owing to the drift current j 4, there is damping in the wave propagation.

Expressing the wave amplitude with a factor e to denote an n-fold symmetry (n: an integer), a component of e
(or h, or a) is represented by a traveling wave: ¥ = 1(r)e *i® eilkro—w1) ¢in? \where the wave-number is expressed
by a complex form, k = k. + ik;, to account for the damping effect. From the system (la ~ 1d), it is found that
ki = po(w/k,) = poc; with the wave length A\ = 27/k,. The cross-stream mode is given by J,,(kr)e’™? where
k= \/kE — k2 + k? and ko = w/c;. This implies that the damping distance of waves is given by d ~ 1/k; ~ (uoct) ™',
If we use a complex frequency w = w, + iw; instead of wavenumber, we obtain a decay time, 74 ~ 1/|w;| ~ d/cz.

This solution has two characteristic scales A and d. The two scales LSM and VLLSM observed in the experiments are
considered to be related to the traveling waves examined above. Thus, it is likely that the wave length A corresponds to
LSM, while VLSM could be related to the damping distance d because no larger scale is observed in experiments.

According to the present theory, the bulk rate of Joule dissipation takes a form analogous to that of eddy-viscosity
with the coefficient derived by the present theory as v,y ~ c:d, while any eddy-viscosity Veqqy is a model.

Summary: A new scenario of turbulence theory is proposed by introducing a new TW field to the turbulence field
without self-contradiction. This formulation is equipped with a mechanism of energy dissipation by an internal friction
resistance, which is comparable with the eddy-viscosity in order of magnitude. This theory predicts traveling waves in
pipe turbulence, which have two characteristic scales of a wave-length A and a length d of wave damping. Significance of
A and d is discussed in relation to LSM and VL.SM of wall turbulence.
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