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Abstract In parallel shear flows, the lower branch solution follows simple streamwise dynamics. A decomposition of this solution into

Fourier modes in this direction yields modes whose amplitudes scale with inverse powers of the Reynolds number. We use this scaling

to derive a reduced model for exact coherent structures in general parallel shear flows. The reduced model is regularized by retaining

higher order viscous terms. Both lower branch and upper branch solutions are captured and studied.

INTRODUCTION

Transitional parallel shear flows are characterised by the importance of exact coherent structures (ECS). These ECS

are formed at low values of the Reynolds number Re through saddle-node bifurcations and are only weakly unstable

in the transitional regime. As a result of the small number of unstable eigendirections, the ECS attract transitional flow

trajectories which can then be thought of as bouncing from ECS to ECS [3, 6]. Of these, two specific ECS are of particular

interest in small domains: the least unstable lower branch solution and the associated upper branch solution. The former is

an attractor on the separatrix between the stable laminar unidirectional flow and the attracting turbulent state [8], whereas

the latter reproduces important low-order statistics of turbulence [9, 5]. Systematic study of these ECS is not trivial due

to their three-dimensionality, the fact that they are not connected to the laminar unidirectional state and that they are

unstable. We describe here a more efficient way to compute such ECS and shed light on their structure.

METHODOLOGY

Using a Fourier decomposition in the streamwise direction, Wang et al. [10] observed that the lower branch ECS in

plane Couette flow are comprised of O(1) streamwise streaks, O(Re−1) streamwise rolls and fluctuations and negligibly

smaller remaining modes. In the limit of infinite Re, ECS are characterised by the presence of a critical layer, a curve on

which fluctuation gradients accumulate [7]. We consider Waleffe flow: a flow confined between two non-moving free-slip

parallel walls and driven by a sinusoidal force as sketched in figure 1. We make use of Wang et al. scaling [10] to derive

Figure 1. Sketch of Waleffe flow, a cousin of plane Couette flow.

the following set of two-dimensional (y, z) equations for the streaks u0 and rolls (ω1,φ1):
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and for the fluctuations in the wall-normal and spanwise (complex) velocity (v1, w1) coupled to the pressure fluctuation

p1:
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In writing these, we introduced the long timescale T = ǫt, and the notation J(f, g) = ∂yf∂zg−∂zf∂yg, ∇⊥ = ∂2
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z ,

R for the real part, a star superscript for complex conjugation and α for the wavenumber in the streamwise direction (the



fluctuations are expanded as follows: v
′
1⊥(x, y, z, t) = v1⊥(y, z, t)e

iαx + c.c.). This model is directly obtained after

expanding the velocity and pressure fields as in Wang et al. [10] and assuming that Re is large; the fluctuation equations

(3) and (4) are linear and have been regularised by the retention of the subdominant viscous term ǫ∇2

⊥v1⊥ in equation

(4), where ǫ ≡ Re−1. This term allows the critical layer to have a finite width and form a critical region in accord with

numerical observations. In contrast, [4] carry out similar calculations at infinite Reynolds numbers, thereby assuming

an infinitely thin critical region. The system (1)–(4) is posed on a two-dimensional domain (y, z) of nondimensional

extent Ly , Lz , and involves a unit effective Reynolds number for the mean equations (1) and (2). We take advantage

of the structure of the resulting problem by approximating ECS using a two-step algorithm consisting of solving for the

fluctuations at fixed streak velocity u0 using an eigenvalue formulation for their temporal growth rate and then using the

obtained fluctuation mode to evolve the streaks and rolls to a steady state, and back again. Once a good approximate ECS

is obtained, it is used within a preconditioned Newton algorithm to converge to a decent accuracy. Details on the method

are given in [2, 1].

RESULTS

The above method allows an easy calculation of the lower branch ECS and a continuation package has been coded on top

of the Newton method to allow continuation in Re. This way, we have continued the lower branch down to its saddle-node

and obtained the corresponding upper branch. The lower and upper branch states for Ly = 2, Lz = π are shown in figure

2 side by side to highlight structural differences. The lower branch ECS (figure 2(a)) is characterised by a critical layer

Figure 2. Representation of the streaks u0 in black lines and of the amplitude of the fluctuations in red for the lower (a) and upper (b)

branch states at Re ≈ 1500. The thick black line represents the critical layer (u0 = 0), the dashed lines represent equispaced contours.

Fluctuation amplitude contours are also equispaced.

mildly deformed by quasi-circular rolls (not shown) while the fluctuations are strongly focused around the critical layer

and vary slowly along it. In contrast, the critical layer of the upper branch ECS (figure 2(b)) is highly deformed as a

result of stronger and more complex rolls. In addition to displaying strong variations perpendicular to the critical layer,

the fluctations of the upper branch ECS display important variations along the critical layer. The critical region of the

upper branch ECS thus possesses a more complex structure: critical spots are present at the extrema of the critical layer

where strong fluctuation gradients are observed in both directions. These results may shed light on structures observed in

low Reynolds number turbulence.
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